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Abstract. Quantum algebraic observables representing localization in space-time of a
Dirac electron are defined. Inertial motion of the electron is represented in the quantum
algebra with electron mass acting as the generator of motion. Since transformations
to uniformly accelerated frames are naturally included in this conformally invariant
description, the quantum algebra is also able to deal with uniformly accelerated motion.

INTRODUCTION

Modern discussions of time and space revive a basic distinction already stated
by Newton [1]. Theoretical physics deals with two different definitions of time and
space. On one hand, the equations of motion are written in terms of coordinate
parameters representing ideal mathematical points on a classical map of space-time.
This was true for classical Newtonian physics, but this is still true for quantum
field theory or general relativity. On the other hand, time and space measurements
necessarily reflect the properties of physical observables.

Einstein emphasized this point in his first paper on relativity [2] :

If we wish to describe the motion of a material point, we give the values of
its co-ordinates as functions of time. Now we must bear carefully in mind
that a mathematical description of this kind has no physical meaning
unless we are quite clear as to what we understand by “time”...

The “time” of an event is that which is given simultaneously with the
event by a stationary clock located at the place of the event...

Einstein then explains that time indications delivered by remote clocks have to
be compared through synchronization procedures consisting in particular in the
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transfer of light pulses between the two clocks. The position of an event in space-
time can be deduced from the exchange of several light pulses. As is well known,
these thought experiments about localization in space-time entail that space and
time are relativistic observables mixed under frame transformations. And they are
not only thought experiments since they are nowadays implemented as practical
applications such as the Global Positioning System [3].

At the same time, space and time belong to the quantum domain with their
metrological definition now rooted in atomic physics [4]. The time delivered by
an atomic clock is the phase of a quantum oscillator while electromagnetic signals
used to synchronize remote clocks are quantum fields. This raises the question of
the compatibility of quantum and relativitistic descriptions of space and time, as
explicitly stated by Schrodinger [5] :

In Lorentz transformations, time and space coordinates enter in a com-
pletely symmetrical manner. But in quantum mechanics, ... time is a
quite different thing than the co-ordinates.

Time is not treated as an observable... It is a parameter the value of
which is supposed to be exactly known : it is in fact the old good time
of Newton and quantum mechanics does not worry about the existence
of the old good clock which it would need in order to know the value of
this parameter t.

But it seems to me doubtless that we will have to give up this too classical
notion of time, and not only because of relativity...

The knowledge of the variable ¢ is obtained in the same manner as that
of any other variable, by observing a physical system, namely a clock. ¢
is therefore an observable and must be treated as an observable ; time
must in general have “statistics” and not a “value”.

In other words, space and time have to be treated as quantum observables with
their proper quantum fluctuations. And, moreover, this treatment has to be com-
patible with the effects of relativistic frame transformations. It is well known in
ordinary quantum mechanics that space positions may be represented as quantum
operators conjugated to momentum operators. This is still the case in standard
quantum field theory [6,7]. But it is also commonly thought that standard quan-
tum formalism does not allow for time being treated as an operator conjugated to
energy [8,9] which forbids to relate the energy-time Heisenberg inequality to a quan-
tum commutation relation. This also entails that Lorentz transformations cannot
be represented properly with positions in space described by quantum observables
and position in time described by a classical coordinate parameter.

Lorentz invariance may be restored by abandoning the observable character of
space variables as well [10]. This clears up the unacceptable difference between
space and time with however the drawback of no longer having explicit repre-
sentations of space-time observables. Physical fluctuations are then described by
quantum fields. This situation makes the quantum implementation of relativistic



symmetries quite unsatisfactory [11] and plagues the attempts to construct a quan-
tum theory including gravity [12,13]. Coming back to the quotation of Einstein,
this also challenges the very representation of “motion” in quantum theory.

LOCALIZATION OBSERVABLES

We develop here an alternative approach to localization and motion in space-
time where quantum and relativistic requirements are treated simultaneously and
consistently [14,15]. The main idea is to define localization observables generalizing
Einstein’s definition of the position of the center-of-mass in special theory of relativ-
ity [16]. The latter definition relies on the invariance of equations of motion under
Lorentz frame transformations. Positions in space are then expressed in terms of
the symmetry generators, i.e. the components P, of energy-momentum vector and
the components J,, of angular momentum tensor. The more general definition
advocated here uses invariance of Maxwell equations not only under Lorentz frame
transformations but also under the larger group of conformal transformations. This
definition will allow one to give a quantum description of motion of an electron, as
it was demanded by Schrodinger.

Conformal symmetry of electromagnetism has been discussed by Bateman and
Cunningham [17,18], very early after the advent of relativity theory. It has been
studied in a number of papers [19] and it still holds for free electromagnetic fields in
quantum field theory [20]. In particular conformal symmetry includes a dilatation
generator D which, together with the Poincaré generators, allows one to construct
4 quantum observables X, representing positions in space-time. We recall below
the main building blocks of this construction described in more details in [14,15].

The whole framework is based upon the conformal algebra, that is the set of
commutators which characterize conformal symmetry. Conformal algebra firstly
contains a sub-algebra with Poincaré and dilatation generators

(Pu, P)) =0 (Jurs Po) = Mup P = 1up P

(J/u/a Jpa) = nupt]ua + nuJJVp - nupJVJ - nVJJup (]-)
(Dvpu):Pu (vauV):O

P, and J,, are the translation and rotation generators, that is also components
of energy-momentum vector and angular momentum tensor. D is the dilatation
generator producing a change of space-time and energy-momentum units which
preserves the velocity of light ¢ and the Planck constant #. Quantum algebraic
commutators (1) represent the relativistic shifts of observables under translations
and rotations with 7, = diag (1, —1, —1, —1) standing for Minkowski tensor as well
as the commutation relations of observables. We use the following notations for the
commutator, the symmetrized product and the symmetrized division of observables
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Localization observables are constructed from the algebra (1) as the solutions X,
of the equations

JMV:PM'XV_PV'XM_I_SMV D:PM'X” (3)

Angular momenta J,, are sums of orbital and spin contributions. As the spin
tensor S, is transverse with respect to momentum, the first equation fixes the
transverse components of position observables with respect to momentum. This
explains why D has to be involved to fix the longitudinal components of position
observables. Position observables are obtained as the following expressions which
generalize Einstein’s definition of the center-of-mass position as soon as the square
P? = P,P* of the momentum vector differs from 0

D-P,—-J, P
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Elementary algebraic calculus then leads to their transformation properties

(Pua XI/) = N
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These equations respectively mean that position observables are canonically con-
jugated to momenta, that they are transformed as components of a Lorentz vector
under Lorentz transformations and that they have a conformal weight opposite to
that of momenta. These results meet the expectations based on classical relativity
but they bear on quantum observables.

However different position components are found to have a non null commutator
which is directly connected to spin, implying that dispersions obey a Heisenberg
inequality
h2
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This important output of the quantum algebraic formalism clearly indicates that
the conceptions of space-time inherited from classical relativity have to be revised
for quantum objects. Positions in space-time cannot be associated with sizeless
classical points but they have rather to be thought of as fuzzy spots with a size
AX given by Compton relation.

It is possible to give a geometrical interpretation of these results by coming back
to the Einstein construction of a position in space-time as the intersection of 2 light
rays propagating in different directions. For such a field state, the squared mass P?
associated with the field state differs from 0. It may then be proved that positions
(4) correspond to the coincidence of the two light rays. Precisely, two real light rays
never intersect exactly and each ray has a transverse dimension due to diffraction



but the positions correspond to the middle point on the segment which joins the
two rays while being perpendicular to both rays [15]. The fuzziness in (6) due to
the spin associated with the 2-light-rays state is directly connected to the length
of the segment involved in the geometrical construction.

Let us recall at this point that conformal symmetry includes four additional
generators €, which represent transformations to uniformly accelerated frames.
The algebra (1) is thus complemented by the commutators
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Generators C), are commuting components of a Lorentz vector with a conformal
weight opposite to that of momenta. Their commutators (P,, C,) with translations
describe the redshifts of momenta under transformations to accelerated frames and
thus constitute quantum versions of the Einstein redshift law [21]. This entails that
the quantum algebraic construction allows one to discuss relativistic effects associ-
ated with accelerated frames from invariance properties represented by conformal
algebra [22]. We will show below that the same algebraic framework allows one to
represent inertial as well as uniformly accelerated motion.

CONFORMAL DIRAC ELECTRON

Up to now, localization observables have been constructed on Einstein proce-
dures with light rays so that conformal symmetry has been used in the case of
free electromagnetic fields. The localization observables thus constitute a theoreti-
cal representation equivalent to standard QED theory although the interpretation
may be quite different from the standard one. In particular conformal symmetry
has been used for the field state associated with 2-light-rays localization although
the mass does not vanish for this state. Also, conformal generators are space-time
integrals of the quantum stress tensor and localization observables are highly non
linear and non local expressions of the fields. Since they are not defined in vacuum
or one photon states, these hermitian observables are not self-adjoint. This is just
the point where the Pauli theorem forbidding the definition of a quantum time
operator has been circumvented [14,15].

We want now to show that quantum algebra also allows one to deal with Dirac
electrons [23]. To this aim, we first introduce a second set z,, of position observables
and a new spin tensor s,,. Poincaré and dilatation generators keep the same form
(3) when X, and S, are replaced by z, and s, but the new observables obey
canonical commutation relations. In particular the components x, commute with
other components of positions x, or spin s,,. The canonical positions may be
written
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where W# is the Pauli-Lubanski spin vector and v is a sign representing the ori-
entation of the spin tensor s,,. < is invariant under translations, rotations and
dilatation and plays the same role here as 75 in Dirac electron theory [24].

Canonical positions are transformed under translations, rotations and dilatation
as expected from classical relativity : they obey equations (5) with X, replaced by
x,,. This entails that the requirements enounced by Schrodinger have now been met.
Positions may be represented as quantum relativistic observables which are con-
jugate with respect to momentum observables while properly representing Lorentz
symmetry. A position in time has been defined besides positions in space and it
is conjugated to energy as positions in space are conjugated to spatial momenta.
The 4 positions in space-time are mixed under Lorentz transformations according
to the classical laws. It has however to be emphasized that the canonical variables
x, and s,, are not hermitian, as shown by (8). This is a further important output
of the quantum algebraic approach to the localization problem. One may define ei-
ther hermitian observables with non canonical commutators or canonical variables
which are not hermitian.

In order to build up a quantum algebraic theory of electrons, we use the gen-
eral properties already deduced from conformal symmetry and add two further

assumptions. First we assume that the spin number is %

2
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and invariant under transformations to accelerated frames. As it is already invariant
under translations, rotations and dilatation, s is thus invariant under the whole
conformal algebra. Then we introduce the sign € of mass which commutes with
translations, rotations and dilatation. v commutes with €2 = 1 while £ commutes
with v2 = 1 and these conditions are fulfilled as soon as v and ¢ either commute
or anticommute. We assume here that they anticommute

M=cVP?2 =1 ~.-e=0 (10)

Hence the spin orientation 7 changes the mass sign € into its opposite while the
mass sign € changes the spin orientation ~ into its opposite.
From these assumptions, we deduce that there exist Clifford symbols in the
quantum algebra which allow one to write a Dirac equation
P
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The symbols v, commute with canonical positions and momenta and their com-
mutators reproduce the canonical spin tensor s,,. These relations constitute a
quantum algebraic extension of Dirac electron theory [24]. At this point, it is
worth emphasizing that the Clifford relations and the Dirac equation have been
derived from conformal symmetry and the 2 further assumptions (9,10).



The quantum algebraic formalism leads to a striking difference with the standard
Dirac theory. The mass M is now a quantum operator which, like its sign e,
anticommutes with . Though being a Lorentz scalar invariant under translations
and rotations, M is not invariant under dilatation since it has the same conformal
weight as momenta. These properties are certainly incompatible with the classical
treatment of the mass commonly associated with Dirac electron. Notice however
that electron mass is, at least partly, generated by electromagnetic self-energy and
that it should therefore present intrinsic quantum fluctuations. Since electron-
positron pairs may decay into 2-photon pairs, it seems hard to forbid treating the
mass of the e~ — e* pair similarly to that of the 2-photon pair. But, as already
noticed, the second one is commonly considered to obey conformal invariance.

These arguments plead for mass having its proper conformal dimension, so that
the conformal symmetry holds for free electron states as well as for photon states.
They also correspond to the motivations of Weyl aiming at a conformal description
of space-time [25] or Dirac attempting to describe the electron field in a conformal
space [26]. In any case, modern descriptions of the electron are no longer identical to
the original Dirac theory. Electron mass is now considered to be generated through
an interaction with Higgs fields [27] and Higgs models obeying conformal invariance
are available [28]. Here, we do not specify a particular field model but we consider
that the treatment of electron mass is compatible with conformal symmetry and,
thus, given by the previously written equations.

INERTIAL MOTION

As just discussed, mass M is a quantum observable. We show now that commuta-
tors with this observable play an important role since they generate inertial motion.
To this aim, we introduce a prime symbol representing an algebraic derivative and
obeying Leibniz rule

F' = (F, M) (FG) = F'G + FG' (12)

The same property is obtained for the commutator with any observable but the
present definition implies that the Poincaré generators are constants of motion
P, =J, = 0. These features resemble the common Hamiltonian formalism with
however the mass as the motion generator and, hence, a full compatibility with
Lorentz invariance. The derivative defined by (12) may be thought of as associated

with a quantum “evolution time” % since the latter observable has a unit derivative

D /
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This evolution time is distinct from the date X of an event, that is its position in
time. Meanwhile, both times have to be distinguished from their classical analogs.

The motion of hermitian positions corresponds to the simple expectations of
classical mechanics. The hermitian velocity, that is the derivative of the hermitian



position, is the standard mechanical velocity given by the ratio of momentum to
mass while the hermitian acceleration vanishes

P
X,=5F  Xi=0 (14)

Hermitian spin is also conserved. The orientation 7 oscillates at twice the rest mass
frequency

2 2 4M?
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It follows that the canonical velocities are identical to the Clifford generators and
that they undergo a “Zitterbewegung”

W,
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These relations are analogous to well known results of standard Dirac theory with,
once again, an algebraic representation of the motion generated by mass observable.

ACCELERATED MOTION

As already explained, the quantum algebraic formalism relies upon conformal
symmetry and, therefore, has the ability of dealing with uniformly accelerated
frames as well as inertial frames. It can therefore describe uniformly accelerated
motion as well as inertial motion. In order to prove this statement, we write the shift
of the mass observable from M in a frame to M in another frame as a conjugation
by an element of the conformal group

— a’C a’C a’
M:exp(— 22’hp>MeXp<2ihp>:M_E(CP’M)+'” (17)
The parameters a” are classical accelerations along the 4 space-time directions.
Here, we restrict our attention to the linear approximation with respect to these
parameters. It is important to notice that conjugations preserve the structure of
quantum algebraic relations. For example, position and momentum observables
are transformed under conjugation but the canonical commutators between them
are preserved since they are classical numbers. Canonical commutators have the
same form in accelerated and inertial frames and are written in terms of the same
Minkowski metric 7,,. This result had to be expected in a quantum algebraic
approach but it clearly stands in contradistinction with covariant techniques of
classical relativity.
Relation (17) gives the redshift of mass under the frame transformation

(C,, M) =2M - X, (18)



The redshift has exactly the form expected from Einstein classical law since it is
proportional to M and to the gravitational potential a” X, arising from the trans-
formation according to Einstein equivalence principle. The shift may also be read
as a conformal metric factor which depends on position observables as the classical
metric factor depends on classical coordinates [23]. To fix ideas, we may consider
the coordinate frame denoted with bars to be an inertial frame and the coordinate
frame without bars to be the accelerated frame. We may then define “inertial mo-

tion” as the algebraic derivative F’ = (F, M) associated with the “inertial mass”

M. This choice leads to conservation of Poincaré generators P, and J,, defined in
the inertial frame. The laws of inertial motion have also the same form as previ-
ously in the inertial frame. Now we can write the motion of observables P, or J,,
as they are defined in the accelerated frame. Proceeding in this manner we obtain
for the hermitian positions X,

X =a,+... (19)

This is a quantum algebraic expression of the law of free fall in the gravity force
arising in the accelerated frame from the Einstein equivalence principle. The dots
mean that this expression is linearized in the gravity acceleration. A more general
expression with non linear terms is deduced from conformal symmetry in [29].

CONCLUSIONS

We have shown that positions in space-time may be represented as quantum
relativistic observables conjugated with respect to momentum observables while
properly obeying Lorentz symmetry. The whole framework constitutes a “quan-
tum algebraic relativity” where relativistic effects under frame transformations and
quantum commutation relations are described by a unique algebraic calculus. Mass
is a quantum observable and this has important consequences. First, it suffers shifts
under transformations to accelerated frames and these shifts reproduce the effect of
the gravitational potential arising as a consequence of Einstein equivalence princi-
ple. Then, mass is the generator of inertial motion and the choice of inertial frames
among all possible definitions allows one to represent uniformly accelerated motion
as well, still in full consistency with Einstein equivalence principle.

The quantum algebraic description of localization in space-time relies on confor-
mal symmetry and it can be written so that it explicitly displays invariance under
the SO (4,2) algebra [29]. This allows one to write the laws of inertial motion as
well as the Newton equation of motion in a gravity field under an invariant form
consistent with this algebra. The whole description may thus be thought of as a
“quantum geometry” [30] relying on conformal symmetry.
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