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Abstract
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decades, it successfully reduced the related coefficient.
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1 Introduction
There aremany applications with well-knownHardy’s inequality in analytics, which refers
to the following: let ak >  (k = , , . . .), p > , then
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In recent decades, there have also beenmany results due to the extension and refinement
of this inequality (cf. [–]), especially the monograph [], which summarized part of the
research done before . In research on the coefficient of (.), the following conclusion
in the case p =  was drawn in []:
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In [], by using the method of weight-coefficient, the following inequality is proved with
p ∈ [  , ]:
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In the following section, let p >  and

Zp =

⎧⎨
⎩p –  – (p–)

p 

p ,  < p ≤ ,

 – ( p–p )p–
p–
p , p > .
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We shall strengthen Hardy’s inequality to
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2 Relevant lemmas
Some characters of a convex function will be cited in this section.

Definition . L ⊆R is an interval, and f : I →R is continuous. If

f
(
x + y


)
≤ (≥)

f (x) + f (y)


holds for all x, y ∈ I , then f is called a convex (concave) function.

The sufficient and necessary condition for a second-order differential function f to be
convex (concave) function is that f ′′(x) ≥ (≤) always holds for any x ∈ I . The famous
Hadamard inequality is as follows. Let f be a convex (concave) function on [a,b], then the
equality

f
(
b + a


)
≤ (≥)


b – a

∫ b

a
f (x)dx ≤ (≥)

f (b) + f (a)


(.)

holds if and only if f is a linear function.

Lemma . Let p > , and Zp is defined in the first section, then  < Zp < 
 .

Proof The proof includes two parts.
Part : When  < p ≤ , if we can obtain f (p) := –
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p > , then we can get Zp > 
obviously. Since
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The above two inequalities obviously hold with  < p < 
 . If
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Part : When p > , then it should be proved that ( p–p )p–
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The proof of Lemma . is completed. �

Lemma .
(i) Let x≥ , p > , then
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(ii) Let p > , then f : x ∈ [, +∞)→ x
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p– is a convex function.

Proof (i) The proposition is equivalent to
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Bernoulli’s inequality refers to the following: ( + t)α ≤  + αt (t > –,  < α < ) holds if
t = . If t = –Zpx–+


p , α = p–

p– , then formula (.) holds.
(ii)
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According to Lemma .,

f ′′(x)≥ (p – )x
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p
[
(p – ) – (p – )

]
> ,

so, f is a convex function. The proof of Lemma . is completed. �
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Lemma . Let n be a positive natural number, p > .
(i) If  < p≤ , then
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Proof (i) If n = , inequality (.) is proved easily. Assume that when n = m ≥ , the fol-
lowing equality holds for n =m + :
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Because x–

p is a convex function on [m,m + ], then according to Hadamard’s inequality

of a convex function, formula (.) also holds if n =m + .
(ii) If n = , inequality (.) is proved easily. Assume that when n =m≥ , the inequality

holds. For n =m + ,

m+∑
k=



(k – 
 )


p

≤ p
p – 

m– 
p
(
m– 

p – Zp
) 
p– +



(m + 
 )


p

=
p

p – 
(m + )–


p
(
(m + )–


p – Zp

) 
p–

–
∫ m+

m

[
p

p – 
x–


p
(
x–


p – Zp

) 
p–

]′
dx +



(m + 
 )


p

=
p

p – 
(m + )–


p
(
(m + )–


p – Zp

) 
p– +



(m + 
 )


p

–
p

p – 

∫ m+

m

[(
 –


p

)
x–


p
(
x–


p – Zp

) 
p–

+


p – 

(
 –


p

)
x–


p
(
x–


p – Zp

) 
p– – · x– 

p

]
dx

=
p

p – 
(m + )–


p
(
(m + )–


p – Zp

) 
p– +



(m + 
 )


p

–
p

p – 

∫ m+

m
x–


p
(
x–


p – Zp

) –p
p–

×
[(

 –

p

)
x–


p –

(
 –


p

)
Zp

]
dx

http://www.journalofinequalitiesandapplications.com/content/2012/1/300


Xu et al. Journal of Inequalities and Applications 2012, 2012:300 Page 5 of 8
http://www.journalofinequalitiesandapplications.com/content/2012/1/300

=
p

p – 
(m + )–


p
(
(m + )–


p – Zp

) 
p– +



(m + 
 )


p

–
∫ m+

m
x–


p
(
 – Zpx–+


p
) –p
p–

[
 –

p – 
p – 

Zpx–+

p

]
dx.

By inequality (.) and the fact that x–

p is a convex function on [m,m + ], we have

m+∑
k=



(k – 
 )


p
<

p
p – 

(m + )–

p
(
(m + )–


p – Zp

) 
p– +



(m + 
 )


p
–

∫ m+

m
x–


p dx

≤ p
p – 

(m + )–

p
(
(m + )–


p – Zp

) 
p– +



(m + 
 )


p
–

(
m +




)– 
p

=
p

p – 
(m + )–


p
(
(m + )–


p – Zp

) 
p– .

Thus, the inequality (.) also holds if n =m + . �

Lemma . Let i be any positive natural number and p > , then
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According to the conclusion of Lemma . and Hadamard’s inequality of a convex
function, the sequence {f (i)}+∞

i= is a strictly decreasing sequence. It is also known that
limi→+∞ f (i) = , then f (i) >  always holds. The proof of Lemma . is completed. �
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3 A new strengthened version of Hardy’s inequality
Theorem . Let ak > , n≥ , n ∈N , p > , and
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If p > , by using formula (.), we obtain
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The proof of Theorem . is completed. �
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