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ABSTRACT
Energy is a precious resource in wireless sensor networks as sen-
sor nodes are typically powered by batteries with high replacement
cost. This paper presents eSENSE: an energy-efficient stochastic
sensing framework for wireless sensor platforms. eSENSE is a
node-level framework that utilizes knowledge of the underlying
data streams as well as application data quality requirements to
conserve energy on a sensor node. eSENSE employs a stochastic
scheduling algorithm to dynamically control the operating modes
of the sensor node components. This scheduling algorithm enables
an adaptive sampling strategy that aggressively conserves power
by adjusting sensing activity to the application requirements. Using
experimental results obtained on Power-TOSSIM with a real-world
data trace, we demonstrate that our approach reduces energy con-
sumption by 29-36% while providing strong statistical guarantees
on data quality.

Categories and Subject Descriptors: C.3 [Special-purpose and
Application-based Systems]: Real-time and embedded systems

General Terms: Algorithms, Management

Keywords: Scheduling, Energy Management, Sensor networks

1. INTRODUCTION

1.1 Sensor Energy Management
Wireless sensor networks are being widely deployed for provid-

ing physical measurements to diverse applications [1, 2]. Energy
efficiency has been widely recognized as a key issue that presents
major challenges [1]. Recent advances in sensor platform hardware
design have made sensor nodes more energy-aware. Many sensor
platforms now allow their main components, such as the CPU, the
radio, and the sensor, to have multiple operating modes with signif-
icantly different power levels [3, 4, 5]. Even low-end sensors such
as temperature/humidity sensors on the Telos platform [4, 6] now
allow automatic mode switching.

Extensive research has been conducted on achieving energy-efficient
operations through intelligent mode switching of main components
of sensor platforms. Most existing research efforts in sensor energy
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management have focused on optimizing the power consumption of
the radio and the CPU [1, 7]. These efforts have been driven largely
by the conventional wisdom that these components consume most
of the power on a sensor node [1]. In reality, the operation of sen-
sors can be critical in determining the lifetime of a sensor node for
the following reasons. First, specialized sensors can be energy con-
suming. For example, the heading sensor offered by xBow [8] can
consume a power of about 375 mW, which is much higher than the
60 mW consumed by the mica2 radio transmitting at full power.
Second, after common CPU and radio energy management, even
low-power sensors, if not well-managed, could account for a sig-
nificant fraction of the total energy consumption. Our experiments,
presented in Section 4, reveal that the SHT series temperature sen-
sor integrated on the Telos platform, that uses only 1.65 mW of
power while sampling, could consume up to 38% of the total en-
ergy at a modest sampling rate of 0.1 Hz. Excluding the idle energy
consumption, which can be improved only through better hardware
design, the percentage of sensing is even higher (about 45-90%).
Thus, effective modulation of the sensor operating modes is crucial
for better energy conservation. Moreover, reduced sensing activity
enables the CPU and the radio to spend more time in sleep mode,
thus resulting in even higher energy savings for these components.
Therefore, we believe that sensor power control is not only desir-
able, but essential for sensor platform energy management.

1.2 Dynamic Data Quality Requirements
Sensor platforms support versatile applications, which have widely

varying data quality requirements from the sensor data streams [9].
For instance, a Heating, Ventilation and Air-conditioning (HVAC)
application might require fine-grained temperature readings of a
building, while coarse-grained readings may be sufficient for a fire
monitoring application that is only concerned with the tempera-
ture exceeding a pre-defined threshold. In addition, data quality
requirements may change even for the same application over differ-
ent time periods and for different value ranges [9]. For example, the
HVAC application may require more precise readings during day-
time when offices are occupied, while only coarse measurements
might be sufficient at night when offices are empty. System support
for dynamic data quality on sensor nodes also provides applications
with an effective means to achieve graceful performance degrada-
tion [10] when the network is congested or the sensor nodes are
constrained. In case of such constraints, the application can throttle
the data sensing and transmission rates by reducing its data fidelity
requirement. As a result, sensor platforms must be able to satisfy
dynamic data quality requirements.

1.3 Adaptive Data Sampling
Due to dynamic data quality requirements, the determination of

the data sampling rate on a sensor must be driven by application



semantics and the dynamics of the measured data. Existing sen-
sor network applications such as TinyDB [11] do not account for
these requirements, and the conventional sampling rates used in
such applications are static user-supplied parameters. Statically-
defined sampling rates result in either energy wastage under stable
conditions, or unsatisfactory sample quality when the physical phe-
nomenon experiences rapid changes. It is thus desirable to provide
adaptive sampling as a system service to end applications, which
only need to supply semantic data requirements. This distinction
between the semantic and the actual sampling rates would benefit
both low as well as high data rate applications by achieving a better
tradeoff between energy and data quality.

The demand for dynamic data quality and support for adaptive
sampling on sensor platforms calls for a novel approach to en-
ergy management for sensor platforms. Since sensor data streams
are measurements of physical phenomena, correlations within data
streams are inherent. For instance, the temperature variation in a
room is governed by heat transfer laws, which limit the amount of
variation that can occur between two successive temperature read-
ings. Such temporal correlations can be exploited for energy man-
agement by taking sensor measurements only when large variations
are expected in the underlying data values. In this paper, we present
eSENSE: an energy-efficient sensing framework that utilizes knowl-
edge of the underlying data streams to conserve energy on a sensor
node, while satisfying the application data quality requirements.
Coupled with data stream prediction models and data quality mod-
els, our scheduling framework dynamically controls the operating
modes of the sensor node components. The core of our approach
is a stochastic scheduling algorithm that performs data sampling in
a probabilistic manner. Using experimental results obtained on an
enhanced version of PowerTOSSIM [3], we demonstrate that our
approach reduces energy consumption by 29-36% while providing
strong statistical guarantees on data quality.

1.4 Research Contributions
This paper makes the following research contributions. (a) We

propose a semantic sensing framework that distinguishes semantic
sampling rate from actual system sensing operations. This frame-
work provides a generic sensor scheduling service that integrates
system operations with application semantics. (b) We propose a
stochastic sensor scheduling algorithm that combines data stream
predictions with application data quality requirements to produce a
sampling schedule for each sensing device. Our scheduling algo-
rithm provides statistical guarantees on data quality while substan-
tially reducing the energy consumption of the sensor platform.

2. SYSTEM ARCHITECTURE
Figure 1 shows the eSENSE framework architecture. In this sec-

tion, we describe the various components of the framework and
their models. We describe the stochastic scheduling algorithm in
Section 3.

2.1 Data Quality Model
The quality of measurement data can be generally quantified in

terms of temporal resolution, measurement resolution, and sam-
pling quality. Temporal resolution refers to the maximum available
sampling frequency, which determines the granularity of tempo-
ral changes that can be captured in the data stream. We define this
maximum sampling frequency as the base sampling frequency. The
base sampling frequency could depend on the physical limitations
of the sensing device, the available communication bandwidth, or
the highest temporal resolution required by the application. Thus
the sampled data sequence at the base sampling frequency repre-
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sents the closest approximation to the underlying process that could
be achieved by a sensor node in an application. We refer to this data
sequence obtained by sensing at the base sampling frequency as the
baseline data sequence (illustrated in Figure 2).

The concept of measurement resolution refers to a data range
around the measured value that contains the actual data value. For
example, a measurement resolution of 2oC for a measurement value
of 100oC means that the true value is bounded in the range (98oC,
102oC). We refer to this measurement resolution as the relative res-
olution threshold δ, capturing the relative error range. In addition,
we use the term absolute resolution threshold to denote the absolute
difference between the measured value and an absolute threshold.
Absolute resolution threshold is commonly used in predicate-based
filtering operations in sensor network queries. We then define state
change to be a change in the data value exceeding the resolution
threshold. Intuitively, a state change corresponds to an interesting
sensor measurement that needs to be reported to the application.

In the proposed eSENSE framework, unnecessary sensing oper-
ations are avoided through adaptive sampling, i.e., data is sensed
only when a state change is expected. With this approach, it is pos-
sible to miss certain state changes if data was not sampled at those
time instances. We refer to such missed state changes as false neg-
atives or misses, as they correspond to a false expectation of not
having a state change when actually there is one. Non-zero misses
are commonly acceptable to many monitoring and aggregation es-
timation applications in sensor networks. Similarly, it is possible
for this sensing approach to make a measurement when there is no
actual state change. We refer to such redundant sensing events as
false positives or false hits, as they correspond to a false expectation
of observing a state change when there is none. Figure 3 illustrates
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Figure 3: Data sequences produced by using different adaptive sampling strategies: (a) An ideal strategy samples data only when
there is a state change based on the resolution threshold δ. (b) A practical strategy tries to emulate the ideal strategy, but has some
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the notion of false negatives and false positives for a data sequence
by comparing it to an ideal data sequence (that consists of samples
taken only at state change points).

A sensing strategy should strive to minimize both false negatives
as well as false positives: while false negatives result in degraded
data quality, false positives result in energy wastage. We define two
quantities, the miss ratio γ =

nf

n
and the false hit ratio ρ =

np

n
,

to quantify the degradation in data quality and wasteful sampling
respectively. Here, nf and np denote the number of misses and
false hits respectively, and n denotes the total number of sampling
points (corresponding to the base sampling frequency).

2.2 Data Stream Prediction Model
eSENSE employs a data stream model to predict future sensor

readings from historical data. Statistical models are particularly
suitable for sensor network applications [2]. While several sophis-
ticated statistical models [12, 13] can be used, we used a biased
random walk model in our experiments. This model is a type of
first-order Markov model that we chose for its computational effi-
ciency and compact representation. This simple model can readily
capture the intrinsic correlations in data streams and is sufficient to
evaluate the effectiveness of our scheduling algorithm.

In this model, a k-step prediction is given by: Xi+k = Xi +
N(µk, σk), where, Xi denotes the data value at time instance i,
Xi+k denotes the predicted data value at time i + k, i.e., k time
steps forward from step i, and N(µ, σ) denotes a normal distribu-
tion with mean µ and standard deviation σ. The possibly non-zero
mean value µ or the bias, captures the systematic trend in the data
stream, while σ captures the process random noise and non-linear
error components. More details on the model can be found in [14].

Given the data quality model with a resolution threshold δ, the
state change probability can be computed by looking up the proba-
bility value in a locally stored unit normal distribution table and ap-
plying appropriate transformations. The model can be constructed
from a training data stream and updated with new data samples.
The initial construction and subsequent updates could be carried
out at base stations, similar to [2], taking advantage of the storage
and computing power of base stations in addition to more complete
view of measurement data streams. Since the prediction models
take small number of parameters and are updated infrequently, the
amortized communication cost of model updates on a sensor node
is expected to be negligible.

3. STOCHASTIC SCHEDULING ALGORITHM
In this section, we present a stochastic scheduling algorithm that

employs the underlying data stream model and the data quality re-

quirement to determine sampling instants for the sensor. The goal
of this algorithm is to minimize the sensor energy consumption
while meeting the desired data quality requirements. The intuition
behind our algorithm is to sample with high probability at instants
when state change probabilities are expected to be high. Note that
our stochastic scheduling algorithm does not depend on the spe-
cific prediction model and data quality model being used, and can
be used in conjunction with any kind of models as long as they can
estimate state change probabilities at future time instants. Next, we
formalize the scheduling problem and present our solution.

3.1 Problem Formulation
We formulate the stochastic scheduling problem as an optimiza-

tion problem that minimizes the total energy consumption while
providing statistical guarantees on data sampling quality.

Let us assume that the baseline data sequence consists of N data
samples, and the probability of state change at a sampling instant
i (determined using the underlying data stream model and the ap-
plication’s resolution threshold δ) is qi. Further assume that the
average energy spent for each measurement is eavg (this includes
the average energy spent by the sensor, CPU, and the radio). Fi-
nally, let the application’s data quality requirement be expressed as
a tolerance level FN ∈ [0, 1], such that its miss ratio γ ≤ FN .
Then, the goal of the stochastic scheduling algorithm is to deter-
mine a probability of sensing pi ∈ [0, 1] for each sampling instant
such that it minimizes the total energy E =

PN

i=1
pi · eavg under

the constraint
PN

i=1
(1 − pi) · qi

N
≤ Fn. (1)

The constraint given by Inequality 1 satisfies the statistical data
quality requirement of the application as we require the expected
miss ratio to be less than the application-specified tolerance level.
Recall from Section 2.1 that the expected miss ratio, γ, is evaluated
as the expected number of false negatives divided by the total num-
ber of data samples. Thus, given the false negative probabilities
fni over all sampling instances, we have,

γ =

PN

i=1
fni

N
. (2)

To catch state changes more effectively, the higher the probability
of state change qi, the higher the probability of sensing pi should
be. Therefore, we assume that pi is, by design, positively corre-
lated to the probability of state change qi at each sampling instant.
Hence, the false negative probability fni at each scheduling instant
is less than what would be obtained by assuming independence be-



tween pi and qi. In other words,

fni ≤ (1 − pi) · qi.

Thus, the miss ratio (Equation 2) reduces to

γ =

PN

i=1
fni

N
≤

PN

i=1
(1 − pi) · qi

N

Thus, the constraint (Inequality 1) satisfies the data quality re-
quirement γ ≤ Fn. In fact, the constraint is a conservative bound
on the data quality requirement, such that if a schedule satisfies the
constraint, it must also satisfy the data quality requirement.

3.2 Scheduling Algorithm
Having presented the problem formulation, we now present a

stochastic scheduling algorithm that closely approximates the opti-
mization problem. The goal of the scheduling algorithm is to de-
termine the sensing probability pi for each sampling instance given
the state change probability qi for that scheduling point. Given qi,
solving for the precise value of pi would require the joint distribu-
tion of the random processes of sampling and state changing. This
distribution is neither available nor desirable due to its high storage
and computational overhead. Instead, we simplify the computation
of pi as follows: we first determine the upper and lower bounds
for pi, and the scheduling algorithm then chooses a value from this
range based on a heuristic we describe later. Intuitively, the upper
bound of pi specifies a limit such that selecting values higher than
it would only waste energy for providing unnecessary data quality
improvement. On the other hand, the lower bound of pi corre-
sponds to a limit, such that going below it would always result in
violation of the application’s tolerance level.

Determining the Sensing Probability Upper Bound
To determine the upper bound on the value of pi for a given qi

value, our scheduling algorithm performs local optimization in-
stead of global optimization. Note that local optimization meets
a stricter requirement since satisfying the constraint at each sam-
pling instance automatically satisfies the constraint over all sam-
pling instances. In other words, the optimization problem is re-
duced to minimizing pi at each scheduling instant under the con-
straint (1 − pi) · qi ≤ Fn, which yields the solution

p
ub
i =



0, if 0 ≤ qi ≤ Fn

1 − Fn

qi
, if Fn < qi ≤ 1

In other words, pub
i is the minimum value of pi that guarantees

the satisfaction of the data quality requirement for each sensing
instance. This value of pi is an upper bound on the value of the
sensing probability, because, any sensing probability value higher
than pub

i , while always satisfying the local optimization constraint,
would be more wasteful of energy.

Determining the Sensing Probability Lower Bound
To determine the lower bound on the value of pi, we consider the
most optimistic scenario where every sample catches a real state
change, i.e., there are no false positives. In this scenario, the data
quality requirement can be satisfied only if qi − pi ≤ Fn, or pi ≥
qi − Fn, which provides us with the following lower bound:

p
lb
i =



0, if 0 ≤ qi ≤ Fn

qi − Fn, if Fn < qi ≤ 1

This value of pi is the lower bound because any sensing probability
value smaller than plb

i would always result in violating the data
quality requirement. Thus, the value plb

i corresponds to the smallest
value of pi given qi, that meets the data quality constraint.
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Figure 4: The relation between sensing probability pi and the
state change probability qi. Fn is the tolerance level that de-
termines the bound on data quality, while Fp is the false hit
ratio threshold that is used as a tuning parameter to select a
value from the feasible region bounded by the upper and lower
bounds of pi.

Selecting the Sensing Probability Value
Given the upper and lower bounds on the value of pi given qi, we
present a heuristic to select the actual value of pi. Note that the
application uses a miss ratio bound Fn to limit the data quality
degradation. Analogously, we can bound the energy wastage by
using a false hit ratio limit Fp. Our heuristic uses this limit Fp

as the tuning parameter to determine the pi value from the region
bounded by plb

i and pub
i . Lower values of Fp correspond to more

aggressive energy saving, while higher values of Fp provide better
data quality at the expense of higher power consumption. Fp can
be approximated as Fp = pi · (1 − qi), which yields

pi =
Fp

(1 − qi)
,

subject to the two bounds derived above. The stochastic schedul-
ing algorithm then uses this pi value to probabilistically schedule a
sensing event at a sampling point. Note that this formula also sat-
isfy the design principle that the higher state change probability is,
the higher sampling probability would be.

Figure 4 shows the relation between the sensing probability pi

and the state change probability qi for a given value of the data
quality threshold Fn. The figure also shows the intermediate values
that pi would take based on the value of the tuning parameter Fp.

Dynamic Adaptation
While major trend change of the measurement data stream can be
captured by model updates, local fluctuations and inaccuracy in es-
timation of qi may lead to poor scheduling decisions affecting the
sample data quality. Thus, it is important to ensure that our schedul-
ing scheme adapts to sudden or unforeseen data variations. While
it is not possible to directly observe false negatives (correspond-
ing to missed state changes), we can measure false positive rates
to estimate the dynamism in the underlying data. Intuitively, a low
rate of false positives implies that most of the sensing events re-
sult in state changes, suggesting the possibility of missing other
significant changes. Thus, a low false positive rate could be taken
as an indication of more dynamic data values, and the number of
sampling events should be increased in this case to catch possibly
significant state changes. On the other hand, if we observe a high
rate of false positives, it means that we are taking large number
of redundant samples, many of which are non-informative. Such a



high rate indicates a relatively stable data process, and the sampling
probability should be decreased in this case to save energy. We
use the tuning parameter Fp to achieve this dynamic adaptation of
the sampling probability pi. A Multiplicative Increment Additive
Decrement algorithm DynamicAdapt is illustrated in Algorithm 1
in hope of fast responding to sudden events.

Practical Considerations
While sampling decision must be made for each time instant, it is
inefficient to compute at each instant. Instead, at each scheduled
sensing instant (when the CPU is turned on anyway for the sensing
operation), the stochastic scheduler determines the next sampling
instant using a pre-generated random number sequence and the se-
quence of sampling probabilities. Algorithm 2 shows the pseudo-
code for our stochastic scheduling algorithm.

Algorithm 1 DynamicAdapt (Fp, sample)

1: GlobalVariables: w windowSize, ρ falseNegThreshold,
BM windowBitMap, m multiplier, step

2: BM � 1
3: if sample is a false hit then BM = BM OR 1
4: ρo = number of 1’s in BM / w
5: if ρo ≥ ρ
6: then Fp = Fp - step
7: else Fp = multiplier * Fp

8: endif
9: if Fp < 0 then Fp = 0

10: if Fp > 1 then Fp = 1
11: return Fp

Algorithm 2 Schedule (Fn, Fp)

1: k = 0, Pk = 1.0, rand = 0.0
2: sample ⇐ take a sample from the sensor
3: Fp ⇐ DynamicAdapt(Fp , sample)
4: while (Pk > rand)
5: k = k+1
6: (µk , σk) ⇐ apply data stream prediction model
7: qk ⇐ apply data quality model on (µk, σk)
8: P ub

k
⇐ apply formula in Section 3.2

9: P lb
k

⇐ apply formula in Section 3.2
10: Pk ⇐ apply formula in Section 3.2
11: if Pk > P ub

k
then Pk = P ub

k

12: if Pk < P lb
k

then Pk = P lb
k

13: rand ⇐ apply [0,1] pseudo random number generator
14: endwhile
15: return k

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup
We have implemented an eSENSE prototype on TinyOS and

evaluated its performance for the Telos platform [5] in PowerTOSSIM
[3]. The energy model is extracted from [4] and summarized in
[14]. In order to enable accurate sensing power estimation, we ex-
tended PowerTOSSIM by generating debug messages, carrying the
channel numbers and the current time-stamp, whenever an ADC
reading request is issued. An ADCDataLoading plugin was also de-
veloped for the TinyViz visualization tool to allow dynamic loading
of data traces for sensor readings. This ADCDataLoading plugin
also enabled catching all sensing-related debug messages to com-
pute the corresponding sensor energy consumption.

We use real-world temperature readings to test the effectiveness
of our prototype. This data was sampled in an air-conditioned
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storage room using an SHT11 temperature sensor at sampling fre-
quency of 0.1Hz for two days. In order to capture greater temper-
ature variations, the sensor was placed close to a ventilation exit.
The collected data trace is shown in Figure 5. The simulation time
period starts at the data point corresponding to about 6 am on the
second day in the trace, when air conditioning is configured to turn
on in the room. This choice of data set results in richer variations in
the test data. A simulation period of 10,000 seconds (correspond-
ing to 1000 sample points) was selected for each run. In order to
reduce the artifact of pseudo randomness, each simulation run was
repeated multiple times with different random seeds and the arith-
metic mean is reported.

4.2 Model Construction
Environmental data such as temperature readings usually exhibits

time-of-day patterns as seen from Figure 5. Therefore, we use the
same time period of 10,000 seconds from the first day as the train-
ing set for constructing the data stream model (described in Sec-
tion 2.2). Figure 6 shows the data histogram and the correspond-
ing Gaussian distribution approximation for single-step prediction
(k=1). The close approximation seen in this figure validates our
selection of the biased random walk model. Overall, parameters of
up to 20-step prediction models were computed in this experiment.

4.3 Performance Results
We begin the performance evaluation by measuring the overhead

of eSENSE. We then present experimental results obtained by vary-
ing the different experimental parameters such as the application’s



resolution threshold and the miss ratio confidence level. We present
two cases: one with relative resolution thresholds and the other with
absolute threshold specification. For each experiment, we examine
the energy savings and the level of data quality provided.

In our experiments, we compare the following five sampling
strategies. (a) Baseline sampling: baseline sampling corresponds
to taking sensor readings at the baseline frequency. We use base-
line sampling for comparison as it reflects the current best practice
in sensor energy management. Note that baseline sampling repre-
sents the worst-case sampling strategy in terms of the number of
samples taken, while achieving zero miss ratio. (b) Ideal sampling:
ideal sampling is a clairvoyant sampling strategy based on an ap-
plication’s data resolution threshold that takes samples only when
there is a state change. Thus ideal sampling consumes the least
possible energy while achieving zero miss ratio. (c) eSENSE with
upper bound sampling probability: this is our stochastic schedul-
ing algorithm that employs the upper bound of the sampling prob-
ability (described in Section 3.2) to determine the sampling points.
Recall that this choice of sampling probability corresponds to the
most conservative choice for meeting the application’s miss ratio
requirement. (d) eSENSE with lower bound sampling probability:
this is similar to the previous strategy except that it employs the
lower bound of the sampling probability. This strategy is the most
energy-efficient scheme while providing the most relaxed guaran-
tees on data quality. (e) Dynamic eSENSE: this strategy employs
the stochastic scheduling algorithm with dynamic adaptation. It
adapts to the current data stream conditions and thus provides a
tradeoff between energy consumption and data quality guarantees.

Note that the same send-on-change data transmission strategy is
employed for all of the above sensing schemes. Also, when there is
no need for sensing, the CPU, the sensor and the radio are always
in sleep mode.

eSENSE Overhead
The energy overhead in eSENSE consists of two main components.
First, at each sampling instant, eSENSE incurs a fixed energy over-
head due to the extra CPU time spent computing the state change
probability, sampling probability, and generating a pseudo-random
number for making a sampling decision. To compute this overhead,
we used the CPU profiling tools in PowerTOSSIM to measure the
number of CPU cycles used for these computations. It turned out
to be negligible as, on average, only 660 cycles were needed for
each time point, corresponding to a total energy overhead of 0.89
mJ for the simulation period (less than 0.5% of the total energy
consumption). The second energy overhead component is the en-
ergy needed for model update. However, as we discussed in Sec-
tion 2.2, the model update would be typically done on a base sta-
tion, and the model would then be loaded on the sensor node. Thus
the only overhead incurred on the sensor node by this component
is the energy spent in downloading the model, which is extremely
small as, in practice, these models would either be pre-loaded or
infrequently updated (weekly or monthly). We also measured the
eSENSE memory overhead to be 2310 bytes in ROM and 242 bytes
in RAM. These results show that eSENSE implementation is com-
pact and efficient.

Relative state change threshold
We first present results for experiments that use a relative state
change threshold. In this case, a state change occurs when the dif-
ference between the new data value and the most recently sent value
is greater than the threshold. For each experiment, the application
specifies a confidence level, whose corresponding tolerance level
(equal to 1 - confidence level) specifies the maximum miss ratio it

0

50

100

150

200

250

300

350

400

2 5 10 20 50

always sleep

Resolution threshold (ADC Reading)

E
ne

rg
y 

co
ns

um
pt

io
n 

(m
J) D

B

I

U

L

D

B

I U
L

D

B

I U
L D

B

I U L D

B

I U L

D: Dyanmic
B: Base
I:   Ideal
U: Upper bound
L:  Lower bound

CPU
RADIO
SENSOR

Figure 7: Energy consumption for confidence level = 90%.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  5  10  15  20  25  30  35  40  45  50
M

is
s 

ra
tio

 (
%

)
Resolution Threshold (ADC Reading)

Upper bound
Lower bound

Dynamic

Figure 8: Miss ratio for confidence level = 90%.

is ready to suffer.
Figure 7 shows the energy consumption of the various schedul-

ing strategies. The horizontal line in the figure denotes the min-
imum energy needed when there is no activity. This energy cor-
responds to the absolute minimum energy required just to keep the
sensor node powered on (with all components in sleep modes). This
energy reflects the hardware limit imposed on any power manage-
ment scheme.

We make several interesting observations from Figure 7. First,
after employing the commonly used send-on-change strategy, the
radio component is no longer the most energy-consuming compo-
nent (consuming only about 0.7-28% of the total energy). Second,
the CPU now consumes the largest amount of energy (about 44-
61% of the total), most of which is spent in sleep mode. Third,
sensing now consumes a significant percentage of the total power.
For instance, with baseline sampling, sensing accounts for about
28% and 38% of the total energy for state change thresholds of 2
and 50 respectively. These results verify our contention that even
low-power modality sensors can account for a large percentage of
energy consumption.

We also see from Figure 7 that the energy consumption of the
dynamic scheduling algorithm (166-254 mJ) lies between those of
the upper bound (167-264 mJ) and the lower bound (166-228 mJ)
strategies. Dynamic scheduling can reduce the baseline energy con-
sumption by about 29% to 36%. In addition, the dynamic schedul-
ing algorithm consumes almost the same amount of energy as the
ideal sampling strategy. In some cases (threshold = 2 and 5), the
dynamic strategy even consumes less energy than ideal sampling.
Note that this is possible because dynamic sampling is allowed a
10% miss ratio, while ideal sampling has zero miss ratio.
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Figure 9: Energy consumption for resolution threshold = 5.
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Figure 8 shows the miss ratios associated with the three eSENSE
sampling strategies. As can be seen from Figure 8, the dynamic
(1-9.4%) and upper bound (0.7-6.8%) sampling strategies always
stay within the tolerance level (10%) for all values of resolution
threshold δ. The lower bound strategy yields lower miss ratios for
high δ values (corresponding to coarser accuracy requirement), but
goes above the tolerance level to 17.4% and 13% respectively for
low δ values (fine-grained accuracy) of δ = 2 and 5.

Figures 9 and 10 show the performance of the various strategies
for a fixed resolution threshold of 5, with varying miss ratio toler-
ance levels. Figure 9 shows upto an additional 18% energy saving
for dynamic strategy when varying the confidence tolerance level
from 99% (tolerance = 1%) to 70% (tolerance = 30%). Figure 10
again verifies that the dynamic and upper bound strategies always
guarantee the required confidence level.

As described in Section 3.2, in the dynamic eSENSE scheduling
strategy, the false positive threshold Fp is used as a dynamic tuning
parameter to adjust sampling probabilities pi following variations
in the underlying processes. The values of the sampling probability
pi obtained in this manner are an indicator of how energy consump-
tion is distributed temporally. Figure 11 shows the variation of the
tuning parameter Fp and the sampling probability pi over the time
period of the test data trace. As can be seen from the figure, higher
values of Fp, and thus higher sampling probabilities (correspond-
ing to higher expected energy consumption) occur at time periods
with larger data variation. This result indicates that the dynamic al-
gorithm is able to adapt to changes in the underlying phenomenon
and spends more energy during stages of flux. This figure also
shows the ability of the dynamic scheduling algorithm to achieve
adaptive sampling without any model updates. Note that the ex-
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Figure 11: The variation of the tuning parameter Fp and the
sampling probability pi, relative threshold = 5 and confidence
level = 90%.
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Figure 12: Energy consumption for absolute resolution thresh-
old = 450 and confidence level = 99%.

tra energy saved by dynamic scheduling, compared to upper bound
scheduling, is driven by the distributions of the high-variation re-
gions in the whole testing data sequence.

Absolute state change threshold
With an absolute threshold, a state change is defined to occur only
when the data value crosses the threshold. The same data source
and prediction models are used for these experiments. Figures 12
and 13 present results generated from an experiment using an ab-
solute threshold of 450 and confidence level of 99%. Figure 12
shows that eSENSE can achieve a 35% energy saving compared
to baseline sampling and consumes only about 4% more than the
ideal sampling strategy. The miss ratio for eSENSE scheduling is
measured at 0.8%, satisfying the confidence level requirement. Fig-
ure 13 shows that higher sampling probabilities (more energy) are
generated in the period when data values are close to the threshold.

5. RELATED WORK
Recently, several research efforts have focused on energy-efficient

operations on wireless sensor platforms. These efforts include min-
imizing data transmission through data compressions [13] and sav-
ing energy by turning redundant nodes off while maintaining re-
quired field coverage [15]. [16] introduces a node-level energy allo-
cation scheme to maximize the overall gain to multiple applications
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Figure 13: The variation in the sampling probability pi, abso-
lute threshold = 450 and confidence level = 99%.

running on a node. [2] uses a statistical model at the base station to
optimize query plans by picking the optimum set of attributes and
nodes for data acquisition. However, it considers only communica-
tion cost in its cost model and does not provide real time scheduling
service in response to sudden events. eSENSE is complementary
to these approaches in that our sensor scheduling framework is a
node-level real time approach that primarily targets sensing energy
conservation. eSENSE thus can be used in conjunction with exist-
ing work to further reduce energy consumption.

Dynamic Power Management (DPM) [17] and multiple sensing
unit scheduling (MSUS) [18] also attempt to control the operating
modes of sensor node components in response to different work-
loads. Prediction-based dynamic power control has also been used
in energy management in mobile systems [19, 20] and embedded
systems [21, 22]. However, unlike our approach, they are com-
pletely unaware of application semantics.

Stochastic sensor scheduling has also been used in target-tracking
applications [23] for maximizing estimation accuracy. It is funda-
mentally different from our goal of minimizing energy consump-
tion given an accuracy requirement.

6. CONCLUDING REMARKS
In this paper, we presented eSENSE: an energy-efficient sensing

framework for wireless sensor platforms, that can achieve signif-
icant energy savings in response to dynamic data quality require-
ments. Our scheduling framework dynamically controls the op-
erating modes of the sensor node components using a stochastic
scheduling algorithm coupled with data stream prediction models
and data quality models. Using experimental results obtained on
PowerTOSSIM with a real-world data trace, we showed that our
approach reduces energy consumption by 29-36% while providing
strong statistical guarantees on data quality.

As part of future work, we intend to extend our work to schedule
data transmissions on the network by modeling the radio compo-
nent as a pseudo-sensor and to multiple sensors by exploring their
correlations. The traffic irregularity caused by this type of schedul-
ing will also be studied to improve the communication stack.
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