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Abstract
This paper is concerned with the defect index of the square of a formally self-adjoint
second-order difference expression with real coefficients, which, in fact, is a class of
formally self-adjoint fourth-order difference expressions. Sufficient and necessary
conditions for such fourth-order difference expression to be a limit-2 case, a limit-3
case, and a limit-4 case are given, with respect to the limit case of the second-order
difference expression. These results parallel the well-known results of Everitt and
Chaudhuri for differential expressions.
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1 Introduction
In this paper we discuss properties of the defect index of a class of fourth-order formally
self-adjoint difference expressions, which is derived from squaring the second-order dif-
ference expression,

L[x](t) := L
[
L[x]

]
(t), t ∈ I , (.)

where

L[x](t) := –�
(
p(t)∇x(t)

)
+ q(t)x(t), (.)

� and∇ are forward and backward difference operators, respectively, i.e.�x(t) = x(t+)–
x(t) and∇x(t) = x(t)–x(t–); the discrete time interval I is bounded from below; without
loss generality, we denote I = [,+∞)Z; and the functions p(t), q(t) are all real-valued and
p(t) �=  for t ≥ –.
According to the classical von Neumann theory (cf. [, ]) and its generalization (cf.

[]), a symmetric operator or a non-densely defined Hermitian operator has a self-adjoint
extension if and only if its positive and negative defect indices are equal and its self-adjoint
extension domains have a close relationship with its defect index. So it is very important
to determine the defect indices of both differential and difference expressions in the study
of self-adjoint extensions.
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The problem on the defect index of the second-order formally self-adjoint linear differ-
ential expression with real coefficients

Ly = –
(
py′)′ + qy, on [a,b),

was first studied by Weyl []. It is well known that the defect index of L is equal to the
number of linearly independent square integrable solutions of equation Ly = λy for each
λ ∈ C \ R, where C and R denote the sets of the complex and real numbers. Later, some
authors studied the defect index of L, which, in fact, is a class of fourth-order formally
self-adjoint linear differential expressions with real coefficient, and they have obtained a
few excellent results [–].
The study of second-order difference expressions L began with Atkinson’s work [] and

the properties of its defect index have been sufficiently discussed. It is well known that the
defect index, say dL is equal to the number of linearly independent solutions which are
square summable of the difference equation

–�
(
p(t)∇x(t)

)
+ q(t)x(t) = λx(t), t ∈ I (.)

for any λ ∈ C \ R. The value range of defect index dL is one or two. The second-order
difference expression L is called a limit-point case at t = +∞ if dL = , that is, (.) has just
one solution which is square summable for any point λ ∈C \R; and it is a limit-circle case
at t = +∞ if dL = , that is, (.) has two linearly independent solutions which are square
summable for any λ, real or complex. All difference expressions of the form (.) come
within the limit-point, limit-circle classification which depends only on the coefficients p
and q and not on the parameter λ. Several criteria of the limit-point and limit-circle cases
have been established [–].
The general form of a formally self-adjoint fourth-order difference expression with real

coefficients is

M[x](t) =�(p(t)∇x(t)
)
–�

(
p(t)∇x(t)

)
+ p(t)x(t), t ∈ I , (.)

where pj are all real-valued for  ≤ j ≤ , and p(t) �=  for all t ∈ I .
Similarly as that of the second-order difference expression L, the defect index, say dM ,

of M is equal to the number of linear independent solutions which are square summable
of the difference equation

�(p(t)∇x(t)
)
–�

(
p(t)∇x(t)

)
+ p(t)x(t) = λx(t), t ∈ I (.)

for any λ ∈ C \ R. For such values of λ, the difference equation (.) may have two, three
or four linearly independent solutions in l and for any particular M the number of such
solutions is independent of λ. So all such difference expressions asM can be classified into
three cases: limit- (limit-point), limit- and limit- (limit-circle) cases. In the limit-circle
case all solutions are square summable whether 	λ is zero or not.
In comparison with the second-order difference expressions L, fewer criteria for the

limit case of the difference expressionsM have become known. Recently, it has been shown
that all values of the defect index from  and  can be realized and some criteria for the
limit-point case were given in [].
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In this paper, we focus on the fourth-order difference expression L and discuss the
relationship of the limit cases between L and L. It is worth noting that, different from the
differential expression, the maximal operator generated by the difference expression L or
M may be multi-valued, and the minimal operator may be non-dense [, ]. To solve
this problem, we will apply the theory of subspaces to discuss the spectral theory of such
a difference expression.
The rest of the paper is organized as follows. In Section , some preliminary work is

given, including some basic concepts and useful results as regards subspaces, and the
known result of the second-order difference expression L and the fourth-order difference
expression M. In Section , we pay attention to the defect index of the difference expres-
sion L. Sufficient and necessary conditions for L to be limit- (limit-point), limit- and
limit- (limit-circle) cases are given, separately. These results parallel the Chaudhuri and
Everitt’s result for differential expressions []. In the special case p(t) ≡ , which covers a
number of examples which arise in practice, we establish a criterion for both L and L to
be a limit-point case. In the final section, i.e., Section , some examples are given to show
that all the cases of the difference expressions L and L considered in Section  can be
realized.

2 Preliminaries
In this section, we first recall some basic concepts and useful results about subspaces. The
readers are referred to [, ].
Let X be a complex Hilbert space equipped with inner product 〈·, ·〉, T be a linear sub-

space (briefly, subspace) in X := X ×X, and λ ∈C. Denote

D(T) :=
{
x ∈ X : (x, f ) ∈ T for some f ∈ X

}
,

R(T) :=
{
f ∈ X : (x, f ) ∈ T for some x ∈ X

}
,

T(x) :=
{
f ∈ X : (x, f ) ∈ T

}
.

It can easily be verified that T() = {} if and only if T can determine a unique linear
operator fromD(T) intoX whose graph is justT . For convenience, we will identify a linear
operator in X with a subspace in X via its graph.

Definition . [] Let T be a subspace in X.
() The adjoint of T is defined by

T∗ :=
{
(y, g) ∈ X : 〈y, f 〉 = 〈g,x〉 for all (x, f ) ∈ T

}
.

() T is said to be a Hermitian subspace if T ⊂ T∗. T is said to be a self-adjoint
subspace if T = T∗.

() Let T be a Hermitian subspace. T is said to be a self-adjoint subspace extension
(SSE) of T if T ⊂ T and T is a self-adjoint subspace.

Definition . [] Let T be a subspace in X. R(T – λI)⊥ is called the defect space of T
and λ, and dim(R(T – λI)⊥) is called the defect index of T and λ.

Lemma . A Hermitian subspace T in X with R(T) = X is a self-adjoint subspace.

http://www.advancesindifferenceequations.com/content/2014/1/48
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Proof It suffices to show that T∗ ⊂ T .
For any (y, g) ∈ T∗, since R(T) = X, there exists (h, g) ∈ T . Consequently, for any (x, f ) ∈

T ,

〈f , y〉 = 〈x, g〉 = 〈f ,h〉.

Again by R(T) = X, it follows that h = y, which implies that (y, g) ∈ T , and consequently,
T∗ ⊂ T . Hence, T is a self-adjoint subspace. �

Let T and S be a subspace in X. The product of T and S is defined by

TS =
{
(x, g) ∈ X : (x, f ) ∈ S, (f , g) ∈ T

}
.

Lemma . If T is a closed subspace in X. Then T∗T is a self-adjoint subspace in X.

Proof To show the result, we introduce an operator U in X, similarly to that given for a
graph of an operator (see [, §]), by putting

U(x, f ) = (f , –x), ∀(x, f ) ∈ X.

It is clear that U is a unitary operator and U = –I , where I is the identity operator in X.
Since T is a closed subspace in X, so is UT . Therefore, the following formula is true:

X =UT ⊕ T∗.

Hence, by applying the operator U and UT = T , we have

X = T ⊕UT∗.

Now, for any (h, ) ∈ X, it can be expressed uniquely in the form

(h, ) = (x, f ) +U(y, g)

or

(h, ) = (x, f ) + (g, –y),

where (x, f ) ∈ T and (y, g) ∈ T∗. This yields

h = x + g,  = f – y,

and, consequently,

h =
(
T∗T + I

)
(x),

where I is the identity operator in X. Thus, the range of T∗T + I coincides with the whole
spaceX. Therefore, by Lemma .,T∗T + I is a self-adjoint subspace inX and sinceT∗T =
(T∗T + I) – I , one sees that T∗T also is self-adjoint. �

http://www.advancesindifferenceequations.com/content/2014/1/48
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Corollary . If T is a self-adjoint subspace in X, then so is Tn,where n≥  is any integer.

Next we introduce some notation for (.) and (.). Denote

l =

{
y =

{
y(t)

}+∞
t=– ⊂C :

+∞∑
t=

∣∣y(t)∣∣ < +∞
}
.

Clearly l is a Hilbert space with the inner product

〈y, z〉 =
+∞∑
t=

z̄(t)y(t),

where y = z in l if and only if ‖y – z‖ = , i.e., y(t) = z(t), t ∈ I , while ‖ · ‖ is the induced
norm.
The Green’s formula for L is

k∑
t=s

{
ȳ(t)L[x](t) – L[ȳ](t)x(t)

}
= [x, y]L|ks , s,k ∈ I ,

where

[x, y]L(t) = p(t)
(∇ ȳ(t)x(t) – ȳ(t)∇g(t)

)
.

The corresponding maximal and pre-minimal subspaces to L were defined in some ex-
isting literature (e.g., []) by

HL =
{
(x, f ) ∈ l × l : f (t) = L[x](t) for t ∈ I

}
and

HL, =
{
(x, f ) ∈H : ∃t ≥  s.t.,x(–) = x() = x(t) = , t ≥ t + 

}
,

respectively, and the minimal subspace was defined by HL, = HL,, where HL, is the
closure of HL,. It has been shown in [] that HL may be multi-valued, and HL, and
HL, are only non-densely defined Hermitian operators in l.
A sufficient condition for L to be a limit-point case has been given.

Lemma . [] L is a limit-point case at t = +∞ if

+∞∑
t=


|p(t)| = +∞.

A complete characterization of self-adjoint extension of HL, has been given in terms of
boundary conditions. Here we recall one result which will be used.

Lemma . [] Assume that L is a limit-point case at t = +∞. HL, is a SSE of HL, if and
only if there exist real numbers a and b with a + b �=  such that

HL, =
{
(x, f ) ∈H : ax(–) + b∇x() = 

}
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/48
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Next, we consider the fourth-order formally self-adjoint difference expressionsM. The
Green formula forM is

k∑
t=s

{
ȳ(t)M[x](t) –M[ȳ](t)x(t)

}
= [x, y]M|ks , s,k ∈ I ,

where

[x, y]M(t) :=
∑
j=

( ∑
k=j

(–)k–j�k–j[pk(t)∇kȳ(t)
])

�j–x(t – j)

–
∑
j=

�j–ȳ(t – j)

( ∑
k=j

(–)k–j�k–j[pk(t)∇kx(t)
])

.

The corresponding maximal and pre-minimal subspaces toM are defined as follows:

HM =
{
(x, f ) ∈ l × l : f (t) =M[x](t) for t ∈ I

}
,

HM, =
{
(x, f ) ∈HM : ∃t ≥  s.t.,x(t) = , t ∈ [–, ]Z ∪ [t, +∞)Z

}
,

(.)

and the minimal subspace is defined by HM, =HM,. The following is a characterization
of self-adjoint extension of HM, in the case whenM is a limit-point case at t = +∞.

Lemma . [] Assume that M is a limit-point case at t = +∞. HM, is a SSE of HM, if
and only if there exists a matrix G× , satisfying rankG = , GJG∗ = , and

HM, =
{
(x, f ) ∈HM :Gu() = 

}
,

where

u(t) =

⎛
⎜⎜⎜⎝

x(t – )
∇x(t – )

–[�(p(t)∇x(t)) + p(t)∇x(t)]
p(t)∇x(t)

⎞
⎟⎟⎟⎠ , J =

(
 –I
I 

)
,

and I is the ×  identity matrix.

Finally, in this section, we make it clear that L is a special case of the fourth-order dif-
ference expressionsM. In fact, from (.), one has

L[x](t) = a(t + )x(t + ) + b(t)x(t) + a(t)x(t – ), (.)

where

a(t) = –p(t), b(t) = p(t + ) + p(t) + q(t).

Further, applying L to (.), one has

L[x](t) = A(t + )x(t + ) + B(t + )x(t + ) +C(t)x(t) + B(t)x(t – ) +A(t)x(t – ),

http://www.advancesindifferenceequations.com/content/2014/1/48
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where

A(t) = p(t)p(t – ),

B(t) = –p(t)
[
p(t + ) + p(t – ) + p(t) + q(t) + q(t – )

]
,

C(t) = p(t) + p(t + ) +
(
p(t + ) + p(t) + q(t)

).
Further, one has by formula (.) in [] that

L[x](t) =�(p(t)∇x(t)
)
–�

(
p(t)∇x(t)

)
+ p(t)x(t), (.)

where

p(t) = p(t)p(t – ),

p(t) = p(t)
[
–p(t + ) – p(t – ) + p(t) + q(t) + q(t – )

]
, (.)

p(t) = q(t) + p(t)∇q(t) – p(t + )�q(t).

3 Main results
In this section, we first establish a sufficient and necessary condition for L to be limit-
circle case.

Theorem . L is a limit-circle case at t = +∞ if and only if L is a limit-circle case at
t = +∞.

Proof We first consider the sufficiency. Suppose that L is a limit-circle case at t = +∞.
Choose a complex number μ such that the roots of λ = μ, say λ and λ, are distinct. For
each j = , , let xj, x

j
 be a fundamental set of solution of the difference equation

Lx(t) = λjx(t), t ∈ I . (.)

It can easily be verified that xjk , k = , , j = , , form a fundamental set of solutions of

L[x](t) = μx(t), t ∈ I . (.)

Since L is a limit-circle case at t = +∞, xjk ∈ l, k = , , j = , . Hence, L is a limit-circle
case at t = +∞.
Next we consider necessity. If L is a limit-circle case at t = +∞, we can choose μ and

λj as above and conclude that all solutions of difference equation L[x](t) = λx(t) are in l.
Therefore, L is a limit-circle case at t = +∞. The proof is complete. �

The following is a direct conclusion derived from Theorem ..

Corollary . L is a limit-point case or limit- case at t = +∞ if and only if L is a limit-
point case at t = +∞.

Theorem . completely describes the limit classification of L in the limit-circle case. So
we will assume, for the rest of this paper, that L is a limit-point case at t = +∞. In addition,

http://www.advancesindifferenceequations.com/content/2014/1/48
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we will assume, in the following of this paper, that μ is complex with 	μ �= , and that λj,
j = , , are the two distinct complex roots of λ = μ with 	λj �=  for j = , . Such a choice
of μ is always possible.
A sufficient and necessary condition for L to be a limit-point case is obtained.

Theorem . Let L be a limit-point case at t = +∞. L is a limit-point case at t = +∞ if
and only if

x ∈ l, Lx ∈ l implies that Lx ∈ l. (.)

Proof First, we consider the sufficiency. Suppose that (.) holds.
Consider then the two difference equations (.) for j = , . Since L is in the limit-point

case at t = +∞ and each 	λj �= , there will be two linearly independent solutions, φj and
ψj, of (.) which satisfy φj ∈ l and ψj /∈ l. In addition, by repeated application of L to
(.), we see that φj and ψj are also solutions of (.).
Since λi �= λj with i �= j, it can easily be shown that these four solutions, {φj,ψj}j=, of (.)

are linearly independent on I and so forms a basis of solutions for (.).
Suppose now that the result to be proved is not true, i.e. that L is not a limit-point case

at t = +∞. Then, from the Titchmarsh-Weyl theory of difference equations [] or [,
], it follows that (.) must have exactly three linearly independent solutions in l. Since
{φj,ψj}j= is a basis of solutions for (.) and since φj ∈ l for j = , , . . . ,n, it follows that
there must be at least one linearly independent solution, say ψ , of (.) which is of the
form

ψ = cψ + cψ,

such that not all the cj are zero and ψ ∈ l.
Sinceψ is a solution of (.), it follows that Lψ ∈ l. So by the assumption (.), Lψ ∈ l.

So we have from this and the fact that ψ ∈ l,

cψ + cψ ∈ l, cλψ + cλψ ∈ l. (.)

Since the matrix(
 
λ λ

)

is non-singular, one can see from (.) that cjψj ∈ l for each j = , . Since ψj /∈ l for all
such j, it then follows that c = c =  and this is a contradiction with the assumption.
Hence L is a limit-point case at t = +∞.
Next we consider the necessity. Suppose that L is a limit-point case at t = +∞. Since L is

a limit-point case at t = +∞, by Lemma .,HL,, defined by (.), is a self-adjoint subspace
extension of HL,.
Consider the square H

L,, of the self-adjoint subspace HL,. It is known by Corollary .
that H

L, is also a self-adjoint subspace in l × l, which can be characterized by

H
L, =

{
(x, f ) ∈ l × l : Lx ∈ l,Lx = f ,ax(–) + b∇x() = ,

and aL[x](–) + b∇L[x]() = 
}
.

http://www.advancesindifferenceequations.com/content/2014/1/48
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On the other hand, consider the subspaceHL,, generated by L and the boundary con-
ditions

HL, =
{
(x, f ) ∈ l × l : Lx = f ,ax(–) + b∇x() = ,

and aL[x](–) + b∇L[x]() = 
}
. (.)

A calculation shows thatHL, is a self-adjoint subspace derived from L. In fact, by taking
G = (gij)× with

g = a, g = b, g = , g =
b

p()p()
,

g = aq(–) – b
(
q() – q(–)

)
,

g =
[
a
(
p(–) + p()

)
+ b

(
q() + q() + p() – p() – p(–)

)]
,

g =
b

p()
,

g = –
a

p()
+ b

q() + q(–) + p() – p(–)
p()p()

,

one can verify that rankG = , GJG∗ = , and Gu() = . So by Lemma ., HL, is a self-
adjoint subspace derived from L.
Thus, H

L, and HL, are both self-adjoint subspaces derived from L with H
L, ⊂ HL,.

Since no self-adjoint subspace can have a strict self-adjoint restriction, one must have
H

L, =HL,. If now we compare D(H
L,) and D(HL,), we see that x ∈D(HL,) implies that

Lx ∈ l.
For any x ∈ l satisfying Lx ∈ l, we can redefine (if necessary) the values of x on [–, ]Z,

which are finite points, so that the boundary conditions in (.) are satisfied. Let the new
function be x̃. Then x̃ ∈ D(HL,) and consequently, Lx̃ ∈ l. Since Lx and Lx̃ are different
at finite points, it follows that Lx ∈ l. Hence, condition (.) holds.
The whole proof is complete. �

By the proof of Theorem ., one can find some relationship of solutions of equations
(.) and (.). Next, by exploiting this relationship, we prove a result which gives a nec-
essary and sufficient condition for L to be a limit- case at t = +∞.

Theorem . Assume that L is a limit-point case at t = +∞. Let ψj /∈ l be a solution of
the equation Lx = λjx for j = , . Then L is a limit- case at t = +∞ if and only if there
exists a unique constant k �= , such that

ψ + kψ ∈ l. (.)

Proof Here it is worth noting that since ψ /∈ l and ψ /∈ l it follows that if (.) holds,
then k is unique and not zero.
We first consider sufficiency. Assume that (.) holds. Define the function ψ(t) by

ψ(t) =ψ(t) + kψ(t).

http://www.advancesindifferenceequations.com/content/2014/1/48


Ren Advances in Difference Equations 2014, 2014:48 Page 10 of 12
http://www.advancesindifferenceequations.com/content/2014/1/48

It can easily be verified that

Lψ = λψ + kλψ, Lψ = μ(ψ + kψ) = μψ .

It follows that Lψ /∈ l since k is unique and not zero, while Lψ ∈ l. Now if L was in
the limit-point case, then it would follow from Theorem . that Lψ ∈ l, which is a con-
tradiction. In addition, it follows from Theorem . that L is not a limit-circle case. So it
must be a limit- case at t = +∞.
Next, we consider the necessity. Suppose that L is a limit- case at t = +∞. Let φj ∈ l

be a solution of (.) for j = , . Thus we get four solutions, φ, φ, ψ, ψ, of (.). By
the discussion in the proof of Theorem ., it follows that these four solutions are linearly
independent on I and so they form a basis of solutions for (.). Since L is a limit- case
at t = +∞, there exists exactly one solution which belongs to l and is linearly independent
of φ and φ, say ψ , of (.), which is a linear combination of ψ and ψ, i.e.,

ψ = cψ + cψ ∈ l.

It is evident that c �=  since ψ /∈ l. Define ψ̃ = c– ψ . Then ψ̃ is of form (.).
The whole proof is complete. �

Theorem . Assume that the equation Lx =  on I has exactly three linearly indepen-
dent solutions in l. Then L is a limit- case at t = +∞ and L is a limit-point case at
t = +∞.

Proof Since the equation L[x](t) =  has exactly three linearly independent solutions in
l, it follows that dL ≥  by [, Corollary .]. In addition, one has dL �= , otherwise,
L[x](t) =  would have four linearly independent solutions in l. Hence, dL =  and L

is a limit- case at t = +∞, and consequently L is a limit-point case at t = +∞ by Corol-
lary .. �

In the special case when p(t) ≡ , we have the following result.

Theorem . Assume that p(t) ≡  for t ≥ –. If |q(t) +q(t–)| is bounded on I , then both
L and L are a limit-point case.

Proof By (.) and (.), L takes the form

L(x)(t) =�∇x(t) –�
(
p(t)∇x(t)

)
+ p(t)x(t),

with

p(t) = q(t) + q(t – ), p(t) = q(t) –�∇q(t).

Firstly, L is a limit-point case by Lemma ., since p(t) ≡  for t ≥ –. Secondly, |q(t) +
q(t – )| is bounded on I implies that condition (.) in [] is satisfied (with respect to
n =  and σ (t) = ). Hence, L is a limit-point case by [, Theorem .]. �

http://www.advancesindifferenceequations.com/content/2014/1/48
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4 Examples
We finally give some examples to show that all the cases of difference expressions L and
L can be realized.
() Both L and L are a limit-point case at t = +∞ if

p(t) = , q(t) = , t ≥ –

or

p(t) = , q(t) = (–)tt, t ≥ –.

In fact, L is a limit-point case by Lemma . and L is a limit-point case by Theorem ..
() Both L and L are a limit-circle case at t = +∞ if

p(t) = q(t) = t–, t ≥ .

L is a limit-circle case by [, Example .], and consequently L is a limit-circle case by
Theorem ..
() L is a limit-point case and L is a limit- case at t = +∞ if

p(t) = t , q(t) = t , t ≥ –.

We first show that L is a limit-point case. The solutions of the difference equation Lx = 
are of the form at with a satisfying the equation a – a +  = . The two roots of this
equation are

a =


( +

√
), a =



( –

√
),

and then xi(t) = ati are two solutions of L[x] = . It is evident that x /∈ l and x ∈ l. Thus
L is not a limit-circle case and so it must be a limit-point at t = +∞.
Similarly, solutions of the equation L[x] =  are also of the form at with a satisfying

(
a – a + 

)(
a – a + 

)
= .

The roots of (a – a + ) =  are

a =


( +

√
), a =



( –

√
).

If x and x are defined as before and xj(t) = atj for j = ,, then we can see that xj ∈ l for
j = , , , but x is not in l. Thus equation L[x] =  has just three linearly independent
solutions in l. This implies that L is not a limit-point case at t = +∞.
On the other hand, a calculation shows that

L[x](t) = –

a

(
a – a + 

)
(a)t , t ≥ .

http://www.advancesindifferenceequations.com/content/2014/1/48
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Since a – a +  �=  and |a| > , it follows that L(x) /∈ l. This shows that L[x] ∈ l

cannot imply L[x] /∈ l. So by Theorem ., L is not a limit-point case. Hence, L is a
limit- case at t = +∞.
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