
Chapter 5
Good Binary Linear Codes

5.1 Introduction

Two of the important performance indicators for a linear code are the minimum
Hamming distance and the weight distribution. Efficient algorithms for computing
the minimum distance and weight distribution of linear codes are explored below.
Using thesemethods, theminimumdistances of all binary cyclic codes of length 129–
189 have been enumerated. The results are presented in Chap.4.Many improvements
to the database of best-known codes are described below. In addition, methods of
combining known codes to produce good codes are explored in detail. Thesemethods
are applied to cyclic codes, and many new binary codes have been found and are
given below.

The quest of achieving Shannon’s limit for the AWGN channel has been
approached in a number of different ways. Here we consider the problem formu-
lated by Shannon of the construction of good codes which maximise the difference
between the error rate performance for uncoded transmission and coded transmis-
sion. For uncoded, bipolar transmission with matched filtered reception, it is well
known (see for example Proakis [20]) that the bit error rate, pb, is given by

pb = 1

2
erfc

(√
Eb

N0

)
. (5.1)

Comparing this equation with the equation for the probability of error when using
coding, viz. the probability of deciding on one codeword rather than another, Eq. (1.4)
given in Chap.1, it can be seen that the improvement due to coding, the coding
gain is indicated by the term dmin .

k
n , the product of the minimum distance between

codewords and the code rate. This is not the end of the story in calculating the overall
probability of decoder error because this error probability needs to be multiplied by
the number of codewords distance dmin apart.

For a linear binary code, the Hamming distance between two codewords is equal
to the Hamming weight of the codeword formed by adding the two codewords
together. Moreover, as the probability of decoder error at high Eb

N0
values depends

on the minimum Hamming distance between codewords, for a linear binary code,

© The Author(s) 2017
M. Tomlinson et al., Error-Correction Coding and Decoding,
Signals and Communication Technology,
DOI 10.1007/978-3-319-51103-0_5

101

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193751775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_1

102 5 Good Binary Linear Codes

the performance of the code depends on the minimum Hamming weight codewords
of the code, the dmin of the code and the number of codewords with this weight
(the multiplicity). For a given code rate (kn) and length n, the higher the weight of
the minimum Hamming weight codewords of the code, the better the performance,
assuming the multiplicity is not too high. It is for this reason that a great deal of
research effort has been extended, around the world in determining codes with the
highest minimum Hamming weight for a given code rate (kn) and length n. These
codes are called the best-known codes with parameters (n, k, d), where d is under-
stood to be the dmin of the code, and the codes are tabulated in a database available
online [12] with sometimes a brief description or reference to their method of con-
struction.1

In this approach, it is assumed that a decoding algorithm either exists or will be
invented which realises the full performance of a best-known code. For binary codes
of length less than 200 bits the Dorsch decoder described in Chap.15 does realise
the full performance of the code.

Computing the minimum Hamming weight codewords of a linear code is, in
general, a Nondeterministic Polynomial-time (NP) hard problem, as conjectured by
[2] and later proved by [24]. Nowadays, it is a common practice to use a multi-
threaded algorithm which runs on multiple parallel computers (grid computing) for
minimum Hamming distance evaluation. Even then, it is not always possible to
evaluate the exact minimum Hamming distance for large codes. For some algebraic
codes, however, there are some shortcuts that make it possible to obtain the lower
and upper bounds on this distance. But knowing these bounds are not sufficient
as the whole idea is to know explicitly the exact minimum Hamming distance of a
specific constructed code. As a consequence, algorithms for evaluating the minimum
Hamming distance of a code are very important in this subject area and these are
described in the following section.

It is worth mentioning that a more accurate benchmark of how good a code is,
in fact its Hamming weight distribution. Whilst computing the minimum Hamming
distance of a code is in general NP-hard, computing theHammingweight distribution
of a code is even more complex. In general, for two codes of the same length and
dimension but of differentminimumHammingdistance,we can be reasonably certain
that the code with the higher distance is the superior code. Unless we are required to
decide between two codes with the same parameters, including minimum Hamming
distance, it is not necessary to go down the route of evaluating the Hamming weight
distribution of both codes.

1Multiplicities are ignored in the compiling of the best, known code Tables with the result that
sometimes the best, known code from the Tables is not the code that has the best performance.

http://dx.doi.org/10.1007/978-3-319-51103-0_15

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 103

5.2 Algorithms to Compute the Minimum Hamming
Distance of Binary Linear Codes

5.2.1 The First Approach to Minimum Distance Evaluation

For a [n, k, d] linear code over F2 with a reduced-echelon generator matrix Gsys =
[I k |P], where I k and P are k × k identity and k × (n − k) matrices respectively,
a codeword of this linear code can be generated by taking a linear combination of
some rows of Gsys . Since the minimum Hamming distance of a linear code is the
minimum non-zero weight among all of the 2k codewords, a brute-force method to
compute the minimum distance is to generate codewords by taking(

k

1

)
,

(
k

2

)
,

(
k

3

)
, . . . ,

(
k

k − 1

)
, and

(
k

k

)

linear combinations of the rows in Gsys , noting the weight of each codeword gener-
ated and returning the minimum weight codeword of all 2k −1 non-zero codewords.
This method gives not only the minimum distance, but also the weight distribution of
a code. It is obvious that as k grows larger this method becomes infeasible. However,
if n − k is not too large, the minimum distance can still be obtained by evaluating
the weight distribution of the [n, n − k, d ′] dual code and using the MacWilliams
Identities to compute the weight distribution of the code. It should be noted that the
whole weight distribution of the [n, n − k, d ′] dual code has to be obtained, not just
the minimum distance of the dual code.

In direct codeword evaluation, it is clear that there are too many unnecessary
codeword enumerations involved. A better approach which avoids enumerating large
numbers of unnecessary codewords can be devised. Let

c = (i | p) = (c0, c1, . . . , ck−1|ck, . . . , cn−2, cn−1)

be a codeword of a binary linear code of minimum distance d. Let c′ = (i ′| p′) be a
codeword ofweightd, then ifwtH (i ′) = w for some integerw < d, wtH (p′) = d−w.
This means that at most

min{d−1,k}∑
w=1

(
k

w

)
(5.2)

codewords are required to be enumerated.
In practice, d is unknown and an upper bound dub on the minimum distance is

required during the evaluation and the minimumHamming weight found thus far can
be used for this purpose. It is clear that once all

∑w
w′=1

(k
w′
)
codewords of information

weight w′ are enumerated,

• we know that we have considered all possibilities of d ≤ w; and
• if w < dub, we also know that the minimum distance of the code is at least w+ 1.

104 5 Good Binary Linear Codes

Therefore, having an upper bound, a lower bound dlb = w + 1 on the minimum
distance can also be obtained. The evaluation continues until the condition dlb ≥ dub
is met and in this event, dub is the minimum Hamming distance.

5.2.2 Brouwer’s Algorithm for Linear Codes

There is an apparent drawback of the above approach. In general, the minimum
distance of a low-rate linear code is greater than its dimension. This implies that∑k

w=1

(k
w

)
codewords would need to be enumerated. A more efficient algorithm was

attributed to Brouwer2 and the idea behind this approach is to use a collection of
generator matrices of mutually disjoint information sets [11].

Definition 5.1 (Information Set) Let the set S = {0, 1, 2, . . . , n−} be the coordi-
nates of an [n, k, d] binary linear code with generator matrix G. The set I ⊆ S of
k elements is an information set if the corresponding coordinates in the generator
matrix is linearly independent and the submatrix corresponding to the coordinates in
I has rank k, hence, it can be transformed into a k × k identity matrix.

In other words, we can say, in relation to a codeword, the k symbols user message
is contained at the coordinates specified byI and the redundant symbols are stored
in the remaining n − k positions.

An information set corresponds to a reduced-echelon generator matrix and it
may be obtained as follows. Starting with a reduced-echelon generator matrix
G(1)

sys = Gsys = [I k |P], Gaussian elimination is applied to submatrix P so that
it is transformed to reduced-echelon form.

The resulting generator matrix now becomes G(2)
sys = [A|I k |P ′], where P ′ is

a k × (n − 2k) matrix. Next, submatrix P ′ is put into reduced-echelon form and
the process continues until there exists a k × (n − lk) submatrix of rank less than
k, for some integer l. Note that column permutations may be necessary during the
transformation to maximise the number of disjoint information sets.

Let G be a collection of m reduced-echelon generator matrices of disjoint infor-
mation sets, G = {

G(1)
sys, G

(2)
sys, . . . , G

(m)
sys

}
.

Using these m matrices means that after
∑w

w′=1

(k
w′
)
enumerations

• all possibilities of d ≤ mw have been considered; and
• if mw < dub, the minimum distance of the code is at least m(w + 1), i.e. dlb =
m(w + 1).

We can see that the lower bound has been increased by a factor of m, instead of 1
compared to the previous approach. For w ≤ k/2, we know that

(k
w

) � (k
w−1

)
and

this lower bound increment reduces the bulk of computations significantly.
Ifd is theminimumdistanceof the code, the total number of enumerations required

is given by

2Zimmermann attributed this algorithm to Brouwer in [25].

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 105

min{�d/m�−1,k}∑
w=1

m

(
k

w

)
. (5.3)

Example 5.1 (Disjoint Information Sets) Consider the [55, 15, 20]2 optimal binary
linear, a shortened code of the Goppa code discovered by [15]. The reduced-echelon
generator matrices of disjoint information sets are given by

G(1)
sys =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

100000000000000 010110111110101001110 1010101010100000000
010000000000000 1000111001101011110100 100111001000110000
001000000000000 1011001111011010111010111111001001000001
000100000000000 10 10 10 10 1 1 10 1 10 1 10 1 1 1 1 1 10 10 0 0 100 10 10 10 10
000010000000000 0011110100111110110110 1000 11000 10 10 1110 1
000001000000000 0101000010100101111110001110001010001110
000000100000000 1001001110100010100110011001010010100111
000000010000000 1011000100110100000001110010110011110101
000000001000000 101011010111111010100 1001011101110100001
000000000100000 101000010100101100000 1110101111101100010
000000000010000 1101101011110001001011111011100101010100
000000000001000 1101101110101111110011101111110000011011
000000000000100 0000010001010011101110 0 100 1 100 10 1 1 10 1 10 1
000000000000010 0101100000011101011110010001100111000011
000000000000001 0011111001011000111001010001000000111011

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G(2)
sys =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

101101001011001 100000000000000 0011110011110111110110000
000000011000110 010000000000000 1011000111011110001111010
001111100100011 001000000000000 0011101001010011100000101
010110100111101 000100000000000 1100101001010101110011011
111111001000100 000010000000000 0 1 100 1 100 1 100 10 1 10 100 0 100
111110010101001 000001000000000 0000000100011111100110001
111100100011110 000000100000000 10 100 10 1 10 1 10 10 1 100 0 1 1 10 1
000001100111111 000000010000000 1101000100101011100010001
000000101000001 000000001000000 1110110000011111100111101
111001100100100 000000000100000 1100100111100111011010111
100011111001111 000000000010000 0100001100100001000101110
010110000110 111 000000000001000 1101110101101101011100100
001011011111111 000000000000100 0101010011001011111111110
100 10 10 1 100 10 1 1 000000000000010 0110000111001000110010011
110100101110101 000000000000001 0010100011000100001111100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

G(3)
sys =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

010010100110100010111110001110 100000000000000 1100010001
111101011110000111110111110011 010000000000000 1000110111
011101101111001011001110110100 001000000000000 1 10 10 0 0 10 1
001100010010101010010001111101 000100000000000 0110011100
00011110 1 10 10 10 1 10 1 10 1 10 10 10 1 1 000010000000000 1011000101
10 1110 10 100 1000 100 110 10 100 1000 000001000000000 0 110 10 10 11
0 10 10 10 0 0 1 10 10 0 000010111100110 000000100000000 0011001111
100101101110111100001101101010 000000010000000 0100000001
100100110101011110011110011000 000000001000000 110111100 1
011001100011100111110111011111 000000000100000 01111110 10
101110001111100011101101101111 000000000010000 0 1 1 10 10 1 1 1
10000110110 10 10000101110110 110 000000000001000 1000110010
011101010000010001011101101000 000000000000100 1101100011
010011111010001100010001011001 000000000000010 1101111111
110100111100111001100111101101 000000000000001 0000011110

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Brouwer’s algorithm requires 9948 codewords to be evaluated to prove the minimum
distance of this code is 20. In contrast, for the same proof, 32767 codewords would
need to be evaluated if only one generator matrix is employed.

106 5 Good Binary Linear Codes

5.2.3 Zimmermann’s Algorithm for Linear Codes and Some
Improvements

A further refinement to the minimum distance algorithm is due to Zimmermann
[25]. Similar to Brouwer’s approach, a set of reduced-echelon generator matrices
are required. While in Brouwer’s approach the procedure is stopped once a non-
full-rank submatrix is reached; Zimmermann’s approach proceeds further to obtain
submatriceswith overlapping information sets. LetG(m)

sys = [Am |I k |Bm+1] be the last
generator matrix which contains a disjoint information set. To obtain matrices with
overlapping information sets, Gaussian elimination is performed on the submatrix
Bm+1 and this yields

G(m+1)
sys =

[
Âm

0 I rm+1

I k−rm+1 0
Bm+2

]
,

where rm+1 = Rank (Bm+1). Next, G(m+2)
sys is produced by carrying out Gaussian

elimination on the submatrix Bm+2 and so on.
From G(3)

sys of Example5.1, we can see that the last 10 coordinates do not form an
information set since the rank of this submatrix is clearly less than k. Nonetheless, a
“partial” reduced-echelon generator matrix can be obtained from G(3)

sys ,

G(4)
sys =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

011111100101101001010 0110001100101010000 00000 1000000000
11001100000101100000 10111110000110101110 00000 0100000000
1010010000110001011100111001110100001110 00000 0010000000
0010010010001100001001001001111011101111 00000 0001000000
1011110010101000101110010011100001100010 00000 0000100000
1010001011011101111000001000101101010100 00000 0000010000
0100000100011011101111011111110010001111 00000 0000001000
101110101100101110110 1001111111100111011 00000 0000000100
0111010111111100010011111101000111110111 00000 0000000010
0101101011111001000001100100100110101010 00000 0000000001
1100001101000000101011001011001001111101 10000 0000000000
1001001100000111011010 111010001110010001 01000 0000000000
0111000001101001110100010110011000101110 00 100 0000000000
000100111100001101110 10 0 0 0 10 10 10 1 100 1 1 10 00010 0000000000
1111111100111111110000011110110100010111 00001 0000000000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From G(4)
sys , we can see that the last k columns is also an information set, but k −

Rank
(
G(4)

sys

)
coordinates of which overlap with those in G(3)

sys . The generator matrix

G(4)
sys then may be used to enumerate codewords with condition that the effect of

overlapping information set has to be taken into account.
Assuming that all codewordswith informationweight≤ w have been enumerated,

we know that

• for all G(i)
sys of full-rank, say there are m of these matrices, all cases of d ≤ mw

have been considered and each contributes to the lower bound.
As a result, the lower bound becomes dlb = m(w + 1).

• for each G(i)
sys that do not have full-rank, we can join G(i)

sys with column subsets

of G(j)
sys , for j < i , so that we have an information set Ii , which of course

overlaps with information set I j . Therefore, for all of these matrices, say M ,
all cases of d ≤ Mw have been considered, but some of which are attributed
to other information sets, and considering these would result in double counting.

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 107

According to Zimmermann [25], for each matrix G(m+ j)
sys with an overlapping

information set unless w ≥ k−Rank
(
Bm+ j

)
for which the lower bound becomes

dlb = dlb + {
w − (

k − Rank
(
Bm+ j

)) + 1
}
, there is no contribution to the lower

bound.

Let the collection of full rank-reduced echelon matrices be denoted by, as before,
G = {

G(1)
sys, G

(2)
sys, . . . , G

(m)
sys

}
, and let G ′ denote the collection of M rank matri-

ces with overlapping information sets G ′ = {
G(m+1)

sys , G(m+2)
sys , . . . , G(m+M)

sys

}
. All

m + M generator matrices are needed by the [25] algorithm. Clearly, if the con-
dition w ≥ k − Rank

(
Bm+ j

)
is never satisfied throughout the enumeration, the

corresponding generator matrix contributes nothing to the lower bound and, hence,
can be excluded [11]. In order to accommodate this improvement, we need to know
wmax the maximum information weight that would need to be enumerated before the
minimum distance is found. This can be accomplished as follows: Say at information
weightw, a lowerweight codeword is found, i.e. new dub, starting fromw′ = w, we let
X = G ′, set dlb = m(w′ +1) and then increment it by (w′ − (k−Rank(Bm+ j))+1)
for each matrix in G ′ that satisfies w′ ≥ k −Rank

(
Bm+ j

)
. Each matrix that satisfies

this condition is also excluded fromX . The weight w′ is incremented, dlb is recom-
puted and at the point when dlb ≥ dub, we have wmax and all matrices inX are those
to be excluded from codeword enumeration.

In some cases, it has been observed that while enumerating codewords of informa-
tion weightw, a codeword, whose weight coincides with the lower bound obtained at
enumeration stepw−1, appears. Clearly, this implies that the newly found codeword
is indeed a minimum weight codeword; any other codeword of lower weight, if they
exist, would have been found in the earlier enumeration steps. This suggests that the
enumeration at stepwmay be terminated immediately. Since the bulk of computation
time increases exponentially as the information weight is increased, this termination
may result in a considerable saving of time.

Without loss of generality, we can assume that Rank(Bm+ j) > Rank(Bm+ j+1).
With this consideration, we can implement the Zimmermann approach to minimum
distance evaluation of linear code over F2–with the improvements, in Algorithm5.1.
The procedure to update wmax and X is given in Algorithm5.2.

If there is additional code structure, the computation time required by Algo-
rithm5.1 can be reduced. For example, in some cases it is known that the binary
code considered has even weight codewords only, then at the end of codeword enu-
meration at each step, the lower bound dlb that we obtained may be rounded down
to the next multiple of 2. Similarly, for codes where the weight of every codeword
is divisible by 4, the lower bound may be rounded down to the next multiple of 4.

5.2.4 Chen’s Algorithm for Cyclic Codes

Binary cyclic codes, which were introduced by Prange [19], form an important
class of block codes over F2. Cyclic codes constitute many well-known error-

108 5 Good Binary Linear Codes

Algorithm 5.1Minimum distance algorithm: improved Zimmermann’s approach

Input: G =
{
G(1)

sys , G
(2)
sys , . . . , G

(m)
sys

}
where |G | = m

Input: G ′ =
{
G(m+1)

sys , G(m+2)
sys , . . . , G(m+M)

sys

}
where |G ′| = M

Output: d (minimum distance)
1: d ′ ← dub ← wmax ← k
2: dlb ← w ← 1
3: X = ∅
4: repeat
5: M ← M − |X |
6: for all i ∈ F

k
2 where wtH (i) = w do

7: for 1 ≤ j ≤ m do
8: d ′ ← wtH (i · G(j)

sys)

9: if d ′ < dub then
10: dub ← d ′
11: if dub ≤ dlb then
12: Goto Step 36
13: end if
14: wmax ,X ← Updatewmax andX

(
dub, k,m,G ′)

15: end if
16: end for
17: for 1 ≤ j ≤ M do
18: d ′ ← wtH (i · G(m+ j)

sys)

19: if d ′ < dub then
20: dub ← d ′
21: if dub ≤ dlb then
22: Goto Step 36
23: end if
24: wmax ,X ← Updatewmax andX

(
dub, k,m,G ′)

25: end if
26: end for
27: end for
28: dlb ← m(w + 1)
29: for 1 ≤ j ≤ M do
30: if w ≥ {

k − Rank
(
Bm+ j

)}
then

31: dlb = dlb + {
w − (

k − Rank
(
Bm+ j

)) + 1
}

32: end if
33: end for
34: w ← w + 1
35: until dlb ≥ dub OR w > k
36: d ⇐ dub

correcting codes, such as the quadratic-residue codes and the commonly used in
practice Bose–Chaudhuri–Hocquenghem (BCH) and Reed–Solomon (RS) codes. A
binary cyclic code of length n, where n is necessarily odd, has the property that
if c(x) = ∑n−1

i=0 ci x
i , where ci ∈ F2 is a codeword of the cyclic code, then x j c(x)

(mod xn−1), for some integer j , is also a codeword of that cyclic code. That is to say
that the automorphism group of a cyclic code contains the coordinate permutation
i → i + 1 (mod n).

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 109

Algorithm 5.2 wmax ,X = Updatewmax andX
(
dub, k,m,G ′)

Input: dub, k, m

Input: G ′
{
G(m+1)

sys , G(m+2)
sys , . . . , G(m+M)

sys

}
Output: wmax and X
1: X ← G ′
2: wmax ← 1
3: repeat
4: dlb ← m(wmax + 1)
5: for 1 ≤ j ≤ |G ′| do
6: if wmax ≥ {

k − Rank
(
Bm+ j

)}
then

7: Remove G(m+ j)
sys from X if G(m+ j)

sys ∈ X
8: dlb = dlb + {

wmax − (
k − Rank

(
Bm+ j

)) + 1
}

9: end if
10: end for
11: wmax ← wmax + 1
12: until dlb ≥ dub OR wmax > k
13: return wmax and X

An [n, k, d] binary cyclic code is defined by a generator polynomial g(x) of degree
n − k, and a parity-check polynomial h(x) of degree k, such that g(x)h(x) = 0
(mod xn − 1). Any codeword of this cyclic code is a multiple of g(x), that is c(x) =
u(x)g(x), where u(x) is any polynomial of degree less than k. The generator matrix
G can be simply formed from the cyclic shifts of g(x), i.e.

G =

⎡
⎢⎢⎢⎣

g(x) (mod xn − 1)
xg(x) (mod xn − 1)

...

xk−1g(x) (mod xn − 1)

⎤
⎥⎥⎥⎦ . (5.4)

Since for some integer i , xi = qi (x)g(x)+ ri (x) where ri (x) = xi (mod g(x)), we
can write

xk
(
xn−k+i − rn−k+i (x)

) = xkqi (x)g(x)

and based on this, a reduced-echelon generator matrix Gsys of a cyclic code is
obtained:

Gsys =

⎡
⎢⎢⎢⎢⎢⎣

−xn−k (mod g(x))
−xn−k+1 (mod g(x)) −xn−k+1 (mod g(x))

I k −xn−k+2 (mod g(x))
...

−xn−1 (mod g(x))

⎤
⎥⎥⎥⎥⎥⎦ . (5.5)

110 5 Good Binary Linear Codes

The matrix Gsys in (5.5) may contain several mutually disjoint information sets.
But because each codeword is invariant under a cyclic shift, a codeword generated
by information set Ii can be obtained from information set I j by means of a
simple cyclic shift. For an [n, k, d] cyclic code, there always exists �n/k� mutually
disjoint information sets. As a consequence of this, using a single information set is
sufficient to improve the lower bound to �n/k�(w + 1) at the end of enumeration
step w. However, Chen [7] showed that this lower bound could be further improved
by noting that the average number of non-zeros of a weight w0 codeword in an
information set is w0k/n. After enumerating

∑w
i=1

(k
i

)
codewords, we know that the

weight of a codeword restricted to the coordinates specified by an information set is
at least w+ 1. Relating this to the average weight of codeword in an information set,
we have an improved lower bound of dlb = �(w+1)n/k�. Algorithm 5.3 summarises
Chen’s [7] approach to minimum distance evaluation of a binary cyclic code. Note
that Algorithm 5.3 takes into account the early termination condition suggested in
Sect. 5.2.3.

Algorithm 5.3Minimum distance algorithm for cyclic codes: Chen’s approach
Input: Gsys = [Ik |P] {see (5.5)}
Output: d (minimum distance)
1: dub ← k
2: dlb ← 1
3: w ← 1
4: repeat
5: d ′ ← k
6: for all i ∈ F

k
2 where wtH (i) = w do

7: d ′ ← wtH (i · Gsys)

8: if d ′ < dub then
9: dub ← d ′
10: if dub ≤ dlb then
11: Goto Step 18
12: end if
13: end if
14: end for
15: dlb ←

⌈n
k

(w + 1)
⌉

16: w ← w + 1
17: until dlb ≥ dub OR w > k
18: d ⇐ dub

It is worth noting that both minimum distance evaluation algorithms of Zimmer-
mann [25] for linear codes and that of Chen [7] for cyclic codes may be used to
compute the number of codewords of a given weight. In evaluating the minimum
distance d, we stop the algorithm after enumerating all codewords having informa-
tion weight i to w, where w is the smallest integer at which the condition dlb ≥ d is
reached. To compute the number of codewords of weight d, in addition to enumer-
ating all codewords of weight i to w in their information set, all codewords having
weightw+1 in their information set, also need to be enumerated. For Zimmermann’s

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 111

method, we use all of the available information sets, including those that overlap,
and store all codewords whose weight matches d. In contrast to Chen’s algorithm,
we use only a single information set but for each codeword of weight d found, we
accumulate this codeword and all of the n − 1 cyclic shifts. In both approaches, it
is necessary to remove the doubly-counted codewords at the end of the enumeration
stage.

5.2.5 Codeword Enumeration Algorithm

The core of all minimum distance evaluation and codeword counting algorithms lies
in the codeword enumeration. Given a reduced-echelon generator matrix, codewords
can be enumerated by taking linear combinations of the rows in the generator matrix.
This suggests the need for an efficient algorithm to generate combinations.

One of the most efficient algorithm for this purpose is the revolving-door algo-
rithm, see [4, 13, 17]. The efficiency of the revolving-door algorithm arises from
the property that in going from one combination pattern to the next, there is only
one element that is exchanged. An efficient implementation of the revolving-door
algorithm is given in [13], called Algorithm R, which is attributed to [18].3

In many cases, using a single-threaded program to either compute the minimum
distance, or count the number of codewords of a given weight, of a linear code may
take a considerable amount of computer time and can take several weeks.

For these long codes, we may resort to a multi-threaded approach by splitting
the codeword enumeration task between multiple computers. The revolving-door
algorithm has a nice property that allows such splitting to be neatly realised. Let
atat−1 . . . a2a1, where at > at−1 > . . . > a2 > a1 be a pattern of an t out of
s combinations–Cs

t . A pattern is said to have rank i if this pattern appears as the
(i + 1)th element in the list of all Cs

t combinations.4 Let Rank(atat−1 . . . a2a1) be
the rank of pattern atat−1 . . . a2a1, the revolving-door algorithm has the property
that [13]

Rank(atat−1 . . . a2a1)=
[(

at + 1

t

)
− 1

]
− Rank(at−1 . . . a2a1) (5.6)

and, for each integer N , where 0 ≤ N ≤ (s
t

) − 1, we can represent it uniquely
with an ordered pattern atat−1 . . . a2a1. As an implication of this and (5.6), if all(k
t

)
codewords need to be enumerated, we can split the enumeration into

⌈(k
t

)
/M

⌉
blocks, where in each block only at most M codewords need to be generated. In

3This is the version that the authors implemented to compute the minimum distance and to count
the number of codewords of a given weight of a binary linear code.
4Here it is assume that the first element in the list of all Cs

t combinations has rank 0.

112 5 Good Binary Linear Codes

Fig. 5.1 C6
4 and C7

5 revolving-door combination patterns

this way, we can do the enumeration of each block on a separate computer and this
allows a parallelisation of the minimum distance evaluation, as well as the counting
of the number of codewords of a given weight. We know that at the i th block, the
enumeration would start from rank (i − 1)M , and the corresponding pattern can be
easily obtained following (5.6) and Lemma 5.1 below.

All atat−1 . . . a2a1 revolving-door patterns of Cs
t satisfy the property that if the

values in position at grow in an increasing order, then for fixed at , the values in
position at−1 grow in a decreasing order, moreover for fixed atat−1 the values in
position at−2 grow in an increasing order, and so on in an alternating order. This
behaviour is evident by observing all revolving-door patterns of C6

4 (left) and C7
5

(right) shown in Fig. 5.1.

5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes 113

From this figure, we can also observe that

Cs
t ⊃ Cs−1

t ⊃ . . . ⊃ Ct+1
t ⊃ Ct

t , (5.7)

and this suggests the following lemma.

Lemma 5.1 (Maximum and Minimum Ranks) Consider the atat−1 . . . a2a1
revolving-door combination pattern, if we consider patterns with fixed at , the maxi-
mum and minimum ranks of such pattern are respectively given by

(
at + 1

t

)
− 1 and

(
at
t

)
.

Example 5.2 (Maximum and Minimum Ranks) Say, if we consider all C6
4 revolving-

door combination patterns (left portion of Fig. 5.1) where a4 = 4. From Lemma 5.1,
we have a maximum rank of

(5
4

) − 1 = 4, and a minimum rank of
(4
4

) = 1. We can
see that these rank values are correct from Fig. 5.1.

Example 5.3 (The Revolving-Door Algorithm) Consider combinationsC7
5 generated

by the revolving-door algorithm, we would like to determine the rank of combina-
tion pattern 17. We know that the combination pattern takes the ordered form of
a5a4a3a2a1, where ai > ai−1. Starting from a5, which can takes values from 0 to
6, we need to find a5 such that the inequality

(a5
5

) ≤ 17 ≤ (a5+1
5

) − 1 is satisfied
(Lemma 5.1). It follows that a5 = 6 and using (5.6), we have

17 = Rank(6a4a3a2a1)

=
[(

6 + 1

5

)
− 1

]
− Rank(a4a3a2a1)

Rank(a4a3a2a1) = 20 − 17 = 3 .

Next, we consider a4 and as before, we need to find a4 ∈ {5, 4, 3, 2, 1, 0} such
that the inequality

(a4
4

) ≤ Rank(a4a3a2a1) ≤ (a4+1
4

) − 1 is satisfied. It follows that
a4 = 4 and from (5.6), we have

3 = Rank(4a3a2a1)

=
[(

4 + 1

4

)
− 1

]
− Rank(a3a2a1)

Rank(a3a2a1) = 4 − 3 = 1 .

Next, we need to find a3, which can only take a value less than 4, such that the
inequality

(a3
3

) ≤ Rank(a3a2a1) ≤ (a3+1
3

) − 1 is satisfied. It follows that a3 = 3 and

from (5.6), Rank(a2a1)=
[(3+1

3

) − 1
]

− 1 = 2.

114 5 Good Binary Linear Codes

So far we have 643a2a1, only a2 and a1 are unknown. Since a3 = 3, a2 can only
take a value less than 3. The inequality

(a2
2

) ≤ Rank(a2a1) ≤ (a2+1
2

) − 1 is satisfied

if a2 = 2 and correspondingly, Rank(a1)=
[(2+1

2

) − 1
]

− 2 = 0.

For the last case, the inequality
(a1
1

) ≤ Rank(a1) ≤ (a1+1
1

) − 1 is true if and
only if a1 = 0. Thus, we have 64320 as the rank 17 C7

5 revolving-door pattern.
Cross-checking this with Fig. 5.1, we can see that 64320 is indeed of rank 17.

From (5.6) and Example 5.3, we can see that given a rank N , where 0 ≤ N ≤(s
t

) − 1, we can construct an ordered pattern of Cs
t revolving-door combinations

atat−1 . . . a2a1, recursively. A software realisation of this recursive approach is given
in Algorithm 5.4.

Algorithm 5.4 Recursively Compute ai (Rank(aiai−1 . . . a2a1), i)
Input: i and Rank(ai ai−1 . . . a2a1)
Output: ai
1: Find ai , where 0 ≤ ai < ai+1, such that

(ai
i

) ≤ Rank(ai ai−1 . . . a2a1) ≤
[(ai+1

i

) − 1
]

2: if i > i then
3: Compute Rank(ai−1 . . . a2a1) =

[(ai+1
i

) − 1
]

− Rank(ai ai−1 . . . a2a1)

4: RecursiveCompute ai (Rank(ai−1 . . . a2a1), i − 1)
5: end if
6: return ai

5.3 Binary Cyclic Codes of Lengths 129 ≤ n ≤ 189

The minimum distance of all binary cyclic codes of lengths less than or equal to 99
has been determined by Chen [7, 8] and Promhouse et al. [21].

This was later extended to longer codes with the evaluation of the minimum
distance of binary cyclic codes of lengths from 101 to 127 by Schomaker et al.
[22]. We extend this work to include all cyclic codes of odd lengths from 129 to
189 in this book. The aim was to produce a Table of codes as a reference source
for the highest minimum distance, with the corresponding roots of the generator
polynomial, attainable by all cyclic codes over F2 of odd lengths from 129 to 189.
It is well known that the coordinate permutation σ : i → μi , where μ is an integer
relatively prime to n, produces equivalent cyclic codes [3, p. 141f]. With respect to
this property, we construct a list of generator polynomials g(x) of all inequivalent and
non-degenerate [16, p. 223f] cyclic codes of 129 ≤ n ≤ 189 by taking products of the
irreducible factors of xn − 1. Two trivial cases are excluded, namely g(x) = x + 1
and g(x) = (xn − 1)/(x + 1), since these codes have trivial minimum distance
and exist for any odd integer n. The idea is for each g(x) of cyclic codes of odd
length n; the systematic generator matrix is formed and the minimum distance of
the code is determined using Chen’s algorithm (Algorithm 5.3). However, due to
the large number of cyclic codes and the fact that we are only interested in those of

5.3 Binary Cyclic Codes of Lengths 129 ≤ n ≤ 189 115

largest minimum distance for given n and k, we include a threshold distance dth in
Algorithm 5.3. Say, for given n and k, we have a list of generator polynomials g(x) of
all inequivalent cyclic codes. Starting from the top of the list, theminimumdistance of
the corresponding cyclic code is evaluated. If a codeword of weight less than or equal
to dth is found during the enumeration, the computation is terminated immediately
and the next g(x) is then processed. The threshold dth , which is initialised with 0, is
updated with the largest minimum distance found so far for given n and k.

Table4.3 in Sect. 4.5 shows the highest attainable minimum distance of all binary
cyclic codes of odd lengths from 129 to 189. The number of inequivalent and non-
degenerate cyclic codes for a given odd integer n, excluding the two trivial cases
mentioned above, is denoted by NC .

Note that Table4.3 does not contain entries for primes n = 8m±3. This is because
for these primes, 2 is not a quadratic residue modulo n and hence, ord2(n) = n − 1.
As a consequence, xn−1 factors into two irreducible polynomials only, namely x+1
and (xn − 1)/(x + 1) which generate trivial codes. Let β be a primitive nth root of
unity, the roots of g(x) of a cyclic code (excluding the conjugate roots) are given
in terms of the exponents of β. The polynomial m(x) is the minimal polynomial of
β and it is represented in octal format with most significant bit on the left. That is,
m(x) = 166761, as in the case for n = 151, represents x15 + x14 + x13 + x11 +
x10 + x8 + x7 + x6 + x5 + x4 + 1.

5.4 Some New Binary Cyclic Codes Having Large
Minimum Distance

Constructing an [n, k] linear code possessing the largest minimum distance is one of
the main problems in coding theory. There exists a database containing the lower and
upper bounds of minimum distance of binary linear codes of lengths 1 ≤ n ≤ 256.
This database appears in [6] and the updated version is accessible online.5

The lower bound corresponds to the largest minimum distance for a given [n, k]q
code that has been found to date. Constructing codes which improves Brouwer’s
lower bounds is an on-going research activity in coding theory. Recently, Tables of
lower- and upper-bounds of not only codes over finite-fields, but also quantum error-
correcting codes, have been published by Grassl [12]. These bounds for codes over
finite-fields, which are derived fromMAGMA [5], appear to be more up-to-date than
those of Brouwer.

We have presented in Sect. 5.3, the highest minimum distance attainable by all
binary cyclic codes of odd lengths from 129 to 189 and found none of these cyclic
codes has larger minimum distance than the corresponding Brouwer’s lower bound
for the same n and k. The next step is to consider longer length cyclic codes, 191 ≤

5The database is available at http://www.win.tue.nl/~aeb/voorlincod.html.
Note that, since 12th March 2007, A. Brouwer has stopped maintaining his database and hence

it is no longer accessible. This database is now superseded by the one maintained by Grassl [12].

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://www.win.tue.nl/~aeb/voorlincod.html

116 5 Good Binary Linear Codes

n ≤ 255. For these lengths, unfortunately, we have not been able to repeat the
exhaustive approach of Sect. 5.3 in a reasonable amount of time. This is due to the
computation time to determine the minimum distance of these cyclic codes and also,
for some lengths (e.g. 195 and 255), there are a tremendous number of inequivalent
cyclic codes. Having said that, we can still search for improvements from lower rate
cyclic codes of these lengths for which the minimum distance computation can be
completed in a reasonable time. We have found many new cyclic codes that improve
Brouwer’s lower bound and before we present these codes, we should first consider
the evaluation procedure.

As before, let β be a primitive nth root of unity and let Λ be a set containing
all distinct (excluding the conjugates) exponents of β. The polynomial xn − 1 can
be factorised into irreducible polynomials fi (x) over F2, xn − 1 = ∏

i∈Λ fi (x).
For notational purposes, we denote the irreducible polynomial fi (x) as the minimal
polynomial of β i . The generator and parity-check polynomials, denoted by g(x) and
h(x) respectively, are products of fi (x). Given a set Γ ⊆ Λ, a cyclic code C which
has β i , i ∈ Γ , as the non-zeros can be constructed. This means the parity-check
polynomial h(x) is given by

h(x) =
∏
i∈Γ

fi (x)

and the dimension k of this cyclic code is
∑

i∈Γ deg(fi (x)), where deg(f (x)) denotes
the degree of f (x). Let Γ ′ ⊆ Λ\{0}, h′(x) = ∏

i∈Γ ′ fi (x) and h(x) = (1+ x)h′(x).
GivenC with parity-check polynomial h(x), there exists an [n, k−1, d ′] expurgated
cyclic code, C ′, which has parity-check polynomial h′(x). For this cyclic code,
wtH (c) ≡ 0 (mod 2) for all c ∈ C ′. For convenience, we call C the augmented
code of C ′.

Consider an [n, k − 1, d ′] expurgated cyclic code C ′, let the set Γ = {Γ1, Γ2,

. . . , Γr } where, for 1 ≤ j ≤ r , Γ j ⊆ Λ \ {0} and ∑
i∈Γ j

deg(fi (x)) = k − 1. For
eachΓ j ∈ Γ , we compute h′(x) and constructC ′. Having constructed the expurgated
code, the augmented code can be easily obtained as shownbelow.LetG be a generator
matrix of the augmented code C , and without loss of generality, it can be written as

G = G′

v

(5.8)

where G′ is a generator matrix of C ′ and the vector v is a coset of C ′ in C . Using
the arrangement in (5.8), we evaluate d ′ by enumerating codewords c ∈ C ′ from G′.
The minimum distance of C , denoted by d, is simply minc∈C ′ {d ′,wtH (c + v)} for
all codewords c enumerated. We follow Algorithm 5.3 to evaluate d ′. Let dBrouwer

5.4 Some New Binary Cyclic Codes Having Large Minimum Distance 117

and d ′
Brouwer denote the lower bounds of [6] for linear codes of the same length and

dimension as those of C and C ′ respectively. During the enumerations, as soon as
d ≤ dBrouwer and d ′ ≤ d ′

Brouwer , the evaluation is terminated and the next Γ j in Γ

is then processed. However, if d ≤ dBrouwer and d ′ > d ′
Brouwer , only the evaluation

for C is discarded. Nothing is discarded if both d ′ > d ′
Brouwer and d > dBrouwer .

This procedure continues until an improvement is obtained; or the set in Γ has been
exhausted, which means that there does not exist [n, k − 1] and [n, k] cyclic codes
which are improvements to Brouwer’s lower bounds. In cases where the minimum
distance computation is not feasible using a single computer, we switch to a parallel
version using grid computers.

Table5.1 presents the results of the search for new binary cyclic codes having
lengths 195 ≤ n ≤ 255. The cyclic codes in this table are expressed in terms of the
parity-check polynomial h(x), which is given in the last column by the exponents of
β (excluding the conjugates). Note that the polynomialm(x), which is given in octal
with the most significant bit on the left, is the minimal polynomial of β. In many
cases, the entries of C and C ′ are combined in a single row and this is indicated by
“a/b” where the parameters a and b are for C ′ and C , respectively. The notation
“[0]” indicates that the polynomial (1 + x) is to be excluded from the parity-check
polynomial of C ′.
Some of these tabulated cyclic codes have a minimum Hamming distance which
coincides with the lower bounds given in [12]. These are presented in Table5.1 with
the indicative mark “†”.

In the late 1970s, computing theminimumdistance of extendedQuadraticResidue
(QR) codeswas posed as an open research problem byMacWilliams and Sloane [16].
Since then, the minimum distance of the extended QR code for the prime 199 has
remained an open question. For this code, the bounds of the minimum distance were
given as 16 − 32 in [16] and the lower bound was improved to 24 in [9]. Since
199 ≡ −1 (mod 8), the extended code is a doubly even self-dual code and its
automorphism group contains a projective special linear group, which is known to
be doubly transitive [16]. As a result, the minimum distance of the binary [199, 100]
QR code is odd, i.e. d ≡ 3 (mod 4), and hence, d = 23, 27 or 31. Due to the cyclic
property and the rate of this QR code [7], we can safely assume that a codeword
of weight d has maximum information weight of �d/2�. If a weight d codeword
does not satisfy this property, there must exist one of its cyclic shifts that does. After
enumerating all codewords up to (and including) information weight 13 using grid
computers, no codeword of weight less than 31 was found, implying that d of this
binary [199, 100] QR code is indeed 31.

Without exploiting the property that d ≡ 3 (mod 4), an additional
(100
14

) + (100
15

)
codewords (88,373,885,354,647,200 codewords) would need to be enumerated in
order to establish the same result and beyond available computer resources. Accord-
ingly, we now know that there exists the [199, 99, 32] expurgated QR code and the
[200, 100, 32] extended QR code.

It is interesting to note that many of the code improvements are contributed by
low-rate cyclic codes of length 255 and there are 16 cases of this. Furthermore, it is
also interesting that Table5.1 includes a [255, 55, 70] cyclic code and a [255, 63, 65]

118 5 Good Binary Linear Codes

Table 5.1 New binary cyclic codes
[m(x)]8 n k d dBrouwer h(x)

17277 195 † 66/67 42/41 40/40 [0], 3, 5, 9, 19, 39, 65, 67
† 68/69 40/39 39/38 [0], 1, 3, 13, 19, 35, 67, 91
† 73 38 37 0, 3, 7, 19, 33, 35, 47
† 74/75 38/37 36/36 [0], 3, 7, 19, 33, 35, 47, 65
78 36 35 3, 7, 9, 11, 19, 35, 39, 65

13237042705- 199 99/100 32/31 28/28 [0], 1
30057231362-

555070452551

6727273 205 † 60 48 46 5, 11, 31
† 61 46 44 0, 3, 11, 31

3346667657 215 70/71 46/46 44/44 [0], 3, 13, 35
3705317547055 223 74/75 48/47 46/45 [0], 5, 9
3460425444467- 229 76 48 46 1

7544446504147

6704436621 233 † 58/59 60/60 56/56 [0], 3, 29
150153013 241 † 49 68 65 0, 1, 21

73 54 53 0, 1, 3, 25

435 255 48/49 76/75 75/72 [0], 47, 55, 91, 95, 111, 127
50/51 74/74 72/72 [0], 9, 13, 23, 47, 61, 85, 127
52/53 72/72 71/68 [0], 7, 9, 17, 47, 55, 111, 127
54/55 70/70 68/68 [0], 3, 7, 23, 47, 55, 85, 119, 127
56/57 68/68 67/65 [0], 7, 27, 31, 45, 47, 55, 127
58 66 64 7, 39, 43, 45, 47, 55, 85, 127

60 66 64 7, 17, 23, 39, 45, 47, 55, 127

62/63 66/65 64/63 [0], 11, 21, 47, 55, 61, 85, 87, 119, 127
64/65 64/63 62/62 [0], 19, 31, 39, 47, 55, 63, 91, 127

cyclic code, which are superior to the BCH codes of the same length and dimension.
Both of these BCH codes have minimum distance 63 only.

5.5 Constructing New Codes from Existing Ones

It is difficult to explicitly construct a new code with large minimum distance. How-
ever, the alternative approach,which starts fromaknowncodewhich alreadyhas large
minimum distance, seems to be more fruitful. Some of these methods are described
below and in the following subsections, we present some new binary codes con-
structed using these methods, which improve on Brouwer’s lower bound.

Theorem 5.1 (Construction X) Let B1 and B2 be [n, k1, d1] and [n, k2, d2] linear
codes over Fq respectively, where B1 ⊃ B2 (B2 is a subcode of B1). Let A

5.5 Constructing New Codes from Existing Ones 119

be an [n′, k3 = k1 − k2, d ′] auxiliary code over the same field. There exists an
[n + n′, k1,min{d2, d1 + d ′}] code CX over Fq .

Construction X is due to Sloane et al. [23] and it basically adds a tail, which is a
codeword of the auxiliary codeA , toB1 so that the minimum distance is increased.
The effect of Construction X can be visualised as follows. Let GC be the generator
matrix of code C . Since B1 ⊃ B2, we may express GB1 as

GB1 =

⎡
⎢⎢⎣ GB2

V

⎤
⎥⎥⎦ ,

where V is a (k1 −k2)×n matrix which contains the cosets ofB2 inB1. We can see
that the code generated by GB2 has minimum distance d2, and the set of codewords
{v + c2}, for all v ∈ V and all codewords c2 generated by GB2 , have minimum
weight of d1. By appending non-zero weight codewords of A to the set {v + c2},
and all zeros codeword to each codeword ofB2, we have a lengthened code of larger
minimum distance, CX , whose generator matrix is given by

GCX =

⎡
⎢⎢⎣ GB2 0

V GA

⎤
⎥⎥⎦ . (5.9)

We can see that, for binary cyclic linear codes of odd minimum distance, code
extension by annexing an overall parity-check bit is an instance of Construction X.
In this case, B2 is the even-weight subcode of B1 and the auxiliary code A is the
trivial [1, 1, 1]2 code.

Construction X given in Theorem5.1 considers a chain of two codes only. There
also exists a variant of Construction X, called Construction XX, which makes use of
Construction X twice and it was introduced by Alltop [1].

Theorem 5.2 (Construction XX) Consider three linear codes of the same length,
B1 = [n, k1, d1], B2 = [n, k2, d2] and B3 = [n, k3, d3] where B2 ⊂ B1 and
B3 ⊂ B1. Let B4 be an [n, k4, d4] linear code which is the intersection code of
B2 and B3, i.e. B4 = B2 ∩ B3. Using auxiliary codes A1 = [n1, k1 − k2, d ′

1] and
A2 = [n2, k1 − k3, d ′

2], there exists an [n + n1 + n2, k1, d] linear code CXX , where
d = min{d4, d3 + d ′

1, d2 + d ′
2, d1 + d ′

1 + d ′
2}.

The relationship amongB1,B2,B3 andB4 can be illustrated as a lattice shown
below [11].

120 5 Good Binary Linear Codes

Since B1 ⊃ B2, B1 ⊃ B3, B4 ⊂ B2 and B4 ⊂ B3, the generator matrices of
B2, B3 and B1 can be written as

GB2 =

⎡
⎢⎢⎣ GB4

V2

⎤
⎥⎥⎦ , GB3 =

⎡
⎢⎢⎣ GB4

V3

⎤
⎥⎥⎦

and GB1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

GB4

V2

V3

V

⎤
⎥⎥⎥⎥⎥⎥⎦

respectively, where V i , i = 2, 3, is the coset of B4 in Bi , and V contains the
cosets of B2 and B3 in B1. Construction XX starts by applying Construction X to
the pair of codes B1 ⊃ B2 using A1 as the auxiliary code. The resulting code is
CX = [n + n1, k1,min{d2, d1 + d ′

1}], whose generator matrix is given by

GCX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

GB4 0

V2

V3

V
GA1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

This generator matrix can be rearranged such that the codewords formed from the
first n coordinates are cosets ofB3 inB1. This rearrangement results in the following
generator matrix of CX ,

GCX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

GB4 0

V3 G(1)
A1

V2 0
V G(2)

A1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

5.5 Constructing New Codes from Existing Ones 121

where GA1 =
[
G(1)

A1

G(2)
A1

]
. Next, usingA2 as the auxiliary code, applying Construction

X to the pairB1 ⊃ B3 with the rearrangement above,weobtainCXX whosegenerator
matrix is

GCXX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

GB4 0 0

V3 G(1)
A1

V2 0

V G(2)
A1

GA2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

While Constructions X and XX result in a code with increased length, there also
exists a technique to obtain a shorter code with known minimum distance lower
bounded from a longer code whose minimum distance and also that of its dual code
are known explicitly. This technique is due to Sloane et al. [23] and it is called
Construction Y1.

Theorem 5.3 (Construction Y1) Given an [n, k, d] linear code C , which has an
[n, n − k, d⊥] C ⊥ as its dual, an [n − d⊥, k − d⊥ + 1,≥ d] code C ′ can be
constructed.

Given an [n, k, d] code, with standard code shortening, we obtain an [n− i, k− i,
≥ d] code where i indicates the number of coordinates to shorten.With Construction
Y1, however, we can gain an additional dimension in the resulting shortened code.
This can be explained as follows. Without loss of generality, we can assume the
parity-check matrix of C , which is also the generator matrix of C ⊥, H contains
a codeword c⊥ of weight d⊥. If we delete the coordinates which form the support
of c⊥ from H , now H becomes an (n − k) × n − d⊥ matrix and there is a row
which contains all zeros among these n − k rows. Removing this all zeros row, we
have an (n − k − 1) × (n − d⊥) matrix H ′, which is the parity-check matrix of an
[n − d⊥, n − d⊥ − (n − k − 1),≥ d] = [n − d⊥, k − d⊥ + 1,≥ d] code C ′.

5.5.1 New Binary Codes from Cyclic Codes of Length 151

Amongst all of the cyclic codes in Table4.3, those of length 151 have minimum
distances that were found to have the highest number of matches against Brouwer’s
[6] lower bounds. This shows that binary cyclic codes of length 151 are indeed good
codes. Since 151 is a prime, cyclic codes of this length are special as all of the
irreducible factors of x151 − 1, apart from 1 + x , have a fixed degree of 15. Having
a fixed degree implies that duadic codes [14], which includes the quadratic residue
codes, also exist for this length. Due to their large minimum distance, they are good
candidate component codes for Constructions X and XX.

http://dx.doi.org/10.1007/978-3-319-51103-0_4

122 5 Good Binary Linear Codes

Table 5.2 Order of β in an optimum chain of [151, ki , di] cyclic codes
i ki di Roots of g(x), excluding conjugate roots

1 150 2 β0

2 135 6 β0 β1

3 120 8 β0 β1 β3

4 105 14 β0 β1 β3 β5

5 90 18 β0 β1 β3 β5 β11

6 75 24 β0 β1 β3 β5 β11 β15

7 60 32 β0 β1 β3 β5 β11 β15 β37

8 45 36 β0 β1 β3 β5 β11 β15 β23 β37

9 30 48 β0 β1 β3 β5 β11 β15 β23 β35 β37

10 15 60 β0 β1 β3 β5 β7 β11 β15 β23 β35 β37

Definition 5.2 (Chain of Cyclic Codes) A pair of cyclic codes, C1 = [n, k1, d1]
and C2 = [n, k2, d2] where k1 > k2, is nested, denoted C1 ⊃ C2, if all roots of
C1 are contained in C2. Here, the roots refer to those of the generator polynomial.
By appropriate arrangement of their roots, cyclic codes of the same length may be
partitioned into a sequence of cyclic codes C1 ⊃ C2 ⊃ . . . ⊃ Ct . This sequence of
codes is termed a chain of cyclic codes.

Given all cyclic codes of the same length, it is important to order the roots of
these cyclic codes so that an optimum chain can be obtained. For all cyclic codes of
length 151 given in Table4.3, whose generator polynomial contains 1+ x as a factor,
an ordering of roots (excluding the conjugate roots) shown in Table5.2 results in
an optimum chain arrangement. Here β is a primitive 151st root of unity. Similarly,
a chain which contains cyclic codes, whose generator polynomial does not divide
1 + x , can also be obtained.

All the constituent codes in the chainC1 ⊃ C2 ⊃ . . . ⊃ C10 of Table5.2 are cyclic.
Following Grassl [10], a chain of non-cyclic subcodes may also be constructed from
a chain of cyclic codes. This is because for a given generator matrix of an [n, k, d]
cyclic code (not necessarily in row-echelon form), removing the last i rows of this
matrix will produce an [n, k − i,≥ d] code which will no longer be cyclic. As
a consequence, with respect to Table5.2, there exists [151, k, d] linear codes, for
15 ≤ k ≤ 150.

Each combination of pairs of codes in the [151, k, d] chain is a nested pair which
can be used as component codes for Construction X to produce another linear code
with increased distance. There is a chance that the minimum distance of the resulting
linear code is larger than that of the best-known codes for the same length and
dimension. In order to find the existence of such cases, the following exhaustive
approach has been taken. There are

(150−15+1
2

) = (136
2

)
distinct pair of codes in the

above chain of linear codes, and each pair sayC1 = [n, k1, d1] ⊃ C2 = [n, k2, d1], is
combined usingConstructionXwith an auxiliary codeA , which is an [n′, k1−k2, d ′]
best-known linear code. The minimum distance of the resulting code CX is then

http://dx.doi.org/10.1007/978-3-319-51103-0_4

5.5 Constructing New Codes from Existing Ones 123

compared to that of the best-known linear code for the same length and dimension
to check for a possible improvement. Two improvements were obtained and they are
tabulated in in the top half of Table5.3.

In the case where k1 − k2 is small, the minimum distance of C1, i.e. d1, obtained
from a chain of linear codes, can be unsatisfactory.We can improve d1 by augmenting
C1 with a vector v of length n, i.e. add v as an additional row inGC2 . In finding a vector
v that can maximise the minimum distance of the enlarged code, we have adopted
the following procedure. Choose a code C2 = [n, k2, d2] that has sufficiently high
minimum distance.

Assuming that GC2 is in reduced-echelon format, generate a vector v which sat-
isfies the following conditions:

1. vi = 0 for 0 ≤ i ≤ k − 1 where vi is the i th element of v,
2. wtH (v) > d1, and
3. wtH (v+Gr) > d1 for all r ∈ {0, 1, . . . , k2 −1} where GC2,r denotes the r th row

of GC2 .

The vector v is then appended to GC2 as an additional row. Theminimum distance
of the resulting code is computed using Algorithm 5.1. A threshold is applied during
the minimum distance evaluation and a termination is called whenever: dub ≤ d1, in
which case a different v is chosen and Algorithm 5.1 is restarted; or d1 < dub ≤ dlb
which means that an improvement has been found.

Using this approach, we found two new linear codes, [151, 77, 20] and
[151, 62, 27], which have higher minimum distance than the corresponding codes
obtained from a chain of nested cyclic codes. These two codes are obtained start-
ing from the cyclic code [151, 76, 23]–which has roots {β, β5, β15, β35, β37} and the
cyclic code [151, 61, 31]–which has roots {β, β3, β5, β11, β15, β37}, respectively and
therefore

[151, 77, 20] ⊃ [151, 76, 23]

and
[151, 62, 27] ⊃ [151, 61, 31].

The second half of Table5.3 shows the foundation codes for these new codes.
Note that when searching for the [151, 62, 27] code, we exploited the property

that the [152, 61, 32] code obtained by extending the [151, 61, 31] cyclic code is
doubly even. We chose the additional vector v such that extending the enlarged
code [151, 62, d1] yields again a doubly even code. This implies the congruence
d1 = 0, 3 mod 4 for theminimumdistance of the enlarged code.Hence, it is sufficient
to establish a lower bound dlb = 25 using Algorithm 5.1 to show that d1 ≥ 27.

Furthermore, we also derived two different codes, C2 = [151, 62, 27] ⊂ C1

and C3 = [151, 62, 27] ⊂ C1, where C1 = [151, 63, 23] and C4 = C2 ∩ C3 =
[151, 61, 31]. UsingConstructionXX, a [159, 63, 31] code is obtained, see Table5.4.

124 5 Good Binary Linear Codes

Table 5.3 New binary codes from Construction X and cyclic codes of length 151

C1 C2 A CX

Using chain of linear codes

[151,72,24] [151,60,32] [23,12,7] [174,72,31]

[151,60,32] [151,45,36] [20,15,3] [171,60,35]

Using an improved subcode

[151,77,20] [151,76,23] [3,1,3] [154,77,23]

[151,62,27] [151,61,31] [4,1,4] [155,62,31]

Table 5.4 New binary code from Construction XX and cyclic codes of length 151

C1 C2 C3 C4 = C2 ∩ C3 A1 A2 CXX

[151, 63, 23] [151, 62, 27] [151, 62, 27] [151, 61, 31] [4, 1, 4] [4, 1, 4] [159, 63, 31]

5.5.2 New Binary Codes from Cyclic Codes of Length ≥ 199

We know from Table5.1 that there exists an outstanding [199, 100, 31] cyclic
code. The extended code, obtained by annexing an overall parity-check bit, is a
[200, 100, 32] doubly even self-dual code. As the name implies, being self-dual
we know that the dual code has minimum distance 32. By using Construction Y1
(Theorem 5.3), a [168, 69, 32] new, improved binary code is obtained. Theminimum
distance of the [168, 69] previously considered best-known binary linear code is 30.

Considering cyclic codes of length 205, in addition to a [205, 61, 46] cyclic
code (see Table5.1), there also exists a [205, 61, 45] cyclic code which contains
a [205, 60, 48] cyclic code as its even-weight subcode. Applying Construction X
(Theorem 5.1) to the [205, 61, 45] ⊃ [205, 60, 48] pair of cyclic codes with a repe-
tition code of length 3 as the auxiliary code, a [208, 61, 48] new binary linear code
is constructed, which improves Brouwer’s lower bound distance by 2.

Furthermore, by analysing the dual codes of the [255, 65, 63] cyclic code in
Table5.1 and its [255, 64, 64] even weight subcode it was found that both have
minimum distance of 8. Applying Construction Y1 (Theorem 5.3), we obtain the
[247, 57, 64] and the [247, 58, 63] new binary linear codes, which improves on
Brouwer’s lower bound distances by 2 and 1, respectively.

5.6 Concluding Observations on Producing New Binary
Codes

In the search for error-correcting codes with large minimum distance, having a fast,
efficient algorithm to compute the exact minimum distance of a linear code is impor-
tant. The evolution of various algorithms to evaluate theminimumdistance of a binary

5.6 Concluding Observations on Producing New Binary Codes 125

linear code, from the naive approach to Zimmermann’s efficient approach, have been
explored in detail. In addition to these algorithms, Chen’s approach in computing
the minimum distance of binary cyclic codes is a significant breakthrough.

The core basis of a minimum distance evaluation algorithm is codeword enumer-
ation. As we increase the weight of the information vector, the number of codewords
grows exponentially. Zimmermann’s very useful algorithm may be improved by
omitting generator matrices with overlapping information sets that never contribute
to the lower bound throughout the enumeration. Early termination is important in
the event that a new minimum distance is found that meets the lower bound value of
the previous enumeration step. In addition, if the code under consideration has the
property that every codeword weight is divisible by 2 or 4, the number of codewords
that need to be enumerated can be considerably reduced.

With some simple modifications, these algorithms can also be used to collect and
hence, count all codewords of a given weight to determine all or part of the weight
spectrum of a code.

Given a generator matrix, codewordsmay be efficiently generated by taking linear
combinations of rows of this matrix. This implies the faster we can generate the
combinations, the less time the minimum distance evaluation algorithm will take.
One such efficient algorithm to generate these combinations is called the revolving-
door algorithm. The revolving-door algorithm has a nice property that allows the
problem of generating combinations to be readily implemented in parallel. Having
an efficient minimum distance computation algorithm, which can be computed in
parallel on multiple computers has allowed us to extend earlier research results [8,
21, 22] in the evaluation of the minimum distance of cyclic codes. In this way, we
obtained the highest minimum distance attainable by all binary cyclic codes of odd
lengths from 129 to 189. We found that none of these cyclic codes has a minimum
distance that exceeds the minimum distance of the best-known linear codes of the
same length and dimension, which are given as lower bounds in [6]. However there
are 134 cyclic codes that meet the lower bounds, see Sect. 5.3 and encoders and
decoders may be easier to implement for the cyclic codes.

Having an efficient, multiple computer based, minimum distance computation
algorithm also allowed us to search for the existence of binary cyclic codes of length
longer than 189 which are improvements to Brouwer’s lower bounds. We found 35
of these cyclic codes, namely

[195, 66, 42], [195, 67, 41], [195, 68, 40], [195, 69, 39], [195, 73, 38], [195, 74, 38],
[195, 75, 37], [195, 78, 36], [199, 99, 32], [199, 100, 32], [205, 60, 48], [205, 61, 46],
[215, 70, 46], [215, 71, 46], [223, 74, 48], [223, 75, 47], [229, 76, 48], [233, 58, 60],
[233, 59, 60], [255, 48, 76], [255, 49, 75], [255, 50, 74], [255, 51, 74], [255, 52, 72],
[255, 53, 72], [255, 54, 70], [255, 55, 70], [255, 56, 68], [255, 57, 68], [255, 58, 66],
[255, 60, 66], [255, 62, 66], [255, 63, 65], [255, 64, 64], [255, 65, 63].

From the cyclic codes above, using Construction X to lengthen the code or Con-
struction Y1 to shorten the code, four additional improvements to [6] lower bound
are found, namely

126 5 Good Binary Linear Codes

Ta
bl
e
5.
5

U
pd
at
ed

m
in
im

um
di
st
an
ce

lo
w
er

bo
un
ds

of
lin

ea
r
co
de
s
C

=
[n,

k]
fo
r
15
3

≤
n

≤
17
4
an
d
58

≤
k

≤
77

n\
k

58
59

60
61

62
63

64
65

66
67

68
69

70
71

72
73

74
75

76
77

k/
n

15
3

32
32

32
32

29
P

28
28

27
26

26
26

26
25

24
24

24
24

24
24

22
15
3

15
4

32
32

32
32

30
P

28
28

28
27

26
26

26
26

24
24

24
24

24
24

23
X

15
4

15
5

32
32

32
32

31
X

28
28

28
28

27
26

26
26

25
24

24
24

24
24

24
E

15
5

15
6

32
32

32
32

32
E

28
28

28
28

28
27

26
26

26
25

24
24

24
24

24
E

15
6

15
7

32
32

32
32

32
E

29
28

28
28

28
28

26
26

26
26

24
24

24
24

24
E

15
7

15
8

32
32

32
32

32
E

30
29

28
28

28
28

26
26

26
26

25
24

24
24

24
15
8

15
9

32
32

32
32

32
E

31
X
X

30
29

28
28

28
27

26
26

26
26

25
24

24
24

15
9

16
0

32
32

32
32

32
E

32
E

30
30

28
28

28
28

26
26

26
26

26
25

24
24

16
0

16
1

32
32

32
32

32
E

32
E

30
30

29
28

28
28

27
26

26
26

26
26

25
24

16
1

16
2

33
32

32
32

32
32

E
31

S
30

30
29

28
28

28
27

26
26

26
26

26
24

16
2

16
3

34
33

32
32

32
32

32
S

31
S

30
30

29
28

28
28

27
26

26
26

26
25

16
3

16
4

34
34

33
32

32
32

32
32

S
31

S
30

30
29

28
28

28
27

26
26

26
26

16
4

16
5

34
34

34
33

32
32

32
32

32
S

31
S

30
30

28
28

28
28

27
26

26
26

16
5

16
6

34
34

34
34

32
32

32
32

32
S

32
S

31
S

30
28

28
28

28
28

27
26

26
16
6

16
7

34
34

34
34

32
32

32
32

32
S

32
S

32
S

31
P

29
28

28
28

28
28

27
26

16
7

16
8

34
34

34
34

32
32

32
32

32
S

32
S

32
S

32
Y
1

30
29

S
28

28
28

28
28

26
16
8

16
9

35
S

34
34

34
32

32
32

32
32

E
32

S
32

S
32

E
31

S
30

S
29

S
28

28
28

28
27

16
9

17
0

36
E

35
S

34
34

33
32

32
32

32
32

E
32

S
32

E
32

S
31

S
30

S
29

S
28

28
28

28
17
0

17
1

36
36

E
35

X
34

34
33

32
32

32
32

32
E

32
E

32
S

32
S

31
S

30
S

29
S

28
28

28
17
1

17
2

36
36

36
E

34
34

34
33

32
32

32
32

32
E

32
S

32
S

32
S

31
S

30
S

29
S

28
28

17
2

17
3

36
36

36
35

34
34

34
33

32
32

32
32

32
E

32
S

32
S

32
S

31
S

30
S

29
S

28
17
3

17
4

36
36

36
36

34
34

34
34

32
32

32
32

32
32

E
32

S
32

S
32

S
31

S
30

S
29

S
17
4

5.6 Concluding Observations on Producing New Binary Codes 127

Ta
bl
e
5.
6

U
pd
at
ed

m
in
im

um
di
st
an
ce

lo
w
er

bo
un
ds

of
lin

ea
r
co
de
s
C

=
[n,

k]
fo
r
17
5

≤
n

≤
22
4
an
d
56

≤
k

≤
78

n\
k

56
57

58
59

60
61

62
63

64
65

66
67

68
69

70
71

72
73

74
75

76
77

78
k/

n

17
5

38
36

36
36

36
36

34
34

34
34

33
32

32
32

32
32

E
32

E
32

S
32

S
32

S
31

S
30

S
29

S
17
5

17
6

38
37

36
36

36
36

35
34

34
34

34
33

32
32

32
32

32
E

32
S

32
S

32
S

32
S

31
S

30
S

17
6

17
7

38
38

37
36

36
36

36
35

34
34

34
34

33
32

32
32

32
32

S
32

S
32

S
32

S
32

S
31

S
17
7

17
8

38
38

38
37

36
36

36
36

35
34

34
34

34
33

32
32

32
32

32
S

32
S

32
S

32
S

32
S

17
8

17
9

39
38

38
38

37
36

36
36

36
35

34
34

34
34

33
32

32
32

32
32

S
32

S
32

S
32

S
17
9

18
0

40
38

38
38

38
36

36
36

36
36

34
34

34
34

34
32

32
32

32
32

32
S

32
S

32
S

18
0

18
1

40
39

38
38

38
37

36
36

36
36

35
34

34
34

34
33

32
32

32
32

32
S

32
S

32
S

18
1

18
2

40
40

39
38

38
38

37
36

36
36

36
35

34
34

34
34

33
32

32
32

32
32

S
32

S
18
2

18
3

40
40

40
39

38
38

38
37

36
36

36
36

35
34

34
34

34
33

32
32

32
32

32
S

18
3

18
4

41
40

40
40

39
38

38
38

37
36

36
36

36
35

34
34

34
34

33
32

32
32

32
18
4

18
5

42
41

S
40

40
40

38
38

38
38

37
36

36
36

36
35

34
34

34
34

33
32

32
32

18
5

18
6

42
42

S
41

S
40

40
39

38
38

38
38

37
36

36
36

36
34

34
34

34
34

32
32

32
18
6

18
7

42
42

42
S

41
S

40
40

39
38

38
38

38
37

36
36

36
35

34
34

34
34

33
32

32
18
7

18
8

42
42

42
42

S
41

S
40

40
39

38
38

38
38

37
36

36
36

35
34

34
34

34
33

32
18
8

18
9

43
42

42
42

42
S

41
S

40
40

39
38

38
38

38
37

36
36

36
35

34
34

34
34

33
18
9

19
0

44
42

42
42

42
42

S
41

S
40

40
38

38
38

38
38

37
S

36
36

36
35

34
34

34
34

19
0

19
1

44
43

42
42

42
42

42
S

41
S

40
39

38
38

38
38

38
S

37
S

36
36

36
35

34
34

34
19
1

19
2

44
44

43
42

42
42

42
42

S
41

S
40

39
P

38
38

38
38

38
S

37
S

36
36

36
35

S
34

34
19
2

19
3

44
44

44
43

42
42

42
42

42
S

41
S

40
P

39
P

38
38

38
38

S
38

S
37

S
36

36
36

S
35

S
34

19
3

19
4

44
44

44
44

43
42

42
42

42
42

S
41

P
40

P
39

P
38

38
38

38
S

38
S

37
P

36
36

36
S

35
P

19
4

19
5

44
44

44
44

44
43

42
42

42
42

42
C

41
C

40
C

39
C

38
38

38
38

C
38

C
37

C
36

36
36

C
19
5

19
6

44
44

44
44

44
44

42
42

42
42

42
E

42
E

40
40

E
38

38
38

38
38

E
38

E
36

36
36

19
6

19
7

45
44

44
44

44
44

42
42

42
42

42
E

42
E

40
40

39
38

38
38

38
38

E
36

36
36

19
7

19
8

46
44

44
44

44
44

42
42

42
42

42
E

42
E

40
40

40
38

38
38

38
38

36
36

36
19
8

19
9

46
45

S
44

44
44

44
43

42
42

42
42

E
42

E
40

40
40

38
38

38
38

38
36

36
36

19
9

(c
on
tin

ue
d)

128 5 Good Binary Linear Codes

Ta
bl
e
5.
6

(c
on
tin

ue
d)

n\
k

56
57

58
59

60
61

62
63

64
65

66
67

68
69

70
71

72
73

74
75

76
77

78
k/

n

20
0

47
S

46
S

45
S

44
44

44
44

42
42

42
42

E
42

E
40

40
40

38
38

38
38

38
37

36
36

20
0

20
1

48
S

47
S

46
S

45
S

44
44

44
42

42
42

42
42

E
40

40
40

38
38

38
38

38
38

37
36

20
1

20
2

48
S

48
S

47
S

46
S

45
P

44
44

43
42

42
42

42
E

40
40

40
39

38
38

38
38

38
38

37
20
2

20
3

48
S

48
S

48
S

47
S

46
P

44
44

44
43

42
42

42
E

40
40

40
40

39
38

38
38

38
38

38
20
3

20
4

48
S

48
S

48
S

48
S

47
P

45
P

44
44

44
43

42
42

41
40

40
40

40
39

38
38

38
38

38
20
4

20
5

48
48

S
48

S
48

S
48

C
46

C
45

S
44

44
44

42
42

42
41

40
40

40
40

39
38

38
38

38
20
5

20
6

48
48

S
48

S
48

S
48

E
46

E
46

S
45

S
44

44
43

42
42

42
41

40
40

40
40

39
38

38
38

20
6

20
7

48
48

48
S

48
S

48
E

47
P

46
S

46
S

45
S

44
44

43
42

42
42

41
40

40
40

40
38

38
38

20
7

20
8

48
48

48
48

S
48

E
48

X
46

46
S

46
S

45
S

44
44

43
42

42
42

41
40

40
40

39
38

38
20
8

20
9

49
48

48
48

48
E

48
E

46
46

46
S

46
S

45
S

44
44

43
42

42
42

41
40

40
40

39
38

20
9

21
0

50
48

48
48

48
48

E
47

S
46

46
46

S
46

S
45

S
44

44
43

42
42

42
40

40
40

40
39

21
0

21
1

50
49

48
48

48
48

E
48

S
47

S
46

46
S

46
S

46
S

45
S

44
44

43
42

42
41

40
40

40
40

21
1

21
2

50
50

49
48

48
48

48
S

48
S

47
S

46
46

S
46

S
46

S
45

S
44

44
43

42
42

41
40

40
40

21
2

21
3

50
50

50
49

48
48

48
48

S
48

S
47

S
46

46
S

46
S

46
S

45
S

44
44

43
42

42
41

40
40

21
3

21
4

51
50

50
50

49
48

48
48

48
S

48
S

47
S

46
46

S
46

S
46

S
45

P
44

44
43

42
42

41
40

21
4

21
5

52
50

50
50

50
48

48
48

48
48

S
48

S
47

S
46

46
S

46
C

46
C

44
44

44
43

42
42

40
21
5

21
6

52
51

50
50

50
49

48
48

48
48

S
48

S
48

S
47

S
46

S
46

E
46

E
44

44
44

44
43

42
41

21
6

21
7

52
52

51
50

50
50

49
48

48
48

48
S

48
S

48
S

47
S

46
E

46
E

44
44

44
44

44
43

42
21
7

21
8

52
52

52
51

50
50

50
49

48
48

48
48

S
48

S
48

S
47

S
46

E
45

S
44

44
44

44
44

43
21
8

21
9

53
52

52
52

51
50

50
50

49
48

48
48

48
S

48
S

48
S

47
S

46
S

45
S

44
44

44
44

44
21
9

22
0

54
52

52
52

52
50

50
50

50
48

48
48

48
48

S
48

S
48

S
47

S
46

S
45

P
44

44
44

44
22
0

22
1

54
53

52
52

52
51

50
50

50
49

48
48

48
48

S
48

S
48

S
48

S
47

S
46

P
45

P
44

44
44

22
1

22
2

54
54

53
52

52
52

51
50

50
50

49
48

48
48

48
S

48
S

48
S

48
S

47
P

46
P

44
44

44
22
2

22
3

54
54

54
53

52
52

52
51

50
50

50
49

48
48

48
48

S
48

S
48

S
48

C
47

C
44

44
44

22
3

22
4

55
54

54
54

53
52

52
52

51
50

50
50

49
48

48
48

48
S

48
S

48
E

48
E

45
44

44
22
4

5.6 Concluding Observations on Producing New Binary Codes 129

Ta
bl
e
5.
7

U
pd
at
ed

m
in
im

um
di
st
an
ce

lo
w
er

bo
un
ds

of
lin

ea
r
co
de
s
C

=
[n,

k]
fo
r
17
5

≤
n

≤
22
4
an
d
79

≤
k

≤
10
0

n\
k

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
10
0

k/
n

17
5

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

22
22

22
21

17
5

17
6

29
S

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

22
22

22
17
6

17
7

30
S

29
S

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

22
22

17
7

17
8

31
S

30
S

29
S

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

22
17
8

17
9

32
S

31
S

30
S

29
S

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

17
9

18
0

32
S

32
S

31
S

30
S

29
S

28
28

28
26

26
26

26
26

24
24

24
24

24
23

22
22

22
18
0

18
1

32
S

32
S

32
S

31
S

30
S

29
S

28
28

27
26

26
26

26
25

24
24

24
24

24
23

22
22

18
1

18
2

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
28

27
26

26
26

26
25

24
24

24
24

24
23

22
18
2

18
3

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
28

27
26

26
26

26
25

24
24

24
24

24
23

18
3

18
4

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
28

27
26

26
26

26
25

24
24

24
24

24
18
4

18
5

32
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

28
27

26
26

26
26

25
24

24
24

24
18
5

18
6

32
32

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
28

26
26

26
26

26
24

24
24

24
18
6

18
7

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

27
26

26
26

26
25

24
24

24
18
7

18
8

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
27

26
26

26
26

25
24

24
18
8

18
9

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

27
26

26
26

26
25

24
18
9

19
0

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
27

26
26

26
26

25
19
0

19
1

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

27
26

26
26

26
19
1

19
2

34
34

32
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
27

S
26

26
26

19
2

19
3

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
S

27
S

26
26

19
3

19
4

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

S
27

P
26

19
4

19
5

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
P

27
P

19
5

19
6

35
34

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

P
28

P
19
6

19
7

36
35

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
P

29
P

19
7

19
8

36
36

34
34

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
31

P
30

P
19
8

19
9

36
36

34
34

34
34

34
34

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
32

C
31

C
19
9

(c
on
tin

ue
d)

130 5 Good Binary Linear Codes

Ta
bl
e
5.
7

(c
on
tin

ue
d)

n\
k

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
10
0

k/
n

20
0

36
36

35
34

34
34

34
34

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
32

E
32

E
20
0

20
1

36
36

36
34

34
34

34
34

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
32

E
32

E
20
1

20
2

36
36

36
34

34
34

34
34

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
32

E
32

E
20
2

20
3

37
36

36
35

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

32
E

32
E

20
3

20
4

38
37

36
36

35
34

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

E
32

E
20
4

20
5

38
38

37
36

36
35

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
E

32
E

20
5

20
6

38
38

38
37

36
36

35
34

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

E
32

E
20
6

20
7

38
38

38
38

37
36

36
35

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
E

32
E

20
7

20
8

38
38

38
38

38
37

36
36

34
34

34
34

34
32

32
32

32
32

32
S

32
S

32
E

32
E

20
8

20
9

38
38

38
38

38
38

37
36

35
34

34
34

34
32

32
32

32
32

32
32

S
32

E
32

E
20
9

21
0

38
38

38
38

38
38

38
37

36
35

34
34

34
32

32
32

32
32

32
32

S
32

E
32

E
21
0

21
1

39
38

38
38

38
38

38
38

37
36

35
34

34
33

32
32

32
32

32
32

S
32

E
32

E
21
1

21
2

40
39

38
38

38
38

38
38

38
37

36
35

34
34

33
32

32
32

32
32

S
32

E
32

E
21
2

21
3

40
40

39
38

38
38

38
38

38
38

37
36

35
34

34
33

32
32

32
32

32
E

32
E

21
3

21
4

40
40

40
39

38
38

38
38

38
38

38
37

36
35

34
34

33
32

32
32

32
32

E
21
4

21
5

40
40

40
40

39
38

38
38

38
38

38
38

37
36

35
34

34
33

32
32

32
32

21
5

21
6

40
40

40
40

40
39

38
38

38
38

38
38

38
37

36
35

34
34

32
32

32
32

21
6

21
7

41
40

40
40

40
40

39
38

38
38

38
38

38
38

37
36

35
34

33
32

32
32

21
7

21
8

42
41

40
40

40
40

40
39

38
38

38
38

38
38

38
37

36
35

34
33

32
32

21
8

21
9

43
42

41
40

40
40

40
40

39
38

38
38

38
38

38
38

37
36

35
34

33
32

21
9

22
0

44
43

42
41

40
40

40
40

40
39

38
38

38
38

38
38

38
37

36
35

34
33

22
0

22
1

44
44

43
42

41
40

40
40

40
40

39
38

38
38

38
38

38
38

37
36

35
34

22
1

22
2

44
44

44
43

42
41

40
40

40
40

40
39

38
38

38
38

38
38

38
37

36
35

22
2

22
3

44
44

44
44

43
42

41
40

40
40

40
40

39
38

38
38

38
38

38
38

37
36

22
3

22
4

44
44

44
44

44
43

42
41

40
40

40
40

40
39

38
38

38
38

38
38

38
37

22
4

5.6 Concluding Observations on Producing New Binary Codes 131

Ta
bl
e
5.
8

U
pd
at
ed

m
in
im

um
di
st
an
ce

lo
w
er

bo
un
ds

of
lin

ea
r
co
de
s
C

=
[n,

k]
fo
r
22
5

≤
n

≤
25
6
an
d
48

≤
k

≤
62

n\
k

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
k/

n

22
5

60
60

S
60

S
60

S
59

S
58

S
57

S
56

56
54

54
54

54
52

52
22
5

22
6

60
60

60
S

60
S

60
S

59
S

58
S

57
S

56
55

S
54

54
54

52
52

22
6

22
7

60
60

60
S

60
S

60
S

60
S

59
S

58
S

57
S

56
S

55
S

54
54

52
52

22
7

22
8

61
60

60
S

60
S

60
S

60
S

60
S

59
S

58
S

57
S

56
S

55
P

54
53

S
52

22
8

22
9

62
60

60
S

60
S

60
S

60
S

60
S

60
S

59
S

58
S

57
S

56
P

54
54

S
53

S
22
9

23
0

62
60

60
60

S
60

S
60

S
60

S
60

S
60

S
59

S
58

S
57

P
54

54
54

S
23
0

23
1

63
61

60
60

60
S

60
S

60
S

60
S

60
S

60
S

59
S

58
P

54
54

54
23
1

23
2

64
62

60
60

60
60

S
60

S
60

S
60

S
60

S
60

S
59

P
54

54
54

23
2

23
3

64
62

60
60

60
60

S
60

S
60

S
60

S
60

S
60

C
60

C
54

54
54

23
3

23
4

64
62

61
60

60
60

60
S

60
S

60
S

60
S

60
E

60
E

55
54

54
23
4

23
5

64
63

62
61

60
60

60
60

S
60

S
60

S
60

E
60

E
56

55
54

23
5

23
6

65
64

62
62

61
60

60
60

60
S

60
S

60
E

60
E

56
56

54
23
6

23
7

66
64

63
62

62
61

60
60

60
60

S
60

E
60

E
56

56
55

23
7

23
8

66
65

P
64

63
62

62
61

60
60

60
60

E
60

E
57

56
56

23
8

23
9

67
66

P
64

64
63

62
62

61
60

60
60

60
E

58
57

56
23
9

24
0

68
67

P
64

64
64

62
62

62
61

60
60

60
58

58
56

24
0

24
1

68
68

C
64

64
64

62
62

62
62

61
60

60
58

58
57

24
1

24
2

68
68

E
65

64
64

63
S

62
62

62
62

61
60

59
58

58
24
2

24
3

68
68

E
66

65
64

64
S

63
S

62
62

62
62

61
60

59
58

24
3

24
4

69
68

66
66

65
64

64
S

63
S

62
62

62
62

61
60

59
24
4

24
5

70
68

67
66

66
65

S
64

S
64

S
63

S
62

62
62

62
61

60
24
5

24
6

70
68

68
67

66
66

S
65

S
64

S
64

S
63

P
62

62
62

62
61

24
6

24
7

71
68

68
68

67
66

S
66

S
65

S
64

S
64

Y
1

63
Y
1

62
62

62
62

24
7

(c
on
tin

ue
d)

132 5 Good Binary Linear Codes

Ta
bl
e
5.
8

(c
on
tin

ue
d)

n\
k

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
k/

n

24
8

72
69

S
68

68
68

66
S

66
S

66
S

65
S

64
E

64
E

62
62

62
62

24
8

24
9

72
70

S
69

S
68

68
66

P
66

S
66

S
66

S
65

S
64

E
63

S
62

62
62

24
9

25
0

72
71

S
70

S
69

P
68

67
P

66
S

66
S

66
S

66
S

65
S

64
S

63
S

62
62

25
0

25
1

73
S

72
S

71
S

70
P

69
S

68
P

67
S

66
P

66
S

66
S

66
S

65
S

64
S

63
S

62
25
1

25
2

74
S

73
S

72
S

71
P

70
S

69
P

68
S

67
P

66
S

66
S

66
S

66
S

65
S

64
S

63
P

25
2

25
3

74
74

S
73

S
72

P
71

S
70

P
69

S
68

P
67

S
66

P
66

S
66

S
66

S
65

S
64

P
25
3

25
4

75
P

74
P

74
S

73
P

72
S

71
P

70
S

69
P

68
S

67
P

66
S

66
S

66
S

66
S

65
P

25
4

25
5

76
C

75
C

74
C

74
C

72
C

72
C

70
C

70
C

68
C

68
C

66
C

66
S

66
C

66
S

66
C

25
5

25
6

76
76

E
74

E
74

E
72

72
E

70
E

70
E

68
68

E
66

E
66

S
66

E
66

S
66

E
25
6

5.6 Concluding Observations on Producing New Binary Codes 133

Table 5.9 Updated minimum distance lower bounds of linear codes C = [n, k] for 225 ≤ n ≤ 256
and 63 ≤ k ≤ 76

n\k 63 64 65 66 67 68 69 70 71 72 73 74 75 76 k/n

225 52 52 50 50 50 50 48 48 48 48 48S 48E 48E 46 225

226 52 52 50 50 50 50 48 48 48 48 48S 48E 48E 46 226

227 52 52 50 50 50 50 48 48 48 48 48S 48E 48E 46 227

228 52 52 50 50 50 50 48 48 48 48 48 48E 48E 47P 228

229 52 52 51 50 50 50 49 48 48 48 48 48E 48E 48C 229

230 53S 52 52 51 50 50 50 48 48 48 48 48E 48E 48E 230

231 54S 53S 52 52 51 50 50 48 48 48 48 48 48E 48E 231

232 54 54S 53S 52 52 51 50 49 48 48 48 48 48 48E 232

233 54 54 54S 53S 52 52 51 50 49 48 48 48 48 48 233

234 54 54 54 54S 53S 52 52 51 50 49 48 48 48 48 234

235 54 54 54 54 54S 53S 52 52 51 50 49 48 48 48 235

236 54 54 54 54 54 54S 53S 52 52 51 50 49 48 48 236

237 54 54 54 54 54 54 54S 53S 52 52 51 50 49 48 237

238 55 54 54 54 54 54 54 54S 53S 52 52 51 50 49 238

239 56 55 54 54 54 54 54 54 54S 53S 52 52 51 50 239

240 56 56 54 54 54 54 54 54 54 54S 53P 52 52 51 240

241 56 56 55 54 54 54 54 54 54 54 54C 52 52 52 241

242 57 56 56 55 54 54 54 54 54 54 54 53 52 52 242

243 58 57 56 56 55 54 54 54 54 54 54 54 53 52 243

244 58 58 56 56 56 55 54 54 54 54 54 54 54 53 244

245 59 58 57 56 56 56 55 54 54 54 54 54 54 54 245

246 60 59 58 57 56 56 56 55 54 54 54 54 54 54 246

247 61 60 59 58 57 56 56 56 55 54 54 54 54 54 247

248 62 61 60 59 58 57 56 56 56 55 54 54 54 54 248

249 62 62 61 60 59 58 57 56 56 56 55 54 54 54 249

250 62 62 62 61 60 59 58 57 56 56 56 55 54 54 250

251 62 62 62 62 61 60 59 58 57 56 56 56 55 54 251

252 62 62 62 62 62 61 60 59 58 56 56 56 56 55 252

253 63P 62 62 62 62 62 61 60 59 56 56 56 56 56 253

254 64P 63P 62 62 62 62 62 61 60 57 56 56 56 56 254

255 65C 64C 63C 62 62 62 62 62 61 58 57 56 56 56 255

256 66E 64E 64E 62 62 62 62 62 62 58 58 56 56 56 256

134 5 Good Binary Linear Codes

[168, 69, 32], [208, 61, 48], [247, 57, 64], [247, 58, 63] .

Five new linear codes, which are derived from cyclic codes of length 151, have
also been constructed. These new codes, which are produced by Constructions X
and XX, are

[154, 77, 23], [155, 62, 31], [159, 63, 31], [171, 60, 35], [174, 72, 31] .

Given an [n, k, d] code C , where d is larger than the minimum distance of the
best-known linear code of the same n and k, it is possible to obtain more codes,
whose minimum distance is still larger than that of the corresponding best-known
linear code, by recursively extending (annexing parity-checks), puncturing and/or
shortening C . For example, consider the new code [168, 69, 32] as a starting point.
New codes can be obtained by annexing parity-check bits [168 + i, 69, 32], for
1 ≤ i ≤ 3. With puncturing by one bit a [167, 69, 31] new code is obtained by
shortening [168 − i, 69 − i, 32], for 1 ≤ i ≤ 5, 5 new codes are obtained with a
minimum distance of 32. More improvements are also obtained by shortening these
extended and punctured codes. Overall, with all of the new codes described and
presented in this chapter, there are some 901 new binary linear codes which improve
on Brouwer’s lower bounds. The updated lower bounds are tabulated in Tables5.5,
5.6, 5.7, 5.8 and 5.9 inAppendix “ImprovedLowerBounds of theMinimumDistance
of Binary Linear Codes”.

5.7 Summary

Methods have been described and presented which may be used to determine the
minimum Hamming distance and weight distribution of a linear code. These are
the main tools for testing new codes which are candidates for improvements to
currently known, best codes. Several efficient algorithms for computing theminimum
distance and weight distribution of linear codes have been explored in detail. The
many differentmethods of constructing codes have been described, particularly those
based on using known good or outstanding codes as a construction basis. Using such
methods, several hundred new codes have been presented or described which are
improvements to the public database of best, known codes.
For cyclic codes, which have implementation advantages over other codes, many
new outstanding codes have been presented including the determination of a table
giving the code designs and highest attainable minimum distance of all binary cyclic
codes of odd lengths from 129 to 189. It has been shown that outstanding cyclic
codes may be used as code components to produce new codes that are better than
the previously thought best codes, for the same code length and code rate.

Appendix 135

Appendix

Improved Lower Bounds of the Minimum Distance
of Binary Linear Codes

The following tables list the updated lower bounds of minimum distance of linear
codes over F2. These improvements—there are 901 of them in total—are due to
the new binary linear codes described above. In the tables, entries marked with C
refer to cyclic codes, those marked with X , XX and Y1 refer to codes obtained
from Constructions X, XX and Y1, respectively. Similarly, entries marked with E ,
P and S denote [n, k, d] codes obtained by extending (annexing an overall parity-
check bit) to (n − 1, k, d ′) codes, puncturing (n + 1, k, d + 1) codes and shortening
(n+1, k+1, d) codes, respectively. Unmarked entries are the original lower bounds
of Brouwer [6].

References

1. Alltop, W.O.: A method of extending binary linear codes. IEEE Trans. Inf. Theory 30(6),
871–872 (1984)

2. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding
problems. IEEE Trans. Inf. Theory 24, 384–386 (1978)

3. Berlekamp, E.R.: Algebraic Coding Theory. Aegean Park Press, Laguna Hills (1984). ISBN 0
894 12063 8

4. Bitner, J.R., Ehrlich, G., Reingold, E.M.: Efficient generation of the binary reflected gray code
and its applications. Commun. ACM 19(9), 517–521 (1976)

5. Bosma, W., Cannon, J.J., Playoust, C.P.: Magma Algebra Syst. User Lang. 24, 235–266 (1997)
6. Brouwer, A.E.: Bounds on the size of linear codes. In: Pless, V.S., Huffman, W.C. (eds.)

Handbook of Coding Theory, pp. 295–461. Elsevier, North Holland (1998)
7. Chen C.L. (1969) Some results on algebraically structured error-correcting codes. Ph.D Dis-

sertation, University of Hawaii, USA
8. Chen, C.L.: Computer results on the minimum distance of some binary cyclic codes. IEEE

Trans. Inf. Theory 16(3), 359–360 (1970)
9. Grassl, M.: On the minimum distance of some quadratic residue codes. In: Proceedings of the

IEEE International Symposium on Information and Theory, Sorento, Italy, p. 253 (2000)
10. Grassl, M.: New binary codes from a chain of cyclic codes. IEEE Trans. Inf. Theory 47(3),

1178–1181 (2001)
11. Grassl, M.: Searching for linear codes with large minimum distance. In: Bosma, W., Cannon,

J. (eds.) Discovering Mathematics with MAGMA - Reducing the Abstract to the Concrete,
pp. 287–313. Springer, Heidelberg (2006)

12. Grassl M.: Code tables: bounds on the parameters of various types of codes. http://www.
codetables.de

13. Knuth D.E. (2005) The Art of Computer Programming, Vol. 4: Fascicle 3: Generating All
Combinations and Partitions, 3rd edn. Addison-Wesley, ISBN 0 201 85394 9

14. Leon, J.S., Masley, J.M., Pless, V.: Duadic codes. IEEE Trans. Inf. Theory 30(5), 709–713
(1984)

15. Loeloeian, M., Conan, J.: A [55,16,19] binary Goppa code. IEEE Trans. Inf. Theory 30, 773
(1984)

http://www.codetables.de
http://www.codetables.de

136 5 Good Binary Linear Codes

16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

17. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calculators, 2nd edn.
Academic Press, London (1978)

18. Payne, W.H., Ives, F.M.: Combination generators. ACM Trans. Math. Softw. 5(2), 163–172
(1979)

19. Prange E.: Cyclic error-correcting codes in two symbols. Technical report TN-58-103, Air
Force Cambridge Research Labs, Bedford, Massachusetts, USA (1957)

20. Proakis, J.G.: Digital Communications, 3rd edn. McGraw-Hill, New York (1995)
21. Promhouse, G., Tavares, S.E.: The minimum distance of all binary cyclic codes of odd lengths

from 69 to 99. IEEE Trans. Inf. Theory 24(4), 438–442 (1978)
22. Schomaker, D., Wirtz, M.: On binary cyclic codes of odd lengths from 101 to 127. IEEE Trans.

Inf. Theory 38(2), 516–518 (1992)
23. Sloane, N.J., Reddy, S.M., Chen, C.L.: New binary codes. IEEE Trans. Inf. Theory IT–18,

503–510 (1972)
24. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf.

Theory 43, 1759–1766 (1997)
25. Zimmermann, K.H.: Integral heckemodules, integral generalized reed-muller codes, and linear

codes. Technical report 3–96, Technische Universität Hamburg-Harburg, Hamburg, Germany
(1996)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the book’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder.

http://creativecommons.org/licenses/by/4.0/

	5 Good Binary Linear Codes
	5.1 Introduction
	5.2 Algorithms to Compute the Minimum Hamming Distance of Binary Linear Codes
	5.2.1 The First Approach to Minimum Distance Evaluation
	5.2.2 Brouwer's Algorithm for Linear Codes
	5.2.3 Zimmermann's Algorithm for Linear Codes and Some Improvements
	5.2.4 Chen's Algorithm for Cyclic Codes
	5.2.5 Codeword Enumeration Algorithm

	5.3 Binary Cyclic Codes of Lengths 129 len le 189
	5.4 Some New Binary Cyclic Codes Having Large Minimum Distance
	5.5 Constructing New Codes from Existing Ones
	5.5.1 New Binary Codes from Cyclic Codes of Length 151
	5.5.2 New Binary Codes from Cyclic Codes of Length ge 199

	5.6 Concluding Observations on Producing New Binary Codes
	5.7 Summary
	References

