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Abstract. In this paper we present a statistical method to build three-dimensional gas distribution maps (3D-DM). The
proposed mapping technique uses kernel extrapolation witha tri-variate Gaussian kernel that models the likelihood that a
reading represents the concentration distribution at a distant location in the three dimensions. The method is evaluated using
a mobile robot equipped with three “e-noses” mounted at different heights. Initial experiments in an uncontrolled indoor
environment are presented and evaluated with respect to theability of the 3D map, computed from the lower and upper nose,
to predict the map from the middle nose.
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1. INTRODUCTION

An increased quality of environmental monitoring is de-
sired to protect the environment from toxic contaminants
released into the air by vehicle emissions, power plants,
refineries, to name but a few. Monitoring urban environ-
ments is typically done using immobile monitoring sta-
tions. Their total number and thus the number of sam-
pling locations is limited by economical and practical
constraints. Thus, the selection of monitoring/sampling
locations becomes very critical, especially considering
the time-varying, complicated local structure of the gas
distribution. A further disadvantage of stationary air
monitoring is that the monitoring stations are typically
placed at expected “hot spots”, close to busy roads, for
example, and accordingly “background areas” are not
monitored [1]. These issues can be addressed by mobile
robots equipped with an “electronic nose”, a combination
we refer to as a mobile nose or “m-nose”. An m-nose can
act as a wireless node in a sensor network. With its self-
localization capability and the ability to adaptively select
sampling locations, m-noses offer a number of important
advantages, among others: monitoring with higher reso-
lution, the possibility of source tracking, integration into
existing application, compensation for inactive sensors,
and adaption to dynamic changes in the environment. Us-
ing mobile robots for air quality monitoring is addressed
in the EU project DustBot, for example, in which robot
prototypes are developed to clean pedestrian areas and
concurrently monitor the pollution levels [2].

Gas distribution modelling is the task of deriving a
truthful representation of the observed gas distribution
from a set of spatially and temporally distributed mea-
surements of relevant variables, foremost gas concentra-

tion (as used in this paper), but also pressure, and tem-
perature, for example. Building gas distribution models
is very challenging. One main reason is that in many
realistic scenarios gas is dispersed chaotically by turbu-
lent advection, resulting in a concentration field that con-
sists of fluctuating, intermittent patches of high concen-
tration [3]. In principle, CFD (Computational Fluid Dy-
namics) models can be applied, which try to solve the
governing set of equations numerically. However, CFD
models are computationally very expensive. They be-
come intractable for sufficiently high resolution in typ-
ical real world settings and depend sensitively on accu-
rate knowledge of the state of the environment, which is
not available in practical situations. Here, we instead opt
an alternative approach to gas distribution modelling and
create a statistical model of the observed gas distribution,
treating gas sensor measurements as random variables.
Our approach creates a statistical model discretized to a
grid map and it is “parameter-free” in the sense that it
makes no assumptions about a particular functional form
of the gas distribution. Previous approaches to statistical
gas distribution mapping with mobile robots were largely
restricted to mapping a 2D slice, parallel to the floor and
level with the gas sensors on the robot (Sec. 2). The ma-
jor contribution of this paper is the extension of Kernel
extrapolation distribution mapping to three dimensions
and its evaluation based on real world experiments in an
uncontrolled indoor environment. This is an important
step for gas distribution modelling since the gas distri-
bution structure is essentially three dimensional. After a
discussion of related work in the next section and the de-
scription of the hardware and set-up used for the monitor-
ing trials (Sec. 3), we outline the 3D distribution mapping
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algorithm in (Sec. 4). Finally, we present first results and
end with conclusions and suggestions for future work.

2. RELATED WORK

In urban environments, especially in areas with high pop-
ulation and traffic density, human exposure to hazardous
substances is often significantly increased. High pollu-
tion levels exceeding air quality standards, have been
observed in street canyons [4], for example. In a natu-
ral environment advective flow generally dominates gas
dispersal compared to slow molecular diffusion. Since
the airflow is almost always turbulent, the gas distribu-
tion becomes patchy and meandering [5]. As pointed
out in the review of Vardoulakis et al. [4], just a few
approaches to environmental monitoring with immobile
sensing stations consider the complicated local structure
of gas distribution. Acknowledging the need to refine the
monitoring scale, Maruo et al. developed small inexpen-
sive gas sensors for air pollution monitoring [6]. Addison
et al. [7] propose a method for predicting the spatial pol-
lutant distribution in a street canyon based on a stochas-
tic Lagrangian particle model superimposed on a known
velocity and turbulence field.

Gas distribution mapping with mobile gas sensors has
been implemented and investigated by mobile robots
equipped with an “e-nose“ [8, 9, 10, 11, 12]. These ap-
proaches can be divided into two groups. Model-based
approaches such as the one proposed by Ishida et al. [8]
assume a particular model of the time-averaged gas
distribution and estimate the corresponding parameters.
Model- or parameter-free approaches deal with the fluc-
tuating nature of the gas distribution either by recording
individual concentration samples over a prolonged time
(several minutes) [11, 12] or by statistically integrating
subsequent measurements into a spatial grid [9, 10].

All the above mentioned approaches produce 2D gas
distribution maps. In the field of mobile robot olfaction,
the three-dimensionality of the environment is only taken
into account in a few publications on gas source trac-
ing [13, 14, 15]. Three-dimensional gas distribution map-
ping with a mobile robot has not been investigated before
to the best of our knowledge.

3. EXPERIMENTAL SET-UP

An ATRV-JR robot equipped with a SICK LMS 200
laser range scanner (for localization) and three “elec-
tronic noses” was used for the monitoring experiments.
The “electronic noses” comprise different Figaro 26xx
gas sensors enclosed in an aluminum tube. These tubes
are horizontally mounted at the front side of the robot at
a height of 10 cm, 60 cm and 110 cm and actively venti-
lated through a fan that creates a constant airflow towards
the gas sensors. This lowers the effect of external airflow
or the movement of the robot on the sensor response and

guarantees continuous exchange of gas in situations with
very low external airflow. In this work, we address the
problem of modeling the distribution from a single gas
source. With respect to this task, the response of the dif-
ferent sensors in the electronic nose is highly redundant
and thus it is suffcient to consider the response of a single
sensor (TGS 2620) only.

The scenario selected for the gas distribution mapping
experiments is to monitor an area of approx. 10× 3m2

in a long corridor with open ends and a high ceiling.
This choice was motivated by the goal to monitor un-
controlled environments and even pedestrian areas. Dur-
ing our monitoring trials there was disturbance caused by
people passing by and by the opening of doors and win-
dows. The gas source was a small cup filled with ethanol
or acetone. This source was placed roughly in the mid-
dle of the investigated corridor segment at a height of
1.6 m to prevent the robot from colliding with the source
and ensure a substantially 3D gas distribution with the
chosen analytes (which are heavier than air: ethanol≈
46 g/mol and acetone≈ 58 g/mol). As a possible moni-
toring strategy, the robot followed either a random walk
trajectory or a predefined sweeping path to cover the area
of interest, using a fixed starting point.

In order to be able to relate the readings of the dif-
ferent electronic noses to each other, we perform a sim-
ple calibration by determining the baseline (response to
clean air) and the maximum response in the actual ex-
perimental enviroment (but not in a controlled set-up)
with the three e-noses positioned very close to each other.
This is done by recording the respective minimum values
Rn

min (baseline) and the maximum valuesRn
maxafter a cup

filled with the analyte was opened close to the noses. In
the subsequent monitoring trial the raw readingsRn

i from
nosen are scaled as

r i =
Rn

i −Rn
min

Rn
max−Rn

min
. (1)

Thus, we make the assumptions that each sensor was
exposed to the same minimum and maximum concen-
tration during the calibration process and that the sen-
sors’ response depends on the concentration in the same,
monotonous way. Since the calibration is repeatedly car-
ried out in the same environment and under the same con-
ditions as the actual experimental runs, we avoid issues
with long-term drift and mitigate drift issues due to dif-
ferent temperature and humidity in the trials.

4. 3D GAS DISTRIBUTION MODEL

In this section we introduce the basic ideas of the 3D Ker-
nel GDM algorithm extending the 2D model of Lilienthal
et al. [16], and describe briefly the Kernel DM+V algo-
rithm [16] that models the distributions mean and the cor-
responding variance. The gas distribution mapping prob-
lem addressed here is to learn a predictive three dimen-



sional modelp(r|x,x1:n,r1:n) for the gas concentrationr
at locationx, given the robot trajectoryx1:n and the corre-
sponding concentration measurementsr1:n. We consider
the case of a single target gas, but in principle the pro-
posed method can be extended to the case of multiple
different odor sources as described in [17]. We also as-
sume perfect knowledge about the positionxi of a sensor
at the time of the measurement. To account for the un-
certainty about the sensor position, the method in [18]
could be used. To study how gas distribution in three di-
mensions we consider the concentration readings from
multiple "e-noses" mounted at different heights. The cen-
tral idea of kernel extrapolation methods is to understand
gas distribution mapping as a density estimation problem
that involves convolution with a kernel.The first step in
the Kernel DM+V algorithm is the computation of the

weightsω(k)
i , which represent the importance of each

sensors measurementi at grid cellk:

ω(k)
i (σx,σy,σz) = N (|xi −x(k)|,σx,σy,σz). (2)

The weights are computed using a multivariate 3D-
Gaussian kernelN evaluated at the distance between
the location of the measurementxi and the centerx(k)

of cell k. We use a diagonal covariance matrixΣ with
elementsσx, σy, σz, which defines the kernel extension

along the three axis. Using Eq. 2, weightsω(k)
i , weighted

sensor readingsω(k)
i · r i and weighted variance contribu-

tion ω(k)
i · τi are integrated and stored in temporary grid

maps:

Ω(k) =
n

∑
i=1

ω(k)
i , R(k) =

n

∑
i=1

ω(k)
i ·r i , V(k) =

n

∑
i=1

ω(k)
i ·τi ,

(3)
τi = (r i − rk(i))2

. (4)

τi is the variance contribution of readingi and rk(i) is
the model prediction from the cellk(i) closest to the
measurement pointxi . From the integrated weight map
Ω(k) we compute a confidence mapα(k), which indicates
high confidence for cells if the estimate can be based on
a large number of readings recorded close to the center
of the respective grid cell:

α(k)(σx,σy,σz) = 1−e
−

(Ω)(k)(σx,σy,σz)

σ2
Ω

. (5)

σΩ is a scaling parameter that defines a soft margin
which decides rather the estimate for a cell has high
confidence or low confidence. By normalizing the map
of weighted readingsR(k) to Ω(k) and linear blending
with the best guess for the case of low confidence, we
finally obtain the map estimates of the meanr(k) and the
corresponding variance mapv(k) as

r(k)(σx,σy,σz) = α(k) R(k)

Ω(k)
+{1−α(k)}r, (6)

v(k)(σx,σy,σz) = α(k) R(k)

Ω(k)
+{1−α(k)}vtot. (7)

The second terms in the equations are the best estimate
for cells with a low confidence.r represents an estimate
of the mean concentration for cells for which we do not
have sufficient information from nearby readings, indi-
cated by a low value ofα(k). We setr to be the av-
erage over all sensor readings. The estimatevtot of the
distribution variance in regions far from measurement
points is computed as the average over all variance con-
tributions. The 3D Kernel-GDMV algorithm depends on
seven parameters: the kernel widthsσx,σy,σz, that gov-
ern the amount of extrapolation on individual readings
according to three axis and the cell sizescx,cy,cz that de-
termines the resolution at which different predictions can
be made andσΩ.

5. RESULTS

Qualitative Comparison:In order to evaluate how well
the model captures the true properties of the gas distri-
bution we use two of the three noses (the lower and the
upper one, see Sec. 3), to build a 3D model using the
method described in the previous section. After that we
slice the model and extract the layer corresponding to
the height of the remaining middle nose (“3D@60cm”).
From the readings of the middle nose we also build a 2D
gas distribution map (“2D@60cm”) and we compare it
with the slice extracted from the 3D model. This evalu-
ation method is visualized in Fig. 1. The first two maps
at the top represent the mean distribution according to
the models “2D@60cm” and “3D@60cm” obtained in
a random walk experiment. These two maps display a
structural similarity especially when comparing the high-
concentration regions colour-coded in red. The two maps
at the bottom of Fig. 1 represent the mean distribution
obtained from the 2D models computed for the upper
(“2D@110cm”) and the lower nose (“2D@10cm”).

Quantitative Comparison:As a measure of distribu-
tion similarity we use the Kullback-Leibler (KL) diver-
gence or relative entropy [19] for probability functions:

KL(p|q) = −

∫
p(x) ln

q(x)
p(x)

dx (8)

where p(x) is the “unknown” distribution (in our case
“2D@60cm”), and q(x) is the modelled distribution
(“3D@60cm”). Since the gas distributions maps are not
probability distribution we first normalize them so that
the sum over all values equals to one. Then we compute
the KL divergence for 14 layers of the 3D model for two
different experiments, one with an ethanol source and
one with an acetone source. As can be seen in Fig. 2,
the minimum of the KL divergence was found exactly
for the layer at the height of the middle nose in both ex-
periments.



FIGURE 1. Top to bottom: picture of the “m-nose” proto-
type (“Rasmus”) carrying the three electronic noses; mean of
the 2D gas distribution map obtained from the middle nose
(“2D@60cm”); from slicing the 3D model (“3D@60cm”) ob-
tained from the lower and the upper nose; 2D mean map
from the upper nose (“2D@110cm”); from the lower nose
(“2D@10cm”).

FIGURE 2. KL divergence for a random walk experiment
with ethanol (blue line) and a sweeping experiment with ace-
tone (red line) between 14 layers of the 3D model and the
“2D@60cm”.

6. DISCUSSION AND CONCLUSIONS

3D gas distribution modelling with a mobile robot in an
uncontrolled environment is a challenging field of re-
search. This is mainly due to the chaotic nature of the
dispersed gas. Utilization of mobile robots to monitor
pollution has a number of advantages reflected by an
increasing interest in this field in the last ten years. In
this paper we present a statistical method to build three-
dimensional gas distribution maps (3D-DM). The map-
ping technique uses Kernel extrapolation mapping with

a tri-variate Gaussian weighting function to model the
decreasing likelihood that a reading represents the true
concentration with respect to the distance in the three
dimensions. The method is evaluated using a mobile
robot equipped with three “e-noses” mounted at differ-
ent heights. Initial experiments in an uncontrolled indoor
enviroment are presented and evaluated with respect to
the ability of the 3D map, computed from the lower and
upper nose, to predict the map from the middle nose. This
paper represents initial work and of course more trials are
needed in different environments and with different ana-
lytes. Another interesting task is to integrate wind mea-
surements, obtained by an anemometer to build an im-
proved gas distribution model.
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