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Abstract

Digital image splicing blind detection is becoming a new and important subject in information security area.
Among various approaches in extracting splicing clues, Markov state transition probability feature based on
transform domain (discrete cosine transform or discrete wavelet transform) seems to be most promising in the
state of the arts. However, the up-to-date extraction method of Markov features has some disadvantages in not
exploiting the information of transformed coefficients thoroughly. In this paper, an enhanced approach of Markov
state selection is proposed, which matches coefficients to Markov states base on well-performed function model.
Experiments and analysis show that the improved Markov model can employ more useful underlying information
in transformed coefficients and can achieve a higher recognition rate as results.
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1. Introduction
With digital imaging equipment and processing software
springing up, tampering of digital image has become so
easy and convenient. A frequent and fundamental type
of image tampering is splicing which pastes image frag-
ments from the same or different images into the host
image by crop-and-paste operation. Though there might
be some more professional artifices such as scaling, rota-
tion, brightening, blurring, and smoothing after splicing,
a careful and skillful splicing image can avoid any obvi-
ous trace of manipulation even without any of those
above post-operations. Just as what the dissymmetry of
information security reveals, though digital image tam-
pering is quite a simple thing with modern techniques,
its detection is actually a tough mission. Consequently,
when photos as a record of what have happened cannot
be trusted, it is a great threat to our society security es-
pecially in aspects like news media, military, and legal
arguments.
To certify the authenticity of photos, one of the trad-

itional and useful detection methods is watermarking,
which is widely used in copyright protection and digital
image authentication [1]. Watermark method detects the
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tampered images by checking the embedded information
which is inserted at the time of imaging [2]. However,
most digital cameras do not have that function owing to
cost or imaging quality consideration, which makes the
approach not universal in application. What is more, all
active detecting methods need prior information, which
is not available for the third party, and so they are not
adapted to many practical applications. In contrast, pas-
sive or named blind approaches for image splicing detec-
tion have no demand of prior information and only
exploit the knowledge of the image itself, which make
them more popular and make them gain more attention.
In this paper, we focus on passive image splicing detec-
tion approach.
Many passive image splicing detection methods have

been proposed in recent years [3]. In contrast to some
earlier researches which emphasized on the splicing
trace or duplication property on the space domain [4,5],
it is now widely believed that some statistical features in
the transform domain which stand for the regularities of
coefficient correlation would be disturbed by splicing.
Upon this assumption, many promising models or algo-
rithms have been proposed. Chen et al. [6] put forward a
blind image splicing detection method based on two-
dimensional (2-D) phase congruency and statistical mo-
ments of characteristic functions of wavelet sub-bands,
which achieved a detection rate of 82.32%. Dong et al.
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[7] proposed a simple but efficient approach that is per-
forming well both in detection accuracy and computa-
tional complexity; it extracted statistical features from
image run-length representation and image edge statis-
tics. Zhao et al. [8] came up with a method exploiting
features of gray-level run-length run-number vectors
from de-correlated chroma channels. In the work of Shi
et al. [9], a nature image model was proposed, which
combined together the characteristic function moments
of wavelet sub-bands and Markov transition probabilities
on block discrete cosine transform (DCT) coefficients as
splicing features and achieved an average accuracy as
high as 91.87%. Though it seems natural when we take
more splicing features together, we are more likely to get
some higher detection rates at the cost of more algo-
rithm complexity and time consumption. The best merit
of the work of Shi et al. [9] is that it revealed the prom-
ising prospect of Markov features on transform domain,
in the sense of the 88.31% accuracy achieved by the 96-
D Markov features alone which contributed most in the
combined feature model. In another work [10], He et al.
extended the Markov features in [9] to discrete wavelet
transform (DWT) coefficients and combined them with
features on block DCT coefficients. Also, despite the di-
mension of features going up to as high as 7,290 before
REF feature elimination, it did achieve the best detection
rate of 93.55% up to now on Columbia Image Splicing
Detection Evaluation Dataset [11].
As previous research shows, the Markov feature on

transform domain seems to have a better performance
on image splicing detection compared with other statis-
tical features. Thus, it is our best concern with Markov
feature extraction model which has mostly two steps, i.
e., state selection and state transform probability calcula-
tion. Both state selection methods in [9] and [10] are
rounding and threshold, which is too simple to reflect all
the useful information embodied in the transformed do-
main coefficients. In this paper, instead of resorting to
higher dimensions and more complicated combination
of features, we will thoroughly analyze the distribution
characteristic of transformed domain coefficients and
put forward our enhanced state selection method.
The rest of this paper is organized as follows. Splicing

feature extraction process is explained in Section 2. We
then analyze the coefficient distribution regulation, point
out the disadvantages of previous state selection method,
and propose our improved algorithm in Section 3. In
Section 4, we give the experiment results which confirm
the analysis in Section 3. Conclusion and discussion is
given in Section 5.

2. Feature extraction
In order to demonstrate the benefit of our proposed
method compared with previous one more specifically
and clearly, we explain and focus on certain aspects of
the Markov feature model in this section and ignore all
other parts of the combined features in [9] and [10].
Transform domain-based Markov feature extraction is
processed as follows: firstly, block discrete cosine trans-
form or discrete wavelet transform is performed on im-
ages; then, difference operation is conducted; finally,
select a state for each coefficient and then calculate
Markov state transform probabilities. The brief flow dia-
gram is given in Figure 1.

2. 1 Block discrete cosine transform
Due to the capability of block discrete cosine transform
(BDCT) in de-correlation and energy compaction, it is
widely used in image or video processing like compres-
sion and de-noising. The BDCT in this paper is set to
have a block size of 8 × 8 with the reasons analyzed in
[9], and the transform formula (1) is given as

F s; tð Þ ¼ 2
n

Xn−1
x¼0

Xn−1
y¼0

Δ xð ÞΔ yð Þcosπs 2xþ 1ð Þ
2n

cos
πt 2yþ 1ð Þ

2n
f x; yð Þ
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1ffiffiffi
2

p ; x ¼ 0

1; otherwise
; s; t∈ 0; 1;…; n−1f g:
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:
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2.2 Discrete wavelet transform
Wavelet analysis does well at catching short-time transi-
ent or local change signals [12]. Since splicing borders
are sharp transitions in nature, DWT is adaptive to
image splicing detection. In [10], He et al. resorted to
Markov random progress (transition probability matrix)
to capture dependency among wavelet coefficients across
positions, scales, and orientations and achieved good de-
tection results. The wavelet transformation (Equations 2,
3, and 4) is operated as follows [13]:

φJ ;K tð Þ ¼ 2−J=2φ 2−J t−K
� �

ϕ J ;K tð Þ ¼ 2−J=2ϕ 2−J t−K
� �

J ;K∈Z
ð2Þ

z tð Þ ¼
X
K

uK∅J0;K tð Þ þ
XJ0
J¼−∞

X
K

wJ ;KφJ ;K tð Þ ð3Þ

wJ ;K ¼ ∫z tð Þφ�J ;K tð Þdt;uK ¼ ∫z tð Þ∅�
J0;K

tð Þdt ð4Þ

2.3 Difference 2-D array
As many researches indicate, one of the main obstacles
for splicing detection is the interference from the
image content. A difference 2-D array is introduced to



Figure 1 Flow diagram of the Markov feature extraction model.
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eliminate this interference. Difference 2-D arrays are
denoted as Fθ(u, v) (Equations 5, 6, 7, and 8) [9]:

Fh u; vð Þ ¼ F i; jð Þ−F iþ 1; jð Þ ð5Þ

Fv u; vð Þ ¼ F i; jð Þ−F i; jþ 1ð Þ ð6Þ

Fd u; vð Þ ¼ F i; jð Þ−F iþ 1; jþ 1ð Þ ð7Þ

Fm u; vð Þ ¼ F iþ 1; jð Þ−F i; jþ 1ð Þ ð8Þ

where (u, v) represents difference array coordinates, (i and
j stand for original array coordinates, θ represents differ-
ent directions (horizontal (h), vertical (v), diagonal (d),
and minor diagonal (m)). This paper exploits difference
array in horizontal and vertical directions to represent
splicing features.

2.4 Markov transition probability matrix
Under the assumption that pasted parts are additive to
the host image and the additive noise is independent to
the host image, the distribution of the spliced image is
the convolution of the distribution of the host image
and that of the additive noise [9]. When additive splicing
noise obeys Gaussian distribution, the splicing operation
will cause the disturbance of concentration along the
main diagonal of Markov transition probability matrix of
the difference array, and this statistical artifact can be
employed to detect splicing.
Because the coefficients of difference 2-D array are ra-

tional numbers and have a vast range, it is needed to re-
sort to some techniques like rounding and threshold. If
the value of an element after rounding in a difference
array is larger than T or smaller than − T, it will be rep-
resented by T or − T. After undergoing rounding and
threshold operation, the coefficients of difference 2-D
array become Markov states. This procedure results in
the mentioned state transition probability matrix. In
horizontal (9) and vertical (10) directions, the element in
the matrix is given as follows:

pfFh uþ 1; vð Þ ¼ njFh u; vð Þ ¼ mg

¼
XN−2

v¼0

XN−2

u¼0
δ Fh u; vð Þ ¼ m; Fh uþ 1; vð Þ ¼ nð ÞXN−2

v¼0

XN−2

u¼0
δ Fh u; vð Þ ¼ mð Þ

ð9Þ
pfFv u; vþ 1ð Þ ¼ njFv u; vð Þ ¼ mg

¼
XN−2

v¼0

XN−2

u¼0
δ Fv u; vð Þ ¼ m; Fv u; vþ 1ð Þ ¼ nð ÞXN−2

v¼0

XN−2

u¼0
δ Fv u; vð Þ ¼ mð Þ

:

ð10Þ

3. The enhanced Markov state selection method
The process of Markov feature extraction based on DCT
or DWT are the same, as shown in Figure 1. Other parts
except state selection are introduced in Section 2, and
we will describe this part in detail, e.g., why doing this
and how to do, after which our enhanced method is
given.
As shown in the Section 2.4, Markov features are in

fact transition probabilities calculated between states.
However, the coefficients after difference operation of
DCT or DWT are both continuous rational numbers,
which is not convenient to be regarded as states directly.
So, we need to select some limited states to represent all
coefficients. By state selection, we mean the method of
determining which state a specific coefficient stands for.
Supposing we get N states, and the dimension of Markov
transition probabilities will be N ×N, which should be as
small as possible considering the calculation complex
and time consumption for classification on the premise
of not affecting the recognition results too much.

3.1 The original Markov state selecting method and its
disadvantages
The Markov state selecting method in [9] and [10] was
rounding coefficients and then setting those coefficients
above threshold T to T. The above papers both consid-
ered different T values and selected the suitable one in



Table 1 Coefficient distribution after BDCT and difference operation with T = 3 or T = 4

BDCT Horizontal difference (%) Vertical difference (%)

Threshold In range T Out of range T Ratio of zero In range T Out of range T Ratio of zero

T = 3 57.3 42.7 30.3 57.2 42.8 30.3

T = 4 62.2 37.8 30.3 62.4 37.6 30.3
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view of compromising between recognition rate and
time consumption. After analyzing the coefficient histo-
gram after BDCT and difference operation, we find that
most coefficients are small and centering on zero, and a
similar situation is also found in the DWT domain. On
the other hand, considerable coefficients do exist beyond
frequently adopted threshold. On all accounts, during
the rounding and threshold operation, part of the coeffi-
cient information is lost, as described in the following:

1. Rounding operation matches decimal coefficients to
two neighboring states in a simple way and loses
information carried by the variety of difference.

2. Threshold makes the coefficients above T to T and
loses the difference information, too.

As mentioned above, there should not be too many
Markov states in consideration of calculation complexity
and time consumption, so loss of information is some-
what unavoidable. However, the rounding and threshold
method is too stiff, and it cannot adapt flexibly to coeffi-
cient distribution regularity. From Table 1, we can see
that the ratio of coefficients between −0.5 and 0.5 after
BDCT and difference operation is over 30%. Also, from
Table 2 in D1 sub-band, that ratio after DWT and differ-
ence is as high as 46.5%, which means that the number
of coefficients for state S = 0 is almost the same as that
of all other states. As we all know, Markov transition
probabilities cannot describe the difference information
of coefficients that stand for the same state. Conse-
quently, we should make the Markov states represent
them more sufficiently rather than map them with only
one state. For the second issue, information loss is even
more obvious. As Table 1 shows, the ratio of BDCT
Table 2 Level 2 sub-band coefficient distribution after DWT a

T = 3 Horizontal difference (%)

Sub-band In range T Out of range T Ratio of z

H1 71.2 28.8 29.4

V1 69.3 30.7 27.3

D1 85.2 14.8 45.4

H2 44.2 55.8 17.6

V2 43.6 56.4 12.2

D2 54.4 46.6 13.6
coefficients over threshold T = 3 after horizontal and
vertical differences are 42.7% and 42.8%, respectively,
and Table 2 shows that the ratio of DWT coefficients
over T = 3 at level 2 horizontal direction after vertical
difference reaches up to 57.5%. For the ratio of zero, the
highest value is 46.5% as illustrated in Table 3. Mapping
very large scale coefficients to only one state is not ap-
propriate due to the difference information lost. Gener-
ally speaking, the function of Markov state selection is
mostly for calculating state transition probabilities, and
it does not catch enough attention it deserved. When
the lost information during this process may be valuable
to us and should be preserved, the rounding and thresh-
old method will lead to the decrease of detection rate. In
the following, we will give our enhanced method for
Markov state selection.

3.2 The proposed Markov state selection method
The former Markov state selection method by rounding
and threshold is not a desirable one because it does not
take into account the coefficient distribution property.
Thus, the first thing we should have done is to study
the regularity of coefficient distribution. We do BDCT
and DWT followed by difference operation on
Columbia gray images, put all the coefficients together,
and then analyze their histograms. Figure 2 is the histo-
gram of coefficients after BDCT and horizontal and ver-
tical difference operation, in the range of [−30, 30] and
with a minimal interval of 0.1. We find that majority of
coefficients are in [−10, 10] and that the most abrupt
part of the histogram is near zero. Also, the two histo-
grams of different direction coefficients are resembled,
so when we analyze BDCT coefficients thereafter, only
horizontal direction is considered. The upper parts of
nd difference operation with T = 3

Vertical difference (%)

ero In range T Out of range T Ratio of zero

69.2 30.8 28.5

71.5 28.5 28.3

86.3 13.7 46.2

44.1 55.9 13.4

42.5 57.5 11.3

53.3 46.7 17.2



Table 3 Level 2 sub-band coefficient distribution after DWT and difference operation with T = 4

T = 4 Horizontal difference (%) Vertical difference (%)

Sub-band In range T Out of range T Ratio of zero In range T Out of range T Ratio of zero

H1 77.4 22.6 29.2 75.1 24.9 28.6

V1 75.3 24.7 27.3 77.5 22.5 28.1

D1 89.1 10.9 45.2 90.2 9.8 46.5

H2 51.7 48.3 17.4 50.3 49.7 13.2

V2 49.5 50.5 12.1 49.6 50.4 11.5

D2 60.1 39.9 13.5 60.3 39.7 17.4
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Figure 3 are histograms of coefficients after level 1
DWT (in horizontal, vertical, and diagonal sub-bands,
respectively) and horizontal difference operation, whereas
the lower parts of Figure 3 are the level 2 results. The
figures show that level 1 horizontal and vertical sub-band
coefficients after horizontal difference are like BDCT,
which are mostly in [−10, 10] and center sharply on zero,
while in level 2, coefficients have a relatively larger range,
and energy out of [−10, 10] is also strong.
The Markov state number must be finite and not too

large; how to map the vast number of coefficients with
limited states has great meaning. The method we give is
to map states with the coefficients according to various
presupposed function models. Those functions are just
envelopes of discrete matching probabilities for each
state. The matching probability is defined as follows:
suppose the number of all coefficients is M and the
number of coefficients corresponding to a specific state
is K, then the matching probability for this state is K/M.
The simplest model is the average function, i.e., mapping
Figure 2 Histogram of coefficients in the range of [−30, 30] after BDC
vertical difference is in the right. Minimum interval is 0.1.
the states evenly with the coefficients according to a
fixed ratio determined by the number of state N.
Though the average function model can avoid matching
too many outbound coefficients to the same state and
each state stands for coefficients evenly, it fails to em-
ploy thoroughly the regularity of coefficient distribution
analyzed above. Therefore, besides the average function,
we considered other models like absolute linear func-
tion, quadratic function, Gaussian function, and expo-
nential function. Experiment results are given in next
section, and the comparison will demonstrate which
function model reaches our target best.
Whatever function model is adopted, the mapping

process is similar with that of the average function
model. When the Markov state number is set to be N
(odd), the coefficients will be divided to N parts with
N − 1 border values and there are N corresponding
percentages or matching probabilities for each part.
From Figures 2 and 3, we know that coefficients

distribute symmetrically approximately at X = 0. Thus,
T and difference operation. Horizontal difference is in the left, and



Figure 3 Histogram of coefficients in the range of [−30, 30] after DWT and difference operation. Minimum interval is 0.1. Level 1 sub-
bands are in the upper row with horizontal, vertical, and diagonal sub-bands from left to right. Level 2 sub-bands are in the lower row with
horizontal, vertical and diagonal sub-bands from left to right.
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when calculating matching probabilities, we count the
negative and positive parts together and the number of
border values will be reduced by half. To calculate the
(N − 1)/2 border values, (N + 1)/2 probabilities for each
nonnegative state are needed, noted as p1, p2,…, p(N + 1)/2.
We employ the function models with estimated parame-
ters to get these probabilities.
For each assumptive function model, we use grid

search method to estimate the most suitable parameters.
Since all coefficients need to be mapped, the sum of
percentage for each state should be 1. Also, each
Figure 4 Image examples of authentic (upper row) and spliced (lowe
percentage as a probability should be in the range of [0,
1]. Hence, there are two limitation conditions (11) for
the estimation:

p1 þ p2 þ…þ p Nþ1ð Þ=2 ¼ 1
0 ≤ pi ≤ 1; i∈ 1; N þ 1ð Þ=2ð Þ

�
ð11Þ

After each matching probability is confirmed, we will cal-
culate the border values, noted as T1,T2,…,T(N − 1)/2. Sup-
pose w as the appropriate step parameter with reasonable
r row) images in the database.



Table 4 Detection result comparison of different function models for Markov state selection (BDCT)

Function model P1 P2 P3 P4 AC (%) TP (%) TN (%)

Average function y ¼ 2
Nþ1 ;N ¼ 7 0.25 0.25 0.25 0.25 86.1 86.3 85.8

0.93 1.6 1.8

Linear function y = a * |x|, a = − 0.1 0.4 0.3 0.2 0.1 86.6 87.0 86.3

1.0 1.9 1.7

Quadratic function y = a * x2 + c, a = − 0.027, c = 0.346 0.34 0.32 0.22 0.12 85.3 85.9 84.7

1.0 1.9 2.0

Gaussian function y ¼ a � e−x2=c2 ; a ¼ 0:027; c ¼ 2:620 0.37 0.32 0.16 0.14 86.3 86.4 86.2

1.0 1.7 1.6

Exponential function y = a * eb|x|, a = 0.460, b = − 0.051 0.46 0.27 0.16 0.11 87.5 87.6 87.5

1.0 1.8 1.9

Horizontal direction difference, N = 7.
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precision compared to coefficients, which is set to 0.01 in
our experiment. The algorithm is described as follows:

1. Set initial values Ts = 0,Te = ω, and i = 1.
2. Calculate the percentage of coefficients in [−Te, −Ts)

and (Ts,Te]; if not above or equal to Pi, then Te=Te +ω.
3. Repeat step 2. If the percentage is above or equal to

Pi, then end the inner loop; return Te, set Ts = Te,
Te = Te + ω, and i = i + 1.

4. Repeat steps 2 and 3. If the outer loop number is
above (N − 1)/2 or Te is above or equal to the max
coefficient, then end the outer loop and return Te.

For each function model and combination of parame-
ters in grid search process, after border values are
determined by the above algorithm, we can easily
calculate the Markov transition matrix as described in
Section 2 and at last find the most suitable parameters
which lead to the highest detection rate for a specific
function model.
Table 5 Detection result comparison of different function mo

Function model P1

Average function y ¼ 2
Nþ1 ;N ¼ 7 0.25

Linear function y = a * |x|, a = − 0.160 0.34

Quadratic function y = a * x2 + c, a = − 0.013, c = 0.294 0.37

Gaussian function y ¼ a � e−x2=c2 ; a ¼ 0:351; c ¼ 2:890 0.35

Exponential function y = a * eb|x|, a = 0.404, b = − 0.378 0.40

Level 1 D sub-band only, horizontal direction difference, N = 7.
4. Experiment results and analysis
4.1 The image dataset
So far, the widely used evaluation dataset is the
Columbia Image Splicing Detection Evaluation Dataset
[11], which consists of 933 real images and 912 splicing
images, as shown in Figure 4. Real images are taken by
one camera, and splicing images are manufactured from
two real images, only splicing operation and no post dis-
pose, which makes for splicing detection particularly.

4.2 Classification
We mark real images +1 and spliced images −1, and
then the problem becomes a two-way classification,
which can be solved by a support vector machine. In
experiments, the classifier is LIBSVM by Lin [14] and an
RBF kernel is used. Each time before classification, grid
algorithm is used to find the best C and G, and half of real
and splicing images is selected randomly as train set, with
the left as test set. Since the experiment sample number is
small, we conducted independent experiments 50 times
dels for Markov state selection (DWT)

P2 P3 P4 AC (%) TP (%) TN (%)

0.25 0.25 0.25 78.4 79.2 77.6

1.0 2.3 2.2

0.28 0.22 0.16 77.9 79.4 76.4

1.0 2.5 2.3

0.28 0.24 0.18 77.5 78.4 76.5

1.0 2.7 2.1

0.31 0.22 0.12 78.0 79.6 76.4

0.9 2.5 2.3

0.28 0.19 0.13 77.6 78.7 76.5

0.9 2.5 1.9



Figure 5 Comparison of detection rates of original and proposed methods in BDCT domain (N = 7). H-D stands for horizontal difference,
and V-D stands for vertical difference.
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and got the average results to reduce the stochastic
impact.

4.3 Analysis of experiment results
4.3.1 Comparison of different function models for Markov
state selection
As discussed in the previous section, we use several
function models to map coefficients to Markov states.
Under the two limitation conditions, many groups of
function parameters are tested by grid search method,
and finally, a well-performed parameter group is selected
for a specific function. In Tables 4 and 5, we list all of
the mentioned function models with their corresponding
best-performed parameters and their detection rate for
BDCT and DWT domains.
Results show that exponential function model per-

forms best for the BDCT domain. As shown in Figure 2,
the shape of the histogram in the positive part for BDCT
is close to the exponential distribution, and it seems that
the best choice of the state matching function model is
just the same type of function as the envelopes of the
Figure 6 Comparison of detection rates of original and proposed me
and V-D stands for vertical difference.
coefficient histogram. Though this assumption does not
hold in the DWT domain in which the histogram in
Figure 3 is near the Gaussian distribution, the best result
of state matching function model is the average function
as demonstrated in Table 5. We also found that the
Gaussian model is the second best choice, and the result
is very close to that of average model. Taking into
account that the samples in the experimental dataset are
limited, it may be difficult to find out all the underlying
secrets on limited testing data. In any case, our experi-
ment does suggest that the best choice of the Markov
state matching function model has something to do with
the regularity of coefficient distribution.

4.3.2 Results of the enhanced state selection method on
BDCT domain
Figures 5 and 6 show the detection results of Markov
models with different state selection methods on coeffi-
cients in BDCT domain (horizontal and vertical differ-
ences respectively). AC stands for average detection rate,
TP for detection rate of real image, and TN for splicing
thods in BDCT domain (N = 9). H-D stands for horizontal difference,



Figure 7 Comparison of detection rates of original and proposed methods in DWT domain (N = 7). L1 stands for lever 1, and L2 stands for
lever 2.
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image. Exponential function model is used for state
matching in our enhanced method. The data show that
our method will improve the detection rate by 1.0% to
2.2%, respectively, without increasing the feature dimen-
sion, which makes great sense because the detection rate
has not gone up for a long time. He et al. [10] increased
the detection rate from 91.87% in [9] to 93.55% with the
feature dimension enlarged from 266 to 7,290.
What is more, when Figures 5 and 6 are compared, we

find that the AC increment when N = 7 is larger than
when N = 9, which verifies our assumption for the disad-
vantage of original state selection method: it is not suit-
able to threshold too many coefficients above T to T
with very useful information for splicing detection lost.
When N = 9, the rate increment is about 1%. If we con-
tinue to enlarge T, the improved state selection method
will lose its superiority because the ratio of coefficients
above T will be decreased.
Figure 8 Comparison of detection rates of original and proposed me
lever 2.
4.3.3 Results of the new state selection method on DWT
domain
He et al. [10] proposed the feature extraction method
which employed a 2-D difference array stand for the
correlations of position, scale, and direction, respectively,
in DWT domain. Among these three features, position
contributes the most, and detection rate of direction or
scale feature alone is less than 75%. So, we only com-
pare the detection rate on position feature in this paper.
Figures 7 and 8 give the detection rate of Markov fea-
tures from the two state selection methods after DWT
and horizontal difference, with N standing for the num-
ber of Markov states. Horizontal, vertical, and diagonal
sub-bands are taken together to extract the Markov
features, and the average function model is used for
state matching in our enhance method. The results
show that our method will improve the detection rate
by 1.2% to 1.7%, respectively.
thods in DWT domain (N = 9). L1 stands for lever 1, and L2 stands for
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5. Conclusions
This paper improves the Markov state selection method
in the works of Shi et al. [9] and He et al. [10], whose
detection rate was the highest in the state of the art on
Columbia Image Splicing Detection Evaluation Dataset.
Our proposed method maps coefficients with the
Markov states according to various function models.
Experiments reveal that different coefficient distribution
may have different best function models for state selec-
tion. Our enhanced method increases the detection
ability of Markov features and can promote the AC rate
by up to 2.2% without increasing the feature dimension.
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