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1 Introduction and main results
The classical Morrey spaces, were introduced by Morrey [1] in 1938, have been studied
intensively by various authors and together with weighted Lebesgue spaces play an impor-
tant role in the theory of partial differential equations; they appeared to be quite useful in
the study of local behavior of the solutions of elliptic differential equations and describe
local regularity more precisely than Lebesgue spaces.

Morrey spaces M, (R") are defined as the set of all functions f € L,(R") such that

A
Wy, = W lla,,@mn = sup 7”7 |z, B < 00
Under this definition, M,,,(R") becomes a Banach space; for A = 0, it coincides with
L,(R") and for A =1 with Lo (R").
We also denote by WM, the weak Morrey space of all functions f € WLL"C(R") for
which

i
W lwam,, = W llwa,, @y = sup 7 7 |f lwr,@e) <00
x€R" r>0

where WL, denotes the weak L,-space.

Definition 1 Let ¢(x,r) be a positive measurable function on R” x (0,00) and 1 < p < co.
We denote by M,,, = M, ,(R") the generalized Morrey space, the space of all functions
fe L}j’c (R™) with finite quasinorm

1
1ty = I gy pemy = sup (7)™ B, )| "7 I1f L, (8-

x€R”,r>0
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Also, by WM,,, = WM, ,(R"), we denote the weak generalized Morrey space of all func-
tions f € WL};’C(]R") for which

1
W llwagyy = If llwad,,@n = sup @, 7)™ B, )| 2 If ll w8 < 00
x€R™,r>0

According to this definition, we recover the spaces M,,, and WM,,, under the choice

A-n
ox,r)=r7r:
M A-n = M )
p</)|(p(x’r)=rT P
WM, | ron = WM.
pxr)=r ¢

The theory of boundedness of classical operators of the real analysis, such as the maxi-
mal operator, fractional maximal operator, Riesz potential and the singular integral opera-
tors etc., from one weighted Lebesgue space to another one is well studied. Let f € LI°¢(R").
The fractional maximal operator M,, and the Riesz potential /, are defined by

qu(x)zsup|B(x,t)|_l+%/ [f(y)|dy, O<a<mn,
t>0 B(x,t)

_ f()dy
Iﬂ(f(x)_/g;nm’ O<a<n.

If o = 0, then M = M, is the Hardy-Littlewood maximal operator. In [2], Chiarenza and
Frasca obtained the boundedness of M on M, (R"). In [3], Adams established the bound-
edness of I, on M, , (R").

Here and subsequently, C will denote a positive constant which may vary from line to
line but will remain independent of the relevant quantities.

The Calderén-Zygmund singular integral operator is defined by

Tfw) = po. | Kle=y)f0)dn (L)

where K is a Calderén-Zygmund kernel (CZK). We say a kernel K € C1(R” \ {0}) is a CZK
if it satisfies

K| = =, (1.2)
||
|VK(%)| < (1.3)
|x|n+1
and
/ K(x)dx =0, (1.4)
a<|x|<b

for all @, b with 0 < a < b. Chiarenza and Frasca [2] showed the boundedness of 7" on
M, (R™).

It is worth pointing out that the kernel in (1.1) is convolution kernel. However, there
were many kinds of operators with non-convolution kernels, such as Fourier transform
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and Radon transform [4], which both are versions of oscillatory integrals. The object we
consider in this paper is a class of oscillatory integrals due to Ricci and Stein [5]

Tf(x) = pv. /R IR (e y)f )y, (15)

where P(x,y) is a real valued polynomial defined on R” x R”, and K is a CZK.

It is well known that the oscillatory factor e”*?) makes it impossible to establish the L,
norm inequalities of (1.5) by the method as in the case of Calderén-Zygmund operators
or fractional integrals. In [6], Chanillo and Christ established the weak (1, 1) type estimate
of T.

A distribution kernel K is called a standard Calderén-Zygmund kernel (SCZK) if it sat-
isfies the following hypotheses:

C
K(x,y)| < ——, 1.6
K@l <=5 *# (1.6)

and

VLK (%, 9)| + |V, K (x,9)| < xZy. (1.7)

C
|x_y|n+l’

The corresponding Calderén-Zygmund integral operator Sand oscillatory integral oper-

ator S are defined by
50 =pv. | Kisf )y 1.8)
and
Sf(x) = pv. /R ) eTEDK (x,y)f (9) dy, (1.9)

where P(x, ) is a real valued polynomial defined on R” x R”. In [7], Lu and Zhang proved
that S is bounded on L, with 1 < p < co. In [5], Ricci and Stein also introduced the standard
fractional Calder6n-Zygmund kernel (SFCZK) K, with 0 < & < 1, where the conditions
(1.6) and (1.7) were replaced by

o
[Ka(,9)] < rET=TL e (1.10)

|n-e ’
and

o
ViK%, 9)] + | VyKa(®,9)| € ————, x#y. (L.11)
lx =1

The corresponding fractional oscillatory integral operator is defined by (see [8])
Saf (%) = / eI K (%, 9) () dy, (112)
]RVI

where P(x,y) is also a real valued polynomial defined on R” x R”. Obviously, when « = 0,
So = S and K, = K. Partly motivated by the idea from [9, 10] and the results of [11], we now
give the results of this paper in the following.
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Theorem 1.1 Let 1 < p < 00, and (¢1, p2) satisfies the condition

nq dt = C‘Pz(x» I"), (1.13)

n

00 i

/ €SS SUP; 500 P1 (x! S)Sp
r tr

where C does not depend on x and t. If K is a SCZK and the operator S is of type
(Lo(R™), Ly(R™)), then for 1 < p < 00 and any polynomial P(x,y) the operator S is bounded
Sfrom My, to My, .

Moreover, for p =1 and K is a CZK operator, the operator T is bounded from M, ,, to

WM, .
Theorem 1.2 Let1 <p<o00,0<a< 1%’ é = % — %, P(x,y) is a polynomial, and (¢1, ¢)
satisfies the condition
 esssu X, S slﬂ’
/ p““;jl‘/’l( 5" 4t < Coatoe ), (114)
r ta

where C does not depend on x and t. Then for p > 1 the operator S, is bounded from M, ,,
to My 4, and for p =1 the operator S, is bounded from M, to WM, .

For a locally integrable function b, the commutator operator formed by S (or S,) and b

are defined by

Suf () = b(x)Sf (x) - S(bf ) (%)

and

Sopf () = b(x)Sof (%) — S (bf ) ().

Theorem 1.3 Let 1< p <00, b € BMO(R") and (¢1, p2) satisfies the condition

0o ¢ : »
1+1n 2 ) 22 Prescoo axs)sr < Ce(x,7), (1.15)
, r tl—ﬁl

where C does not depend on x and t. If K is a SCZK and the operator S is of type
(La(R™), Ly (R™)), then for any polynomial P(x,y) the operator Sy, is bounded from M, ,,

to My, .
Theorem 1.4 Let1<p <00, b€ BMO(R"), 0 < < 1%, % = }7 — %, P(x,y) is a polynomial,
and (1, 92) satisfies the condition
00 ¢ : »
/ (1 +1n —> . 1"’1(’6 5" 4t < Conlo ), (1.16)
r r ta

where C does not depend on x and t. Then the operator S, is bounded from M, 4, to My o,.
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2 Some known results in generalized Morrey spaces M, ,(R")
In [9, 10, 12, 13] and [14], there were obtained sufficient conditions on weights ¢; and ¢,
for the boundedness of the singular operator T from M, ,, (R") to M, ,, (R").

The following statements were proved by Nakai [14].

Theorem A Let 1 < p < 00 and ¢(x,r) satisfy the conditions
o r) < e, t) < cpx,r) 2.1)

whenever r < t < 2r, where ¢ (> 1) does not depend on t, r and x € R" and

/ " ot t)f’% < Col, 1, 22)

where C does not depend on x and r. Then for p > 1 the operators M and T are bounded in
M, (R") and for p =1, M and T are bounded from M, ,(R") to WM, ,(R").

Theorem B Letl<p<oo,0<a< — % and ¢(x, t) satisfy the conditions (2.1) and

n1l_1
ra p

/ " ot t)f’% < Col, 1, 23)

where C does not depend on x and r. Then for p > 1, the operators My, and 1, are bounded
from M, ,(R") to My,(R") and for p =1, M, and I, are bounded from M, ,(R") to
WMy (R).

The following statements, containing Nakai results obtained in [13, 14] was proved by
Guliyev in [9, 10] (see also [15, 16]).

Theorem C Let 1 < p < 0o and (1, ¢2) satisfy the condition

e di
/ 1 (x7 r) 7r = C(/)2(x; t)r (24)

where C does not depend on x and t. Then the operators M and T are bounded from M, ,,
to My, for p > 1 and from My, to WM, .

Theorem D Let1<p<o0,0<ac< — % and (@1, 92) satisfy the condition

n 1 _1
rq p

o0 dt
/ t“or1(x, t)T < Cos(x,1), (2.5)

where C does not depend on x and r. Then the operators M and I, are bounded from M, ,,
to My, for p > 1 and from My, to WMy, for p =1.

The following statements, containing Guliyev results obtained in [9, 10] was proved by
Guliyev et al. in [11, 12].

Theorem E Let 1 < p < 00 and (¢1,¢,) satisfy the condition (2.4). Then the operators M
and T are bounded from M, 4, to M, ,, for p >1 and from M, to WM, .
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Theorem F Let1 <p<oo,0<a< 1%, % = 1% — % and (¢1, ¢2) satisfy the condition (1.14).
Then the operators My and I, are bounded from My, to My, for p > 1 and from M, 4, to

WMy, for p=1.

Note that integral conditions of type (2.3) after the paper [17] of 1956 are often referred
to as Bary-Stechkin or Zygmund-Bary-Stechkin conditions; see also [18]. The classes of
almost monotonic functions satisfying such integral conditions were later studied in a
number of papers, see [19-21] and references therein, where the characterization of in-
tegral inequalities of such a kind was given in terms of certain lower and upper indices
known as Matuszewska-Orlicz indices. Note that in the cited papers the integral inequali-
ties were studied as » — 0. Such inequalities are also of interest when they allow to impose

different conditions as r — 0 and r — 00; such a case was dealt with in [22, 23].

3 The fractional oscillatory integral operators in the spaces M, ,(R")
In this section, we are going to use the following statement on the boundedness of the
Hardy operator:

1 t
(Hg)(t) := ;/ glr)dr, 0<t<oo.
0
Theorem G [24] The inequality

ess sup w(t)Hg(t) < cesssupv(t)g(t)
0

>0 t>

holds for all non-negative and non-increasing g on (0, 00) if and only if

w(t) / t dr
Ai=sup— | —————— <00,
t>0 t o €S8 lnf0<s<r V(S)
and c~ A.

Lemma 3.1 Letl < p <00, and K is a SCZK and the Calderén-Zygmund singular integral
operator S is of type (Ly(R™), Ly(R")). Then for 1 < p < oo and any polynomial P(x,y) the
inequality

o0
n _1-z
||5f||Lp(B(x0,r))§V”/ W llz, Beo.nt — * dt
2r

holds for any ball B(xy,r) and for all f € Lif’c (R™).
Moreover, for p =1 and K is a CZK

oo

I Tf Nl wry Bo.r) S V"/ 1l Blagnt ™" dt (3.1)

2r

holds for any ball B(x,,r) and for all f € LY°(R").

Proof Let p € (1,00). For arbitrary x, € R", set B = B(xo,r) for the ball centered at xy and
radius r, 2B = B(xo, 2r). We represent f as

F=fi+h fi0)=fOx20)50) =F0) Xm0 0)
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and have

1/, < ISAllL,®) + 12]lL,@)-

It is known that (see [5], see also [7, 25, 26]), if K is a SCZK and the operator Sisof type
(Lo(R™), Ly(R™)), then for 1 < p < 0o and any polynomial P(x, y) the operator S is bounded
on L,(R"). Since f; € L,(R"), Sfi € L,(R") and boundedness of S in L,(R") (see [5]) it fol-
lows that

1Sl < ISfillL, @ < CllfillL,®m = Clifillz,ep)

where constant C > 0 is independent of f.
Itis clear thatx € B,y € (2B)C implies %|xo -y <lx-yl < %lxo —y|. We get

|Sh ()] < CO/ o)l

@B)C |xo — y|"

By Fubini’s theorem and applying Hélder inequality, we have

f )l / ®
Yy ) t"dtd
/<23>'3 %o — y!" i’ <2B)Glf(y| lko—y1 g

00
~ / / [f ()| dyt™ " dt
2r 2r<|xo—y|<t
9]
< / [f )| dyt™" dit
2r B(xg,t)
S /2 Ilfllew(xo,t))t‘l‘ﬁ dt. (3.2)

Moreover, for all p € [1, 00) the inequality

o0
||sz>||L1,(B)Sﬂ”_’/2 f 2y Boent? dt (3.3)
r

is valid. Thus,

o0

n$M®5wmmwﬂ/ T

2r

11

7 dt.

On the other hand,

n _1-z
|wmmwwmmwf 75 dt

2r

[o¢]
S ﬂ’/ Iz Beoept» dt. (3.4)

2r

Hence,

o0
n _1-7
||5f||Lp(B)5r”/ I llz, Beont—  dt.
2r
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Let p = 1. From the weak (1,1) boundedness of T (see [6]) and (3.4), it follows that:

I TA w3 < 1 Thillwe,en S VAl @

Y dt
= Iflnes Sr fo)|dy——. (35)
2 JBlxo.) 4
Then by (3.4) and (3.5), we get the inequality (3.1). O

Proof of Theorem 1.1 By Lemma 3.1 and Theorem G, we get

||Sf||MW2§ Sup ¢ (7)™ / Wl eeont™ 7 dt

",r>0

_n

r P
-1
sup  @a(x,7) / £ _p dt
xeR",pbO(p 0 [f LpB(xt™ 1)

&

P
sup @ (x,777) / 1l
x€R”,r>0 Lp (B,

_p
< s @er B, e = 1,

x€R",r>0

if p € (1,00), and

1T lwan,, S sup gaar) / ooyt d

x€R”,r>0

r*Vl
]
~ su X, r 1
p o™ [,

x€R",r>0

:\*—‘

= sup ga(mrh) fufn

x€R”,r>0

1
S osup (s rn) rllfl
x€R™,r>0 ( ) lf L1 (B(,

= Ifllan,

ifp=1. O

Proof of Theorem 1.2 The proof of Theorem 1.2 follows from Theorem F and the following
observation:

|Sof ®)] < L (If ) ). O

4 Commutators of fractional oscillatory integral operators in the spaces
Mp,o(R")
Let T be a Calder6n-Zygmund singular integral operator and » € BMO(R"). A well known
result of Coifman, Rochberg and Weiss [27] states that the commutator operator [b, T]f =
T(bf) — bIf is bounded on L,(R") for 1 < p < 0o. The commutator of Calderén-Zygmund
operators plays an important role in studying the regularity of solutions of elliptic partial
differential equations of second order (see, for example, [2, 28, 29]).
First, we recall the definition of the space BMO(R").

Page 8 of 12
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Definition 2 Suppose that f € LI°°(R"), let

1
Il = xeﬂS&L"l&o B o) lf()’) — fBxr) | dy < 00,
where
1
Sor) = B B(mf ) dy.
Define

BMO(R") = {f € LY*(R") : ||f | < 00}.

If one regards two functions whose difference is a constant as one, then space BMO(R")

is a Banach space with respect to norm || - || .

Remark1 (1) The John-Nirenberg inequality: there are constants C;, C, > 0, such that for
all f € BMO(R”) and 8 >0

{xeB:|f(x)-f3]| > B}| < C1|Ble P+, B CR".
(2) The John-Nirenberg inequality implies that

1
Ifll«~ sup <
. xeR™,r>0 IB(x,r)I B(x,r)

If ) = faeen|” dy) ’ (4.1)

forl1<p<oo.
(3) Let f € BMO(R"). Then there is a constant C > 0 such that

t
e — ey < Clif ||« 1n p for 0 <2r<t, (4.2)
where C is independent of f, x, r and ¢.
Lemma4.1 Let1l <p<o0,b e BMO(R"), K isa SCZK and the Calderén-Zygmund singu-

lar integral operator Sis of type (Ly(R"), L,(R™)). Then for 1 < p < 0o and any polynomial
P(x,y) the inequality

o0
n _1-z
1S/ |2, Beor) S ||b||*VP/ I llz, Beo.nt— * dt
2r

holds for any ball B(xy,r) and for all f € L;’C (R").

Proof Let p € (1,00). For arbitrary xy € R”, set B = B(xo, r) for the ball centered at x, and
radius r, 2B = B(xo, 2r). We represent f as

F=fi+h fi0)=fOx20)50) =F0) Xm0 0)
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and have

1S6f |z, < ISefillL, @) + ISef2llL, @)

It is known that (see [5], see also [7, 25, 26]), if K is a SCZK and the operator Sisof type
(Lo(R™), Ly(R™)), then for 1 < p < co and any polynomial P(x,y) the commutator operator
Sp is bounded on L,(R"). Since f; € L,(R"), Sf; € L,(R”) and boundedness of S, in L,(R")
(see [5]) it follows that

1Sefi @) < 16l @ < ClbIL AL, @ = ClBIL Al s

where constant C > 0 is independent of f.

For x € B, we have

by)-b
o] < [ P10 dy

[ 10 -bw)
./;(ZB) lf(y)|d

o — y|”

Then

([, 224 o)
(/B</ 'TX) ;ff'b‘(y)yd> dx)}’
([ 22 o

= 11 +12.

A

Let us estimate [;.

n |b(y) — bg|
mr%m 1PO) = Bs )y

[0 — y|"

zrﬁﬁ |b(y) - bB|Lf0’)|/ t”+1 d

z dt
" f /Z,qxo_y(tlb(y) - b [f )| dy s
b(y)-b

/2’ /B(xo | ()/) B|V0}| ytn+1

Applying Holder’s inequality and by (4.1), (4.2), we get

n [ dt
L<rh / / 160) — b | [f )] dy -
2r  J B(xg,t) t

n [ dt
+rP |BB(xo.) — BB | If )| dy pree
2r B(xg,t)
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=

< 2 h v 7 dt
Sre 16(y) = baon|” dy |lf||L,,(B(x0,t))tnj
2r B(xg,t)
n & —1-2
+r? |68 = BBxon| Il Bo.ent 7 dt
2r

n [ t _1_n
= ||b||*VPf (1 +1In ;)”f"Lp(B(xo,t))t pdt.

2r

In order to estimate I note that

= b(x) - bzl’ d g Md
b (/B| @)~ bl x) /0(213) o — yI” 4

By (4.1), we get
b < bllrs / _on_,
Cg) %0 —yI"
Thus, by (3.2)

oo
n _1-z
12§||b||*7"’/ W Ny Bexo.ent # dt.
2r

Summing up [; and I, for all p € (1, 00) we get

oo

n
1Sefsll, e < I1Bl.rF /

2r

t _1-z
1+In ; ”f”Lp(B(xo,t))t » dt.

Finally,

[e.¢]

n
ISef N8y S NI N2, 28) + 1B1]r? /

2r

t -1-2
1+ ln; W Ny Bexo.ent 2 A,

and statement of Lemma 4.1 follows by (3.4).

(4.3)

O

Proofof Theorem 1.3 The statement of Theorem 1.3 follows by Lemma 4.1 and Theorem G

in the same manner as in the proof of Theorem G.

O

Proof of Theorem 1.4 The proof of Theorem 1.4 follows from the Theorem 7.4 in [11] and

the following observation:

|Sot,bf(x)i = Ia,b(lf|)(x)-
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