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1 Introduction andmain results
The classical Morrey spaces, were introduced by Morrey [] in , have been studied
intensively by various authors and together with weighted Lebesgue spaces play an impor-
tant role in the theory of partial differential equations; they appeared to be quite useful in
the study of local behavior of the solutions of elliptic differential equations and describe
local regularity more precisely than Lebesgue spaces.
Morrey spacesMp,λ(Rn) are defined as the set of all functions f ∈ Lp(Rn) such that

‖f ‖Mp,λ ≡ ‖f ‖Mp,λ(Rn) = sup
x,r>

r–
λ
p ‖f ‖Lp(B(x,r)) <∞.

Under this definition, Mp,λ(Rn) becomes a Banach space; for λ = , it coincides with
Lp(Rn) and for λ =  with L∞(Rn).
We also denote by WMp,λ the weak Morrey space of all functions f ∈ WLlocp (Rn) for

which

‖f ‖WMp,λ ≡ ‖f ‖WMp,λ(Rn) = sup
x∈Rn ,r>

r–
λ
p ‖f ‖WLp(B(x,r)) < ∞,

whereWLp denotes the weak Lp-space.

Definition  Let ϕ(x, r) be a positive measurable function on R
n × (,∞) and  ≤ p < ∞.

We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the space of all functions
f ∈ Llocp (Rn) with finite quasinorm

‖f ‖Mp,ϕ ≡ ‖f ‖Mp,ϕ (Rn) = sup
x∈Rn ,r>

ϕ(x, r)–
∣∣B(x, r)∣∣– 

p ‖f ‖Lp(B(x,r)).
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Also, by WMp,ϕ ≡ WMp,ϕ(Rn), we denote the weak generalized Morrey space of all func-
tions f ∈WLlocp (Rn) for which

‖f ‖WMp,ϕ ≡ ‖f ‖WMp,ϕ (Rn) = sup
x∈Rn ,r>

ϕ(x, r)–
∣∣B(x, r)∣∣– 

p ‖f ‖WLp(B(x,r)) <∞.

According to this definition, we recover the spaces Mp,λ and WMp,λ under the choice
ϕ(x, r) = r

λ–n
p :

Mp,ϕ
∣∣
ϕ(x,r)=r

λ–n
p

=Mp,λ,

WMp,ϕ
∣∣
ϕ(x,r)=r

λ–n
p

=WMp,λ.

The theory of boundedness of classical operators of the real analysis, such as the maxi-
mal operator, fractional maximal operator, Riesz potential and the singular integral opera-
tors etc., fromoneweighted Lebesgue space to another one is well studied. Let f ∈ Lloc (Rn).
The fractional maximal operatorMα and the Riesz potential Iα are defined by

Mαf (x) = sup
t>

∣∣B(x, t)∣∣–+ α
n

∫
B(x,t)

∣∣f (y)∣∣dy,  ≤ α < n,

Iαf (x) =
∫
Rn

f (y)dy
|x – y|n–α

,  < α < n.

If α = , then M ≡ M is the Hardy-Littlewood maximal operator. In [], Chiarenza and
Frasca obtained the boundedness ofM onMp,λ(Rn). In [], Adams established the bound-
edness of Iα onMp,λ(Rn).
Here and subsequently, C will denote a positive constant which may vary from line to

line but will remain independent of the relevant quantities.
The Calderón-Zygmund singular integral operator is defined by

T̃ f (x) = p.v.
∫
Rn

K(x – y)f (y)dy, (.)

where K is a Calderón-Zygmund kernel (CZK). We say a kernel K ∈ C(Rn \ {}) is a CZK
if it satisfies

∣∣K(x)
∣∣ ≤ C

|x|n , (.)

∣∣∇K(x)
∣∣ ≤ C

|x|n+ (.)

and ∫
a<|x|<b

K(x)dx = , (.)

for all a, b with  < a < b. Chiarenza and Frasca [] showed the boundedness of T̃ on
Mp,λ(Rn).
It is worth pointing out that the kernel in (.) is convolution kernel. However, there

were many kinds of operators with non-convolution kernels, such as Fourier transform

http://www.boundaryvalueproblems.com/content/2013/1/70
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and Radon transform [], which both are versions of oscillatory integrals. The object we
consider in this paper is a class of oscillatory integrals due to Ricci and Stein []

Tf (x) = p.v.
∫
Rn

eiP(x,y)K(x – y)f (y)dy, (.)

where P(x, y) is a real valued polynomial defined on R
n ×R

n, and K is a CZK.
It is well known that the oscillatory factor eiP(x,y) makes it impossible to establish the Lp

norm inequalities of (.) by the method as in the case of Calderón-Zygmund operators
or fractional integrals. In [], Chanillo and Christ established the weak (, ) type estimate
of T .
A distribution kernel K is called a standard Calderón-Zygmund kernel (SCZK) if it sat-

isfies the following hypotheses:

∣∣K(x, y)
∣∣ ≤ C

|x – y|n , x �= y (.)

and

∣∣∇xK(x, y)
∣∣ + ∣∣∇yK(x, y)

∣∣ ≤ C
|x – y|n+ , x �= y. (.)

The corresponding Calderón-Zygmund integral operator S̃ and oscillatory integral oper-
ator S are defined by

S̃f (x) = p.v.
∫
Rn

K(x, y)f (y)dy (.)

and

Sf (x) = p.v.
∫
Rn

eiP(x,y)K(x, y)f (y)dy, (.)

where P(x, y) is a real valued polynomial defined on R
n ×R

n. In [], Lu and Zhang proved
that S is bounded on Lp with  < p < ∞. In [], Ricci and Stein also introduced the standard
fractional Calderón-Zygmund kernel (SFCZK) Kα with  < α < n, where the conditions
(.) and (.) were replaced by

∣∣Kα(x, y)
∣∣ ≤ C

|x – y|n–α
, x �= y (.)

and

∣∣∇xKα(x, y)
∣∣ + ∣∣∇yKα(x, y)

∣∣ ≤ C
|x – y|n+–α

, x �= y. (.)

The corresponding fractional oscillatory integral operator is defined by (see [])

Sαf (x) =
∫
Rn

eiP(x,y)Kα(x, y)f (y)dy, (.)

where P(x, y) is also a real valued polynomial defined on R
n ×R

n. Obviously, when α = ,
S = S and K = K . Partly motivated by the idea from [, ] and the results of [], we now
give the results of this paper in the following.

http://www.boundaryvalueproblems.com/content/2013/1/70
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Theorem . Let  ≤ p < ∞, and (ϕ,ϕ) satisfies the condition

∫ ∞

r

ess supt<s<∞ ϕ(x, s)s
n
p

t
n
p +

dt ≤ Cϕ(x, r), (.)

where C does not depend on x and t. If K is a SCZK and the operator S̃ is of type
(L(Rn),L(Rn)), then for  < p < ∞ and any polynomial P(x, y) the operator S is bounded
from Mp,ϕ to Mp,ϕ .
Moreover, for p =  and K is a CZK operator, the operator T is bounded from M,ϕ to

WM,ϕ .

Theorem . Let  ≤ p < ∞,  < α < n
p ,


q = 

p – α
n , P(x, y) is a polynomial, and (ϕ,ϕ)

satisfies the condition

∫ ∞

r

ess supt<s<∞ ϕ(x, s)s
n
p

t
n
q +

dt ≤ Cϕ(x, r), (.)

where C does not depend on x and t. Then for p >  the operator Sα is bounded from Mp,ϕ

to Mq,ϕ and for p =  the operator Sα is bounded from M,ϕ to WMq,ϕ .

For a locally integrable function b, the commutator operator formed by S (or Sα) and b
are defined by

Sbf (x) = b(x)Sf (x) – S(bf )(x)

and

Sα,bf (x) = b(x)Sαf (x) – Sα(bf )(x).

Theorem . Let  < p < ∞, b ∈ BMO(Rn) and (ϕ,ϕ) satisfies the condition

∫ ∞

r

(
 + ln

t
r

)
ess supt<s<∞ ϕ(x, s)s

n
p

t
n
p +

dt ≤ Cϕ(x, r), (.)

where C does not depend on x and t. If K is a SCZK and the operator S̃ is of type
(L(Rn),L(Rn)), then for any polynomial P(x, y) the operator Sb is bounded from Mp,ϕ

to Mp,ϕ .

Theorem . Let  < p < ∞, b ∈ BMO(Rn),  < α < n
p ,


q = 

p – α
n , P(x, y) is a polynomial,

and (ϕ,ϕ) satisfies the condition

∫ ∞

r

(
 + ln

t
r

)
ess supt<s<∞ ϕ(x, s)s

n
p

t
n
q +

dt ≤ Cϕ(x, r), (.)

where C does not depend on x and t. Then the operator Sb,α is bounded fromMp,ϕ to Mq,ϕ .

http://www.boundaryvalueproblems.com/content/2013/1/70
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2 Some known results in generalizedMorrey spacesMp,ϕ(Rn)
In [, , , ] and [], there were obtained sufficient conditions on weights ϕ and ϕ

for the boundedness of the singular operator T fromMp,ϕ (Rn) toMp,ϕ (Rn).
The following statements were proved by Nakai [].

Theorem A Let  ≤ p < ∞ and ϕ(x, r) satisfy the conditions

c–ϕ(x, r)≤ ϕ(x, t)≤ cϕ(x, r) (.)

whenever r ≤ t ≤ r, where c (≥ ) does not depend on t, r and x ∈R
n and

∫ ∞

r
ϕ(x, t)p

dt
t

≤ Cϕ(x, r)p, (.)

where C does not depend on x and r. Then for p >  the operators M and T are bounded in
Mp,ϕ(Rn) and for p = ,M and T are bounded fromM,ϕ(Rn) to WM,ϕ(Rn).

Theorem B Let  ≤ p <∞,  < α < n
p ,


q =


p –

α
n and ϕ(x, t) satisfy the conditions (.) and

∫ ∞

r
ϕ(x, t)p

dt
t

≤ Cϕ(x, r)p, (.)

where C does not depend on x and r. Then for p > , the operators Mα and Iα are bounded
from Mp,ϕ(Rn) to Mq,ϕ(Rn) and for p = , Mα and Iα are bounded from M,ϕ(Rn) to
WMq,ϕ(Rn).

The following statements, containing Nakai results obtained in [, ] was proved by
Guliyev in [, ] (see also [, ]).

Theorem C Let  ≤ p < ∞ and (ϕ,ϕ) satisfy the condition

∫ ∞

t
ϕ(x, r)

dr
r

≤ Cϕ(x, t), (.)

where C does not depend on x and t. Then the operators M and T are bounded from Mp,ϕ
to Mp,ϕ for p >  and from M,ϕ to WM,ϕ .

Theorem D Let  ≤ p <∞,  < α < n
p ,


q =


p –

α
n and (ϕ,ϕ) satisfy the condition

∫ ∞

r
tαϕ(x, t)

dt
t

≤ Cϕ(x, r), (.)

where C does not depend on x and r.Then the operators Mα and Iα are bounded fromMp,ϕ
to Mq,ϕ for p >  and from M,ϕ to WMq,ϕ for p = .

The following statements, containing Guliyev results obtained in [, ] was proved by
Guliyev et al. in [, ].

Theorem E Let  ≤ p < ∞ and (ϕ,ϕ) satisfy the condition (.). Then the operators M
and T are bounded from Mp,ϕ to Mp,ϕ for p >  and from M,ϕ to WM,ϕ .

http://www.boundaryvalueproblems.com/content/2013/1/70
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Theorem F Let  ≤ p < ∞,  < α < n
p ,


q = 

p – α
n and (ϕ,ϕ) satisfy the condition (.).

Then the operators Mα and Iα are bounded from Mp,ϕ to Mq,ϕ for p >  and from M,ϕ to
WMq,ϕ for p = .

Note that integral conditions of type (.) after the paper [] of  are often referred
to as Bary-Stechkin or Zygmund-Bary-Stechkin conditions; see also []. The classes of
almost monotonic functions satisfying such integral conditions were later studied in a
number of papers, see [–] and references therein, where the characterization of in-
tegral inequalities of such a kind was given in terms of certain lower and upper indices
known asMatuszewska-Orlicz indices. Note that in the cited papers the integral inequali-
ties were studied as r → . Such inequalities are also of interest when they allow to impose
different conditions as r →  and r → ∞; such a case was dealt with in [, ].

3 The fractional oscillatory integral operators in the spacesMp,ϕ(Rn)
In this section, we are going to use the following statement on the boundedness of the
Hardy operator:

(Hg)(t) :=

t

∫ t


g(r)dr,  < t <∞.

Theorem G [] The inequality

ess sup
t>

w(t)Hg(t)≤ c ess sup
t>

v(t)g(t)

holds for all non-negative and non-increasing g on (,∞) if and only if

A := sup
t>

w(t)
t

∫ t



dr
ess inf<s<r v(s)

< ∞,

and c≈ A.

Lemma . Let  ≤ p < ∞, and K is a SCZK and the Calderón-Zygmund singular integral
operator S̃ is of type (L(Rn),L(Rn)). Then for  < p < ∞ and any polynomial P(x, y) the
inequality

‖Sf ‖Lp(B(x,r)) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt

holds for any ball B(x, r) and for all f ∈ Llocp (Rn).
Moreover, for p =  and K is a CZK

‖Tf ‖WL(B(x,r)) � rn
∫ ∞

r
‖f ‖Lp(B(x,t))t––n dt (.)

holds for any ball B(x, r) and for all f ∈ Lloc (Rn).

Proof Let p ∈ (,∞). For arbitrary x ∈ R
n, set B = B(x, r) for the ball centered at x and

radius r, B = B(x, r). We represent f as

f = f + f, f(y) = f (y)χB(y), f(y) = f (y)χ(B)� (y)

http://www.boundaryvalueproblems.com/content/2013/1/70
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and have

‖Sf ‖Lp(B) ≤ ‖Sf‖Lp(B) + ‖Sf‖Lp(B).

It is known that (see [], see also [, , ]), if K is a SCZK and the operator S̃ is of type
(L(Rn),L(Rn)), then for  < p < ∞ and any polynomial P(x, y) the operator S is bounded
on Lp(Rn). Since f ∈ Lp(Rn), Sf ∈ Lp(Rn) and boundedness of S in Lp(Rn) (see []) it fol-
lows that

‖Sf‖Lp(B) ≤ ‖Sf‖Lp(Rn) ≤ C‖f‖Lp(Rn) = C‖f‖Lp(B),

where constant C >  is independent of f .
It is clear that x ∈ B, y ∈ (B)� implies 

 |x – y| ≤ |x – y| ≤ 
 |x – y|. We get

∣∣Sf(x)∣∣ ≤ c
∫
(B)�

|f (y)|
|x – y|n dy.

By Fubini’s theorem and applying Hölder inequality, we have

∫
(B)�

|f (y)|
|x – y|n dy ≈

∫
(B)�

∣∣f (y)∣∣ ∫ ∞

|x–y|
t––n dt dy

≈
∫ ∞

r

∫
r<|x–y|<t

∣∣f (y)∣∣dyt––n dt
�

∫ ∞

r

∫
B(x,t)

∣∣f (y)∣∣dyt––n dt
�

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt. (.)

Moreover, for all p ∈ [,∞) the inequality

‖Sf‖Lp(B) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt (.)

is valid. Thus,

‖Sf ‖Lp(B) � ‖f ‖Lp(B) + r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt.

On the other hand,

‖f ‖Lp(B) ≈ r
n
p ‖f ‖Lp(B)

∫ ∞

r
t––

n
p dt

� r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt. (.)

Hence,

‖Sf ‖Lp(B) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt.

http://www.boundaryvalueproblems.com/content/2013/1/70
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Let p = . From the weak (, ) boundedness of T (see []) and (.), it follows that:

‖Tf‖WL(B) ≤ ‖Tf‖WL(Rn) � ‖f‖L(Rn)

= ‖f ‖L(B) � rn
∫ ∞

r

∫
B(x,t)

∣∣f (y)∣∣dy dt
tn+

. (.)

Then by (.) and (.), we get the inequality (.). �

Proof of Theorem . By Lemma . and Theorem G, we get

‖Sf ‖Mp,ϕ
� sup

x∈Rn ,r>
ϕ(x, r)–

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt

≈ sup
x∈Rn ,r>

ϕ(x, r)–
∫ r–

n
p


‖f ‖

Lp(B(x,t–
p
n ))

dt

= sup
x∈Rn ,r>

ϕ
(
x, r–

p
n
)– ∫ r


‖f ‖

Lp(B(x,t–
p
n ))

dt

� sup
x∈Rn ,r>

ϕ
(
x, r–

p
n
)–r‖f ‖

Lp(B(x,r–
p
n ))

= ‖f ‖Mp,ϕ

if p ∈ (,∞), and

‖Tf ‖WM,ϕ
� sup

x∈Rn ,r>
ϕ(x, r)–

∫ ∞

r
‖f ‖L(B(x,t))t––n dt

≈ sup
x∈Rn ,r>

ϕ(x, r)–
∫ r–n


‖f ‖

L(B(x,t–

n ))

dt

= sup
x∈Rn ,r>

ϕ
(
x, r–


n
)– ∫ r


‖f ‖

L(B(x,t–

n ))

dt

� sup
x∈Rn ,r>

ϕ
(
x, r–


n
)–r‖f ‖

L(B(x,r–

n ))

= ‖f ‖M,ϕ

if p = . �

Proof of Theorem . The proof of Theorem . follows fromTheorem F and the following
observation:

∣∣Sαf (x)
∣∣ ≤ Iα

(|f |)(x). �

4 Commutators of fractional oscillatory integral operators in the spaces
Mp,ϕ(Rn)

Let T be a Calderón-Zygmund singular integral operator and b ∈ BMO(Rn). A well known
result of Coifman, Rochberg andWeiss [] states that the commutator operator [b,T]f =
T(bf ) – bTf is bounded on Lp(Rn) for  < p < ∞. The commutator of Calderón-Zygmund
operators plays an important role in studying the regularity of solutions of elliptic partial
differential equations of second order (see, for example, [, , ]).
First, we recall the definition of the space BMO(Rn).

http://www.boundaryvalueproblems.com/content/2013/1/70
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Definition  Suppose that f ∈ Lloc (Rn), let

‖f ‖∗ = sup
x∈Rn ,r>


|B(x, r)|

∫
B(x,r)

∣∣f (y) – fB(x,r)
∣∣dy < ∞,

where

fB(x,r) =


|B(x, r)|
∫
B(x,r)

f (y)dy.

Define

BMO
(
R

n) = {
f ∈ Lloc

(
R

n) : ‖f ‖∗ < ∞}
.

If one regards two functions whose difference is a constant as one, then space BMO(Rn)
is a Banach space with respect to norm ‖ · ‖∗.

Remark  () The John-Nirenberg inequality: there are constants C,C > , such that for
all f ∈ BMO(Rn) and β > 

∣∣{x ∈ B :
∣∣f (x) – fB

∣∣ > β
}∣∣ ≤ C|B|e–Cβ/‖f ‖∗ , ∀B⊂R

n.

() The John-Nirenberg inequality implies that

‖f ‖∗ ≈ sup
x∈Rn ,r>

(


|B(x, r)|
∫
B(x,r)

∣∣f (y) – fB(x,r)
∣∣p dy) 

p
(.)

for  < p < ∞.
() Let f ∈ BMO(Rn). Then there is a constant C >  such that

|fB(x,r) – fB(x,t)| ≤ C‖f ‖∗ ln
t
r

for  < r < t, (.)

where C is independent of f , x, r and t.

Lemma . Let  ≤ p < ∞, b ∈ BMO(Rn), K is a SCZK and the Calderón-Zygmund singu-
lar integral operator S̃ is of type (L(Rn),L(Rn)). Then for  < p < ∞ and any polynomial
P(x, y) the inequality

‖Sbf ‖Lp(B(x,r)) � ‖b‖∗r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt

holds for any ball B(x, r) and for all f ∈ Llocp (Rn).

Proof Let p ∈ (,∞). For arbitrary x ∈ R
n, set B = B(x, r) for the ball centered at x and

radius r, B = B(x, r). We represent f as

f = f + f, f(y) = f (y)χB(y), f(y) = f (y)χ(B)� (y)

http://www.boundaryvalueproblems.com/content/2013/1/70
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and have

‖Sbf ‖Lp(B) ≤ ‖Sbf‖Lp(B) + ‖Sbf‖Lp(B).

It is known that (see [], see also [, , ]), if K is a SCZK and the operator S̃ is of type
(L(Rn),L(Rn)), then for  < p < ∞ and any polynomial P(x, y) the commutator operator
Sb is bounded on Lp(Rn). Since f ∈ Lp(Rn), Sf ∈ Lp(Rn) and boundedness of Sb in Lp(Rn)
(see []) it follows that

‖Sbf‖Lp(B) ≤ ‖Sbf‖Lp(Rn) ≤ C‖b‖∗‖f‖Lp(Rn) = C‖b‖∗‖f‖Lp(B),

where constant C >  is independent of f .
For x ∈ B, we have

∣∣Sbf(x)∣∣ � ∫
Rn

|b(y) – b(x)|
|x – y|n

∣∣f (y)∣∣dy
≈

∫
�(B)

|b(y) – b(x)|
|x – y|n

∣∣f (y)∣∣dy.
Then

‖Sbf‖Lp(B) �
(∫

B

(∫
�(B)

|b(y) – b(x)|
|x – y|n

∣∣f (y)∣∣dy)p

dx
) 

p

�
(∫

B

(∫
�(B)

|b(y) – bB|
|x – y|n

∣∣f (y)∣∣dy)p

dx
) 

p

+
(∫

B

(∫
�(B)

|b(x) – bB|
|x – y|n

∣∣f (y)∣∣dy)p

dx
) 

p

= I + I.

Let us estimate I.

I ≈ r
n
p

∫
�(B)

|b(y) – bB|
|x – y|n

∣∣f (y)∣∣dy
≈ r

n
p

∫
�(B)

∣∣b(y) – bB
∣∣∣∣f (y)∣∣ ∫ ∞

|x–y|
dt
tn+

dy

≈ r
n
p

∫ ∞

r

∫
r≤|x–y|≤t

∣∣b(y) – bB
∣∣∣∣f (y)∣∣dy dt

tn+

� r
n
p

∫ ∞

r

∫
B(x,t)

∣∣b(y) – bB
∣∣∣∣f (y)∣∣dy dt

tn+
.

Applying Hölder’s inequality and by (.), (.), we get

I � r
n
p

∫ ∞

r

∫
B(x,t)

∣∣b(y) – bB(x,t)
∣∣∣∣f (y)∣∣dy dt

tn+

+ r
n
p

∫ ∞

r

∣∣bB(x,r) – bB(x,t)
∣∣ ∫

B(x,t)

∣∣f (y)∣∣dy dt
tn+
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� r
n
p

∫ ∞

r

(∫
B(x,t)

∣∣b(y) – bB(x,t)
∣∣p′

dy
) 

p′ ‖f ‖Lp(B(x,t))
dt
tn+

+ r
n
p

∫ ∞

r

∣∣bB(x,r) – bB(x,t)
∣∣‖f ‖Lp(B(x,t))t–– n

p dt

� ‖b‖∗r
n
p

∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))t––

n
p dt.

In order to estimate I note that

I =
(∫

B

∣∣b(x) – bB
∣∣p dx) 

p
∫
�(B)

|f (y)|
|x – y|n dy.

By (.), we get

I � ‖b‖∗r
n
p

∫
�(B)

|f (y)|
|x – y|n dy.

Thus, by (.)

I � ‖b‖∗r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t––

n
p dt.

Summing up I and I, for all p ∈ (,∞) we get

‖Sbf‖Lp(B) � ‖b‖∗r
n
p

∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))t––

n
p dt. (.)

Finally,

‖Sbf ‖Lp(B) � ‖b‖∗‖f ‖Lp(B) + ‖b‖∗r
n
p

∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))t––

n
p dt,

and statement of Lemma . follows by (.). �

Proof of Theorem . The statement of Theorem . follows by Lemma. andTheoremG
in the same manner as in the proof of Theorem G. �

Proof of Theorem . The proof of Theorem . follows from the Theorem . in [] and
the following observation:

∣∣Sα,bf (x)
∣∣ ≤ Iα,b

(|f |)(x). �
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