
Chapter 15
Van Cittert–Zernike Theorem, Spatial
Coherence, and Scattering

This chapter is concerned with the van Cittert–Zernike theorem, including an
examination of the assumptions involved in its derivation, the requirement of spatial
incoherence of a source, and the interferometer response to a coherent source.
Some optical terminology is used, for example, mutual coherence, which includes
complex visibility. There is also a brief discussion of some aspects of scattering by
irregularities in the propagation medium. Much of the development of the theory
of coherence and similar concepts of electromagnetic radiation is to be found in
the literature of optics. The terminology is sometimes different from that which has
evolved in radio interferometry, but many of the physical situations are similar or
identical. However, in spite of the similarity, the literature shows that in the early
development of radio astronomy, the optical experience was hardly ever mentioned,
an exception being the reference by Bracewell (1958) to Zernike (1938) for the
concept of the complex degree of coherence. The van Cittert–Zernike theorem
contains a simple formalism that includes the basic principles of correlation in
electromagnetic fields.

15.1 Van Cittert–Zernike Theorem

We showed in Chaps. 2 and 3 that the cross-correlation of the signals received in
spaced antennas can be used to form an image of the intensity distribution of a
distant cosmic source through a Fourier transform relationship. This result is a form
of the van Cittert–Zernike theorem, which originated in optics. The basis for the
theorem is a study published by van Cittert in 1934 and followed a few years later
by a simpler derivation by Zernike. A description of the result established by van
Cittert and Zernike is given by Born and Wolf (1999, Chap. 10). The original form
of the result does not specifically refer to the Fourier transform relationship between
intensity and mutual coherence but is essentially as follows.
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Fig. 15.1 (a) Geometry of a distant spatially incoherent source and the points P1 and P2 at which
the mutual coherence of the radiation is measured. The source plane .X; Y/ is parallel to the
measurement plane .x; y/ but at a large distance from it. (b) Similar geometry for measurement
of the radiation field from an aperture in the .X; Y/ plane that is illuminated from above by a
coherent wavefront. The radiated field has a maximum at the point P2. Direction cosines .l;m/ are
defined with respect to the .x; y/ axes in the measurement plane, and direction cosines .l0;m0/ are
defined with respect to the .X; Y/ axes in the plane of the aperture.

Consider an extended, quasi-monochromatic, incoherent source, and let the
mutual coherence of the radiation be measured at two points P1 and P2 in a plane
normal to the direction of the source, as in Fig. 15.1a. Then suppose that the source is
replaced by an aperture of identical shape and size and illuminated from behind by a
spatially coherent wavefront. The distribution of the electric field amplitude over the
aperture is proportional to the intensity distribution over the source. The Fraunhofer
diffraction pattern of the aperture is observable in the plane containing P1 and P2.
The relative positions of the points P1 and P2 are the same in the two cases, but
for the aperture, the geometric configuration is such that P2 lies on the maximum
of the diffraction pattern. Then the mutual coherence measured for the incoherent
source, normalized to unity for zero spacing between P1 and P2, is equal to the
complex amplitude of the field of the aperture diffraction pattern at the position P1,
normalized to the maximum value at P2.

In this form, the theorem results from the fact that the behavior of both the
mutual coherence and the Fraunhofer diffraction can be represented by similar
Fourier transform relationships. Derivation of the theorem provides an opportunity
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to examine the assumptions involved and is given below. The analysis is similar to
that given by Born and Wolf but with some modifications to take advantage of the
simplified geometry when the source is at an astronomical distance. First, we note
that in optics, the mutual coherence function for a field E.t/, measured at points 1
and 2, is represented by

�12.u; v; �/ D lim
T!1

1

2T

Z T

�T
E1.t/E

�
2 .t � �/ dt ; (15.1)

where u and v are the coordinates of the spacing between the two measurement
points, expressed in units of wavelength. �12.u; v; 0/, for zero time offset, is
equivalent to the complex visibility V.u; v/ used in the radio case.

15.1.1 Mutual Coherence of an Incoherent Source

The geometric situation for the incoherent source is shown in Fig. 15.1a. Consider
the source located in a distant plane, indicated by .X;Y/. The radiated field is
measured at two points, P1 and P2, in the .x; y/ plane that is parallel to the source
plane. In the radio case, these points are the locations of the interferometer antennas.
It is convenient to specify the position of a point in the .X;Y/ plane by the direction
cosines .l;m/ measured with respect to the .x; y/ axes. The source is sufficiently
distant that the direction of any point within it measured from P1 is the same as that
measured from P2. The fields at P1 and P2 resulting from a single element of the
source at the point .l;m/ are given by

E1.l;m; t/ D E
�
l;m; t � R1

c

�
exp Œ�j2��.t � R1=c/�

R1

; (15.2)

and

E2.l;m; t/ D E
�
l;m; t � R2

c

�
exp Œ�j2��.t � R2=c/�

R2

; (15.3)

where E.l;m; t/ is a phasor representation of the complex amplitude of the electric
field at the source for an element at position .l;m/. R1 and R2 are the distances from
this element to P1 and P2, respectively, and c is the velocity of light. The exponential
terms in Eqs. (15.2) and (15.3) represent the phase change in traversing the paths
from the source to P1 and P2.
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The complex cross-correlation of the field voltages at P1 and P2 due to the
radiation from the element at .l;m/ is, for zero time offset,

D
E1.l;m; t/ E�

2 .l;m; t/i

D
�
E

�
l;m; t � R1

c

�
E�

�
l;m; t � R2

c

��

� expŒ�j2��.t � R1=c/� expŒ j2��.t � R2=c/�

R1R2

D
�
E.l;m; t/ E�

�
l;m; t � R2 � R1

c

��
exp Œ j2��.R1 � R2/=c�

R1R2

;

(15.4)

where the superscript asterisk denotes the complex conjugate, and the angle brackets
h i represent a time average. Note that the source is assumed to be spatially
incoherent, which means that terms of the form hE1.lp;mp; t/E�

2 .lq;mq; t/i, where
p and q denote different elements of the source, are zero. If the quantity .R2 �R1/=c
is small compared with the reciprocal receiver bandwidth, we can neglect it within
the angle brackets of Eq. (15.4), where it occurs in the amplitude term for E.
Equation (15.4) then becomes

hE1.l;m; t/ E�
2 .l;m; t/i D hE.l;m; t/E�.l;m; t/i exp Œj2��.R1 � R2/=c�

R1R2

:

(15.5)

The quantity hE.l;m; t/ E�.l;m; t/i is a measure of the time-averaged intensity,
I.l;m/, of the source. To obtain the mutual coherence function of the fields at points
P1 and P2, we integrate over the source, using ds to represent an element of area
within the .X;Y/ plane:

�12.u; v; 0/ D
Z

source

I.l;m/ exp Œ j2��.R1 � R2/=c�

R1R2

ds ; (15.6)

where u and v are the x and y components of the spacing between the points P1

and P2 measured in wavelengths. Note that .R1 � R2/ is the differential distance in
the path lengths from .l;m/ in the source to P1 and P2. The points P1 and P2 have
coordinates .x1; y1/ and .x2; y2/ respectively, so u D .x1 � x2/�=c and v D . y1 �
y2/�=c, where c=� is the wavelength. Thus, we obtain .R2 � R1/ D .ul C vm/c=�.
Because the distance of the source is very much greater than the distance between P1

and P2, for the remaining R terms, we can put R1 ' R2 ' R, where R is the distance
between the .X;Y/ and .x; y/ origins. Then ds D R2dl dm, and from Eq. (15.6),

�12.u; v; 0/ D
Z Z

source
I.l;m/ e�j2�.ulCvm/dl dm : (15.7)
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Since the integrand in Eq. (15.7) is zero outside the source boundary, the limits
of the integral effectively extend to infinity, and the mutual coherence �12.u; v; 0/,
which is equivalent to the complex visibility V.u; v/, is the Fourier transform of the
intensity distribution I.l;m/ of the source. This result is generally referred to as the
van Cittert–Zernike theorem. However, it is instructive to examine the definition of
the theorem in terms of the diffraction pattern of an aperture, given at the beginning
of this section.

15.1.2 Diffraction at an Aperture and the Response
of an Antenna

The Fraunhofer diffraction field of an aperture, as a function of angle, can be
analyzed using the geometry shown in Fig. 15.1b. Here, an aperture is illuminated
by an electromagnetic field of amplitude E.l;m; t/, where again we use direction
cosines with respect to the x and y axes to indicate points within the aperture as
seen from P1 and P2. The .x; y/ plane is in the far field of a wavefront from any
point in the aperture, so such a wavefront can be considered plane over the distance
P1P2. The aperture is centered on the .X;Y/ origin and is normal to the line from
the .X;Y/ origin to P2. The phase over the aperture is assumed to be uniform, and
components of the field therefore combine in phase at P2. Thus, in the .x; y/ plane,
the maximum field strength occurs at P2. Now consider the field at the point P1,
which has coordinates .x; y/. The component of the field at P1 due to radiation from
an element of the aperture at position .l;m/ is given by Eq. (15.2). The path lengths
from the point .l;m/ at the source to P1 and P2 are R1 and R2, respectively, and
R2 � R1 D lx C my. Thus, from Eq. (15.2), we can write

E1.l;m; t/ D e�j2��.t�R2=c/

R1

E
�
l;m; t � R1

c

�
e�j2��.xlCym/=c : (15.8)

Again, for the remainingR terms, we put R1 ' R2 ' R. Integration over the aperture
then gives the total field at P1,

E.x; y/ D e�j2��.t�R=c/

R

Z
aperture

E
�
l;m; t � R

c

�
e�j2�Œ.x=�/lC. y=�/m�ds ; (15.9)

where � is the wavelength, and the element of area ds is proportional to dl dm.
The term on the right side that is outside the integral is a propagation factor that
represents the variation in amplitude and phase over the path from the source to P2

in Fig. 15.1b. In applying the result to the radiation pattern of an aperture, we replace
the time-dependent functions E and E by the corresponding rms field amplitudes,
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which will be denoted by E and E, respectively:

E.x; y/ /
Z Z

aperture
E.l;m/ e�j2�Œ.x=�/lC. y=�/m�dl dm ; (15.10)

where the propagation factor in Eq. (15.9) has been omitted. A comparison of
Eqs. (15.7) and (15.10) explains the van Cittert–Zernike theorem as described at the
beginning of this section. With the specified proportionality between the incoherent
intensity and the coherent field amplitude, it will be found that

�12.u; v; 0/

�12.0; 0; 0/
D E.x; y/

E.0; 0/
: (15.11)

In Eqs. (15.7) and (15.10), the integrand is zero outside the source or aperture. Thus,
in each case, the limits of integration can be extended to ˙1, and the equations
are seen to be Fourier transforms. The calculations of the mutual coherence of the
source and the radiation pattern of the aperture yield similar results because the
geometry and the mathematical approximations are the same in each case. It should
be emphasized, however, that the physical situations are different. In the first case
considered, the source is spatially incoherent over its surface, whereas in the second
case, the field across the aperture is fully coherent.

The result in Eq. (15.10) also gives the angular radiation pattern for an antenna
that has the form of an excited aperture. The application to an antenna is more useful
if the radiation pattern is specified in terms of an angular representation .l0;m0/
of the direction of radiation from the antenna aperture instead of the position of
the point P1, and if the field distribution over the aperture is specified in terms of
units of length rather than angle. .l0;m0/ are direction cosines with respect to the
.X;Y/ axes. Since the angles concerned are small, we can substitute into Eq. (15.10)
x D Rl0, y D Rm0, l D X=R, m D Y=R, dl D dX=R, and dm D dY=R, and obtain

E
0
.l0;m0/ /

Z Z
aperture

EXY.X;Y/e�j2�Œ.X=�/l0C.Y=�/m0� dX dY : (15.12)

This is the expression for the field distribution resulting from Fraunhofer diffraction
at an aperture [see, e.g., Silver (1949)]. It includes the case of a transmitting antenna
in which the aperture of a parabolic reflector is illuminated by a radiator at the
focus. If such an antenna is used in reception, the received voltage from a source
in direction .l0;m0/ is proportional to the right side of Eq. (15.12). Thus, the voltage
reception pattern VA.l0;m0/, introduced in Sect. 3.3.1, is proportional to the right
side of Eq. (15.12).

To obtain the power radiation pattern for an antenna, we need the response
in terms of jE0

.l0;m0/j2. From an autocorrelation theorem of Fourier transforms,
the squared amplitude of E

0
.l0;m0/ is equal to the autocorrelation of the Fourier

transform of E
0
.l0;m0/ [see, e.g., Bracewell (2000), and note that this relationship
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is also a generalization of the Wiener–Khinchin relationship derived in Sect. 3.2].
Thus, the power radiated as a function of angle is given by

jE0
.l0;m0/j2 /Z Z

aperture
ŒEXY.X;Y/ ? ? EXY.X;Y/�e�j2�Œ.X=�/l0C.Y=�/m0� dX dY ;

(15.13)

where E.X;Y/ ? ? E.X;Y/ is the two-dimensional autocorrelation function of the
field distribution over the aperture. To obtain absolute values of the radiated field,
the required constant of proportionality can be determined by integrating Eq. (15.13)
over 4� steradians to obtain the total radiated power and equating this to the power
applied to the antenna terminals. In reception, the power collected by an antenna
is proportional to the power radiated in transmission, so the form of the beam is
identical in the two cases. To illustrate the physical interpretation of Eq. (15.13),
consider the simple case of a rectangular aperture with uniform excitation of the
electric field. The function EXY.X;Y/ is then the product of two one-dimensional
functions of X and Y. If d is the aperture width in the X direction, the autocorrelation
function in X is triangular with a width 2d, and Fourier transformation gives

jEX.l0/j2 /
�

sin.�dl0=�/

�dl0=�

�2

: (15.14)

In the l0 dimension, the full width of this beam at the half-power level is 0:886�=d,
for example, 1ı for d=� D 50:8 wavelengths. For a uniformly illuminated circular
aperture of diameter d, the response pattern is circularly symmetrical and is given
by

jEr.l
0
r/j2 /

�
2J1.�dl0r=�/

�dl0r=�

�2

; (15.15)

where the subscript r indicates a radial profile in which l0r is measured from the
center of the beam, and J1 is the first-order Bessel function. The full width of the
beam at the half-power level is �1:03�=d.

A more direct way of obtaining the Fraunhofer radiation pattern of an aperture
antenna is to start by considering the field strength of the radiated wavefront as a
function of direction, rather than the field strength at a single point P1, as above.
However, the method used was chosen to provide a more direct comparison with
the interferometer response to a spatially incoherent source. For a more detailed
analysis of the response of an antenna, see, for example, Booker and Clemmow
(1950), Bracewell (1962), or the textbooks on antennas in the Further Reading of
Chapter 5.
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15.1.3 Assumptions in the Derivation and Application
of the van Cittert–Zernike Theorem

At this point, it is convenient to collect and review the assumptions and limitations
that are involved in the theory of the interferometer response.

1. Polarization of the electric field. Although the electric fields are vector quantities
with directions that depend on the polarization of the radiation, the components
received by antennas from different elements of the source can be combined in
the manner of scalar quantities. The fields are measured by antennas at P1 and
P2, and each antenna responds to the component of the radiation for which the
polarization matches that of the antenna. If the fields are randomly polarized
and the antennas are identically polarized, then the signal product in Eq. (15.4)
represents half the total power at each antenna. However, the antenna polariza-
tions do not have to be identical since, in general, the interferometer system will
respond to some combination of components of the source intensity determined
by the antenna polarizations. The ways in which the antenna polarizations can
be chosen to examine all polarizations of the incident radiation are described in
Sect. 4.7.2. Thus, the scalar treatment of the field involves no loss of generality.

2. Spatial incoherence of the source. The radiation from any point on the source
is statistically independent from that from any other point. This applies almost
universally to astronomical sources and permits the integration in Eq. (15.6)
by allowing cross products representing different elements of the source to be
omitted. The Fourier transform relationship provided by the van Cittert–Zernike
theorem requires the source to be spatially incoherent. Spatial coherence and
incoherence are discussed in Sect. 15.2. Note that an incoherent source gives
rise to a coherent or partially coherent wavefront as its radiation propagates
through space. If this were not the case, the mutual coherence (or visibility) of
an incoherent source, measured by spaced antennas, would always be zero.

3. Bandwidth pattern. The assumption required in going from Eqs. (15.4) to (15.5),
that .R2 � R1/=c is less than the reciprocal bandwidth .��/�1, can be written

��

�
<

1

ldu
;

��

�
<

1

mdv
; (15.16)

where ld and md are the maximum angular dimensions of the source. This is
the requirement that the source be within the limits imposed by the bandwidth
pattern of the interferometer, which is discussed in Sect. 2.2. Conversely, the
required field of view limits the maximum bandwidth that can be used in a single
receiving channel. The distortion caused by the bandwidth effect is discussed
further in Sect. 6.3.1 and, if not severe, can often be corrected.

4. Distance of the source. For an array with maximum baseline D, the departure
of the wavefront from a plane, for a source of distance R, is � D2=R. Thus, the
far-field distance Rff , defined as that for which the divergence is small compared
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with the wavelength �, is given by

Rff � D2=� : (15.17)

The far-field condition implies that the antenna spacing subtends a small angle as
seen from the source and results in the approximation for Fraunhofer diffraction.
If the source is at a known distance closer than the far-field distance, then the
phase term can be compensated. This may sometimes be necessary in solar
system studies. For example, for an antenna spacing of 35 km and a wavelength
of 1 cm, the far-field distance is greater than 1:2 � 1011 m, or approximately the
distance to the Sun. On the other hand, the distances to sources in the near field
such as Earth-orbiting satellites can be determined from measurements of the
wavefront curvature (e.g., Sect. 9.11). When the source is in the far-field distance,
no information concerning its structure in the line-of-sight direction is possible,
only the intensity distribution as projected onto the celestial sphere. (Line-of-
sight structure can be determined by modeling velocity structure.)

5. Use of direction cosines. In going from Eqs. (15.6) to (15.7), the path difference
(R2 � R1) is specified in terms of the baseline coordinates .u; v/ and angular
coordinates .l;m/. The expression for the path difference is precise if l and m are
specified as direction cosines. In integration over the source, the element of area
bounded by increments dl dm is equal to dl dm=n, where n is the third direction
cosine and is equal to

p
1 � l2 � m2. In optics, derivation of the van Cittert–

Zernike theorem usually involves the assumption that the source subtends only
small angles at the measurement plane. Then l and m can be approximated by the
corresponding small angles, and n can be approximated by unity. As a result, the
relationship between V and I becomes a two-dimensional Fourier transform, as
in the approximation for limited field size discussed in Sect. 3.1.1. In the radio
case, the less restrictive result in Eq. (3.7) is sometimes required.

6. Three-dimensional distribution of the visibility measurements. As antennas track
a source, the antenna-spacing vectors, designated above by .u; v/ components,
may not lie in a plane, and three coordinates, .u; v;w/, are then required to
specify them. The Fourier transform relationship is then more complicated, but a
simplifying approximation can be made if the field of view to be imaged is small.
These effects are discussed in Sect. 11.7.

7. Refraction in space. It has been implicitly assumed in the analysis above that
the space between the source and the antennas is empty, or at least that any
medium within it has a uniform refractive index, so that there is no distortion
of the incoming wavefront from the source. However, the interstellar and
interplanetary media, and the Earth’s atmosphere and ionosphere, can introduce
effects including rotation of the position angle of a linearly polarized component,
as discussed in Chaps. 13 and 14.
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15.2 Spatial Coherence

In the derivation of the interferometer response in Chaps. 2 and 3, and in Eq. (15.5),
it is assumed that the source under discussion is spatially incoherent. This means
that the waveforms received from different spatial elements of the source are not
correlated, which enables us to add the correlator output from the different angular
increments in the integration over the source. We now examine this requirement
in more detail. To illustrate the principles involved, it is sufficient to work in one
dimension on the sky, for which the position is given by the direction cosine l.

15.2.1 Incident Field

Consider the electric field E.l; t/ at the Earth’s surface resulting from a wavefront
incident from the direction l at time t. Figure 15.2 shows the geometry of the
situation, in which l D 0 in the direction OS of the center, or nominal position,
of the source under observation. l is a direction cosine measured from OB, the
normal to OS. A path OS0 is shown that indicates the direction of another part of
the source. Radiation from the direction OS0 produces a wavefront parallel to OB0.
The wavefronts from points on the source are plane because we are considering a
source in the far field of the interferometer. The line OA represents the projection
of the baseline normal to the direction of the source, and the distance OA measured
in wavelengths is equal to u. Now consider wavefronts from the directions S and S0
that arrive at the same time at O. To reach the point A, the wavefront from S0 has
to travel a farther distance AA0. With the usual small-angle approximation, we find
that the distance AA0 is equal to ulc=�, that is, ul wavelengths. Thus, the wave from
direction S0 is delayed at A by a time interval � D ul=�, relative to the wave from
S. If we represent the wave from direction S0 by E.l; t/ at O, at A it is E.l; t � �/.

Fig. 15.2 Diagram to illustrate the variation of phase along a line OB that is perpendicular to
the direction of a source OS, where l is the direction cosine that specifies the direction OS0

and is defined with respect to OB. The angle SOS0 is small and is thus approximately equal
to l, as indicated. The line OS0 points toward another part of the same source, and OB0 is
perpendicular to it.
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Now because the incident wavefronts are plane, the amplitude of the wave does not
change over the distance AA0. However, the phase changes by �� D ul, so for the
wave from S0 at A, we have

E.l; t � �/ D E.l; t/ e�j2�ul : (15.18)

If e.u; t/ is the field at A resulting from radiation from all parts of the source, then

e.u; t/ D
Z 1

�1
E.l; t/ e�j2�uldl : (15.19)

It will be assumed that the angular dimensions of the source are not large, so also
we have

E.l; t/ D 0; jlj � 1 : (15.20)

The condition specified in Eq. (15.20) allows us to write the limits of the integral in
Eq. (15.19) as ˙1. Note that Eq. (15.19) has the form of a Fourier transform, and
the inverse transform gives E.l; t/ from e.u; t/. Equation (15.19) will be required in
the following subsection.

15.2.2 Source Coherence

We now return to the spatial coherence of the source and follow part of a more
extensive analysis by Swenson and Mathur (1968). As a measure of the spatial
coherence, we introduce the source coherence function 	 . This is defined in terms
of the cross-correlation of signals received from two different directions, l1 and l2,
at two different times:

	.l1; l2; �/ D lim
T!1

1

2T

Z T

�T
E.l1; t/E

�.l2; t � �/ dt

D hE.l1; t/E
�.l2; t � �/i : (15.21)

Finite limits are used in the integral to ensure convergence. 	.l1; l2; �/ is similar to
the coherence function of a source or object discussed by Drane and Parrent (1962)
and Beran and Parrent (1964).

The complex degree of coherence of an extended source is the normalized source
coherence function

	N.l1; l2; �/ D 	.l1; l2; �/p
	.l1; 0/	.l2; 0/

; (15.22)
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where 	.l1; �/ is defined by putting l1 D l2 in Eq. (15.21), that is, 	.l1; �/ D
	.l1; l2; �/. It can be shown by using the Schwarz inequality that
0 � j	N.l1; l2; �/j � 1. The extreme values of 0 and 1 correspond to the cases
of complete incoherence and complete coherence, respectively. When dealing with
extended sources of arbitrary spectral width, it is possible that, for a given pair of
points l1 and l2; j	N.l1; l2; �/j is zero for one value of � and nonzero for another
value. Therefore, more stringent definitions of complete coherence and incoherence
are necessary. The following definitions are adapted from Parrent (1959):

1. The emissions from the directions l1 and l2 are completely coherent (incoherent)
if j	N.l1; l2; �/j D 1 (0) for all values of � .

2. An extended source is coherent (incoherent) if the emissions from all pairs of
directions l1; l2 within the source are coherent (incoherent).

In all other cases, the extended source is described as partially coherent.
Consider now the coherence function of the field e.x�; t/ of a distant source

measured, say, at the Earth’s surface, x� being a linear coordinate measured in
wavelengths in a direction normal to l D 0:

�.x�1; x�2; �/ D lim
T!1

1

2T

Z T

�T
e.x�1; t/e

�.x�2; t � �/ dt

D he.x�1; t/e
�.x�2; t � �/i : (15.23)

This is a variation of the mutual coherence function �12 in Eq. (15.1), in which
the positions of the measurement points defined by x�1 and x�2 are retained, rather
than just the relative positions given by the baseline components. By using the
Fourier transform relationship between E.l; t/ and e.u; t/ derived in Eq. (15.19), and
replacing u by x�, we obtain

�.x�1; x�2; �/ D
Z 1

�1

Z 1

�1
	.l1; l2; �/e�j2�.x�1l1�x�2l2/dl1 dl2 ; (15.24)

and the inverse transform, which is

	.l1; l2; �/ D
Z 1

�1

Z 1

�1
�.x�1; x�2; �/ ej2�.x�1l1�x�2l2/dx�1 dx�2 : (15.25)

The relationships in Eqs. (15.24) and (15.25) do not provide a means of measuring
the intensity distribution of a source, except in the case of complete incoherence.
For complete incoherence, the coherence function can be expressed as

	.l1; l2; �/ D 	.l1; �/ ı.l1 � l2/ ; (15.26)

where ı is the delta function. Using the relation in Eq. (15.26) in conjunction with
Eqs. (15.24) and (15.25), we find that the self-coherence function of a completely
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incoherent source and its spatial frequency spectrum are Fourier transforms of each
other:

�.u; �/ D
Z 1

�1
	.l; �/ e�j2�uldl (15.27)

	.l; �/ D
Z 1

�1
�.u; �/ ej2�uldu ; (15.28)

where u D x�1 � x�2. It is clear that �.u; �/ is independent of x�1 and x�2 and
depends only on their difference. Thus, u can be interpreted as the spacing of two
sample points between which the coherence of the field is measured, and also as the
spatial frequency of the visibility measured over the same baseline. For � D 0, from
Eqs. (15.21) and (15.26), we obtain

	.l; 0/ D ˝jE.l/j2˛ ; (15.29)

which is the one-dimensional intensity distribution of the source, I1, introduced in
Eq. (1.10). Then from Eqs. (15.27) and (15.29),

�.u; 0/ D
Z 1

�1
˝jE.l/j2˛ e�j2�uldl : (15.30)

�.u; 0/ is measured between points along a line normal to the direction l D 0. As
measured with an interferometer, it is also the complex visibility V. Eq. (15.30)
is the Fourier transform relationship between mutual coherence (visibility) and
intensity.

When the incoherence condition in Eq. (15.26) is introduced into Eqs. (15.24)
and (15.25), two results appear: the van Cittert–Zernike relation between mutual
coherence and intensity, and the stationarity of the mutual coherence with respect
to u. The physical reason underlying these results is seen in Fig. 15.2. When the
wavefronts incident at different angles combine at any point, the relative phases of
their (Fourier) frequency components vary linearly with the position of the point
(e.g., the position of A along the line OB in Fig. 15.2), and for small l, they also
vary linearly with the angle on the sky. As a result, the phase differences of the
Fourier components at two points depend only on the relative positions of the points,
not their absolute positions. Interferometer measurements of mutual coherence
incorporate the phase differences for a range of angles of incidence governed by
the angular dimensions of the source and the width of the antenna beams. The
linear relationship between phase and position angle allows us to recover the angular
distribution of the incident wave intensity from the variation of the mutual coherence
as a function of u, by Fourier analysis. If the angular width of the source is small
enough that the distance AA0 in Fig. 15.2 is always much less than the wavelength,
then the form of the electric field remains constant along the line OA, and the source
is not resolved.
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15.2.3 Completely Coherent Source

Parrent (1959) has shown that an extended source can be completely coherent
only if it is monochromatic. As examples of such a source, one may visualize the
aperture of a distant, large antenna, or an ensemble of radiating elements all driven
by the same monochromatic signal. The aperture considered in Sect. 15.1.2 is a
conceptual example of a coherent source. The difference between the responses of
an interferometer to a fully coherent source and to a fully incoherent one can be
explained by the following physical picture. The source can be envisioned as an
ensemble of radiators distributed over a solid angle on the sky. In the case of a
coherent source, the signals from the radiators are monochromatic and coherent.
The radiation in any direction combines into a single monochromatic wavefront
and produces a monochromatic signal in each antenna of an interferometer. The
output of the correlator is directly proportional to the product of the two (complex)
signal amplitudes from the antennas. Thus, if a coherent source is observed with
na antennas, the na.na � 1/=2 pairwise cross-correlations of the signals that are
measured can be factored into na values of complex signal amplitude.

In contrast, for an incoherent source, the outputs from radiating elements
are uncorrelated and must be considered independently. Each one produces a
component of the fringe pattern in the correlator output. But since the phases of
these fringe components depend on the positions of the radiators within the source,
the combined response is proportional not only to the signal amplitudes at the
antennas but also to a factor that depends on the angular distribution of the radiators.
This factor, of magnitude � 1, is equal to the modulus of the visibility normalized
to unity for an unresolved (point) source of flux density equal to that of the source
under observation. Unless the source is unresolved, it is not possible to factor the
measured cross-correlations into signal amplitude values at the antennas. Because
the emissions of the radiating elements of a source are uncorrelated, the information
on the source distribution is preserved in the ensemble of wavefronts they produce
at the antennas.

As shown by the derivation of the angular dependence of the radiation from a
coherently illuminated aperture [Eq. (15.12)], and suggested by the analogy with a
large antenna, the radiation from a coherent source is highly directional. Thus, the
signal strengths observed depend on the absolute positions of the two antennas of
an interferometer, as in Eqs. (15.24) and (15.25), not only on their relative positions,
as is the case for an incoherent source. The ability to factor the signal outputs from
a series of baselines, and the nonstationarity of the correlator output measurements
with the absolute positions of the antennas, are two characteristics that could allow a
coherent source to be recognized (MacPhie 1964). From the analysis in Sect. 15.1, it
is clear that a similar range of antenna spacings is required to resolve an incoherent
source or to explore the radiation pattern of a coherent source of the same angular
size.
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15.3 Scattering and the Propagation of Coherence

It is well known that optical telescope images of single stars made with exposure
times short compared with the timescale of atmospheric scintillation exhibit mul-
tiple stellar images (see Sect. 17.6.4). These images result from the scattering of
light from the star by irregularities in the Earth’s atmosphere. Something closely
analogous to this occurs in the case of imaging of an unresolved radio source
through a medium with strong irregular scattering, such as the interplanetary
medium within a few degrees of the Sun, as described in Sect. 14.3. Since each
scattered image results from the emission of the same source, one is led to expect
that such a situation would simulate the effect of a distribution of coherent point
sources. In this section, we examine the effects of scattering by considering the
propagation of coherence in space, following in part a discussion by Cornwell et al.
(1989). This formalism suggests methods for the recovery of the unscattered image
from the observed image.

Given a radiating surface, we wish to know the mutual coherence function on
another (possibly virtual) surface in space. In the typical radio astronomy situation, a
number of simplifying assumptions can be made about the geometry of the problem.
Consider the situation illustrated in Fig. 15.3, in which narrowband radio waves
propagate from surface S to surface Q. The mutual coherence of two points in space
is the expectation of the product of the (copolarized) electric fields at the two points.

Fig. 15.3 Simplified geometry for examining the propagation of coherence. S represents an
extended source, Q is the location of a scattering screen, and B is the measurement plane. Surfaces
S, Q, and B are plane and parallel, and r1, r2, d1, and d2 are much greater than the wavelength. All
rays are nearly (but not necessarily exactly) perpendicular to the surfaces.
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For signals correlated with arbitrary time delay, the mutual coherence is

�.Q1;Q2; �/ D hE.Q1; t/E
�.Q2; t � �/i : (15.31)

The mutual coherence function � is a function of the field at two points and the
time difference � . We consider the propagation of mutual intensity, that is, the
mutual coherence evaluated for � D 0. Following common practice, we represent
the mutual intensity by J.Q1;Q2/ � �.Q1;Q2; 0/. J will be subscripted by S, Q,
or B to indicate the corresponding plane (Fig. 15.3) of the mutual intensity value.
We assume that the emitting surface is completely incoherent, as is usually the case
for astronomical objects, and that the observed radiation is restricted to a narrow
band of frequencies, as dictated by the characteristics of the receiving system. From
Eq. (15.31) and the Huygens–Fresnel formulation of radiation, it can be shown
(Born and Wolf 1999, Goodman 1985), by a calculation similar to the one used
in deriving Eq. (15.6), that the mutual intensity for points Q1 and Q2 is

JQ.Q1;Q2/ D ��2

Z Z
S
JS.S1; S2/

expŒ�j2�.r1 � r2/=��

r1 r2

dS1 dS2 ; (15.32)

where dS1 dS2 is a surface element of S, and � is the wavelength at the center of the
observed frequency band.

The condition of incoherence can be represented by the use of a delta function
(Beran and Parrent 1964), as in Eq. (15.26). Here, the mutual intensity is represented
by a delta function, and thus, the intensity distribution on the surface Q is found by
allowing points Q1 and Q2 to merge:

JS.S1; S2/ D �2I.S1/ ı.S1 � S2/ ; (15.33)

where the factor �2 has been included to preserve the physical dimension of
intensity. Equation (15.32) then becomes

JQ.Q1;Q2/ D
Z
S
I.S1/

expŒ�j2�.r1 � r2/=��

r1 r2

dS : (15.34)

When the angular dimension of the source is infinitesimal, that is, when the source is
unresolved, the integration over the source becomes trivial, and the mutual intensity
can be factored into terms depending, respectively, on r1 and r2:

JQ.Q1;Q2/ D I.S/

�
exp.�j2�r1=�/

r1

� �
exp. j2�r2=�/

r2

�
; (15.35)

where r1 and r2 now originate at a single point S. In the more general case of
a resolved source, Eq. (15.34) cannot be factored. Equations (15.34) and (15.35)
describe for their respective cases the propagation of mutual coherence in situations
subject to the constraints of Fig. 15.3 and thus can be used to determine the
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mutual intensity on surface Q resulting from incoherent radiation from surface
S. Examination of Eq. (15.31) reveals that, for the extended source S, the mutual
intensity on Q depends on both r1 and r2 for all pairs of points on Q. Thus, the field
at Q is at least partially coherent for all sources, including those of finite extent. This
is intuitively reasonable, as all points on Q are illuminated by all points on S. In fact,
it can be demonstrated rigorously that an incoherent field cannot exist in free space
(Parrent 1959).

Suppose now that we have a situation in which the surface Q is actually a screen
of irregularities in the transmission medium, such as plasma or dust, which scatters
the radiation from S. The mutual intensity incident on the screen is modified by a
complex transmission factor T.Q/ to produce the transmitted mutual intensity

JQt.Q1;Q2/ D T.Q1/T
�.Q2/JQi.Q1;Q2/ ; (15.36)

where subscripts i and t indicate the incident and transmitted mutual intensity,
respectively. From Eq. (15.34), we now define a “propagator” (Cornwell et al. 1989)
for mutual intensity:

W.S;B/ D
Z
S

T.Q/ expŒ�j2�.r C d/=��

r d
dS ; (15.37)

where r and d are defined in Fig. 15.3. Then the mutual intensity on surface B is
given, in terms of the mutual intensity of an extended source S, by

JB.B1;B2/ D ��4

Z Z
S
JS.S1; S2/W.S1;B1/W

�.S2;B2/ dS1 dS2 : (15.38)

For an incoherent extended source,

JB.B1;B2/ D ��2

Z
S
I.S/W.S;B1/W

�.S;B2/ dS ; (15.39)

and for a point source of flux density F, the mutual intensity on B becomes

JB.B1;B2/ D F��2W.S;B1/W
�.S;B2/ : (15.40)

Again, for the unresolved source, the mutual intensity on B consists of two factors,
each depending only on one position on B. However, for an extended incoherent
source distribution on S, the mutual intensity depends on differences in position and
therefore cannot be factored.

The existence of a scattering screen between a source and an observer, with an
instrument of limited aperture, raises the possibility of greatly increased angular
resolution resulting from the much larger extent of the scattering screen. The partial
coherence of radiation from the screen requires that the intensity be measured
at all points on the measurement plane B, spaced as dictated by the Nyquist
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criterion, rather than at all points in the spatial frequency spectrum as allowed by
the van Cittert–Zernike theorem. The former observing mode results in very much
more data than does the latter. In two spatial dimensions, a large redundancy of
data results, so that in principle, not only can the scattering screen be characterized,
but the source as well. In this respect, the problem is similar to that of self-
calibration (Sect. 11.3.2). Unfortunately, in the case of the scattering screen, the
practical difficulties of such observations are enormous, and few significant attempts
have been made to apply the principle. Cornwell and Narayan (1993) discuss
the possibilities of statistical image synthesis using scattering to obtain ultrafine
resolution in a manner somewhat analogous to speckle imaging (see Sect. 17.6.4).

Emission from a radio source that undergoes strong scattering during propagation
through space has been investigated by Anantharamaiah et al. (1989), and Cornwell
et al. (1989). To demonstrate the response of a radio telescope to such a spatially
coherent source distribution, they observed the strong and essentially pointlike
source 3C279, which passes close to the Sun each year. Under these conditions, the
scattering is strong enough to cause amplitude scintillation of the received signals.
Anantharamaiah and colleagues used the VLA in its most extended configuration,
for which the longest baselines are approximately 35 km. The velocity of the solar
wind, of order 100–400 km s�1, causes irregularities to sweep across the array
in �100 ms, so it was necessary to make snapshot observations of duration 10–
40 ms to avoid smearing of the image by the movement of the scattering screen.
Observations were made at wavelengths of 20, 6, and 2 cm, with the source at
angular distances of 0:9ı to 5ı from the Sun. It was found that the correlator
output values could be factored as expected for a coherent source. When correlated
signals were averaged for about 6 s, an enlarged image of the source was obtained,
and the enlargement increased as the distance from the Sun decreased. It was
also demonstrated that it would be possible to determine the characteristics of
the scattering screen by measuring the mutual intensity function on the ground,
provided that the latter is measured completely in the two-dimensional spatial
frequency domain. It is not possible to distinguish between a spatially coherent
extended source and a scattering screen illuminated by a point source.

A significant observation was made by Wolszczan and Cordes (1987), who
were able to infer the dimensions of structure within pulsar PSR 1237+25 from an
occurrence of interstellar scattering. The pulsar was observed with a single antenna,
the 308-m-diameter spherical reflector at Arecibo, at a frequency of 430 MHz.
Dynamic spectra of the received signal (i.e., the received power displayed as a
function of both time and frequency) showed prominent band structure with maxima
separated by � 300–700 kHz in frequency. This was interpreted in terms of a
thin-screen model of the interstellar medium, in which refraction of rays from
the pulsar occurred at two separated points in the screen. The analysis of such a
model is complicated by the occurrence of both diffractive and refractive scattering,
resulting from structure smaller and larger than the Fresnel scale, respectively
(Cordes et al. 1986). The refraction gave rise to two images of the source at the
radio telescope, resulting in fringes in the intensity of the received signal. The
distance of the pulsar (0.33 kpc) and its transverse velocity (178 km s�1) were
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known from other observations, and the distance of the screen was taken to be half
the distance of the pulsar. It was deduced that the angular separation of the images
was � 3:3 mas, corresponding to a spacing of �1 AU (astronomical unit) between
the refracting structures. In effect, the refracting structures constitute a two-element
interferometer, with fringe spacing � 1 
as. For comparison, the angular resolution
of a baseline equal to the diameter of the Earth at 430 MHz would be 44 mas. The
particular conditions that resulted in this observation lasted for at least 19 days, and
during that period, observations of other pulsars did not show similar scattering.
This strongly suggests that the observed phenomenon resulted from a fortuitous
configuration of the interstellar medium in the direction of the pulsar.

Apart from cases of scattering such as that described, there are essentially no
clear cases of spatially coherent astronomical sources, although coherent mecha-
nisms may occur in pulsars and masers (Verschuur and Kellermann 1988). Fully
coherent sources are not amenable to synthesis imaging using the van Cittert–
Zernike principle and thus do not fall within the area of principal concern of
this book. Further material on coherence and partial coherence can be found, for
example, in Beran and Parrent (1964), Born and Wolf (1999), Drane and Parrent
(1962), Mandel and Wolf (1965, 1995), MacPhie (1964), and Goodman (1985).
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