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Abstract. By using the Optimal Auxiliary Functions Method (OAFM), nonlinear free 
thermomechanical vibration of functionally graded beam (FGB) on Winkler-Pasternak elastic 
foundation is studied. Based on von Karman geometric nonlinearity, on Euler-Bernoulli beam 
theory and also on Galerkin procedure we obtain a second-order nonlinear differential equation 
with quadratic and cubic nonlinear terms. The results obtained by means of OAFM are compared 
and shown to be in an excellent agreement with available solutions known in the literature. 

1 Introduction 

The concept of functionally graded materials (FGM) 
appeared in 1984 in Sendai area of Japan. These 
are heterogeneous, anisotropic materials and are 
made from a mixture of ceramics and metals. The 
mechanical properties of them varies smoothly and 
continuously from the surface to other surface of 
the material. Initially FGM were designed as 
thermal barrier materials for aerospace application 
and fusion reactors. These materials had found 
application in various fields of engineering like 
automotive, semiconductor industry, manufacturing 
industry, biomedical science, aerospace, defense 
industry and general structural element in thermal 
environments. 

Many researchers have investigated different aspects 
of FGM. The effect of damage on free and forced 
vibration of a FG cantilever beam is studied by Birman 
and Byrd [1]. The modes of damage include a region 
with degraded stiffness adjacent to the root of the beam, 
a single delamination crack and a single crack at the root 
cross section of the beam propagating in the thickness 
direction. Dokmeci presented a system of 1-D equations 
so that to analyze the thermoviscoelastic behavior of an 
axially FGB of rectangular cross section at high-
frequency vibration [2]. The system of 1-D equation 
governs the extensional, flexural, torsional and thickness 
shear and also the coupled vibrations of the beam at high 
frequency. Khorrambadi [3] analyzed the free vibration 
of FGB with piezoelectric actuators subjected to axial 
compressive loads. The elasticity modulus of beam is 
assumed to vary as a power form of the thickness 
coordinate variable. The effect of the applied voltages, 
axial compressive loads and FG index of the vibration 
frequency are discussed. The static Green’s functions for 

FG Euler-Bernoulli and Timoshenko beams are 
presented by Carl et al [4]. All material properties are 
arbitrary functions along the beam thickness direction. 
For symmetrical material properties along the beam 
thickness directions and symmetric cross-sections, the 
resulting stress distribution is also symmetric. Alshabatat 
and Naghshineh presented in [5] a design method to 
optimize the material distribution of FGM with respect 
to some vibration and acoustic properties. Two novel 
volume fraction laws are used to describe the material 
volume distributions through the length of the FGB. Ke 
et al [6] discussed the effects of material property 
distribution and end supports on the nonlinear dynamic 
behavior of FGB. The direct numerical integration 
method and Runge-Kutta method are employed to find 
the nonlinear vibration of FGB with different end 
supports. Yaghobi and Torabi [7] investigated an analytic 
solution using variational iteration method for nonlinear 
vibration and post-buckling of beams made of FGM 
resting on a nonlinear elastic foundation, subject to an 
axial force. Mohammadi [8] considered the non-linear 
terms in von-Karaman’s strain-displacement relation 
with the help of Hamilton’s principle. The equation of 
potential and kinetic energy of the beam are derived and 
as a result, the nonlinear motion equation could be 
reached. Fu et al [9] used the finite difference method or 
dynamic equations of FGB with piezoelectric patches. 
The Eshelby-Mori-Tanaka approach based on an 
equivalent fiber is used by Thomas et al [10] to 
investigate free vibration of functionally graded 
nanocomposite beam reinforced by randomly oriented 
straight single-walled carbon nanotubes. The first five 
normalized mode shapes for this type of beam with 
different boundary conditions and different carbon 
nanotubes orientation are presented. The large-amplitude 
free vibration of clamped immovable thin beams made 
of FGM is investigated by Elmaguiri et al [11] using the 
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energy method and a multimode approach. By means of 
harmonic balance method, the equations of motion are 
converted into a nonlinear algebraic form and are solved 
by an iterative numerical method.  

The linear and nonlinear vibration behavior of 
monomorph and bimorph beam made from a mixture of 
PZT4 and PZT-5H with material composition are 
investigated by Yang et al [12]. Maganti et Nalluri [13] 
considered the deformation variables to determine 
flapwise bending of rotating functionally graded double 
tapered beam attached to a rigid hub. The equations of 
motions are derived using hybrid deformation variables 
employing Lagrange’s approach and Rayliegh-Ritz 
method is used to evaluate the frequencies of the beam. 
The effect of temperature field on the natural frequencies 
of FGB with different conditions is studied by 
Kashyzadeh and Asforjani [14]. Modal analysis has been 
performed for a FGB with clamped-clamped and 
clamped-free supports. The vibration of Euler-Bernoulli 
beam with FGM which is modeled by fourth-order 
partial differential equations with variable coefficients 
are examined by Yigit et al [15] by using the Adomian 
Decomposition Method. Su et al [16] presented a unified 
solution for free and transient analyses of a functionally 
graded piezoelectric curved beam with general boundary 
conditions within the framework of Timoshenko beam 
theory. The formulation is derived by means of the 
variational principle in conjunction with a modified 
Fourier series. Fundamental frequency of sandwich 
beams with functionally graded face sheet and 
homogenous core is studied by Mhu and Zhao [17].  

The classical plate theory is used to analyze the face 
sheet and a higher-order theory is used to analyze the 
core of sandwich beams in which both the transverse 
normal and shear strains of the core are considered. 
Shwartsman and Majak [18] studied free vibration of 
axially functionally graded Euler-Bernoulli beams with 
elastically restrained ends. The method of initial 
parameters in differential form is treated for the 
numerical solution of the problem. Numerical method 
proposed has fourth order of accuracy and the 
Richardson extrapolation of results with different step 
sizes gives solutions of the sixth order of accuracy. 

In the present paper are investigated the nonlinear 
free thermomechanical vibrations of FGB on Winkler-
Pasternak elastic foundation. Considering von Karaman 
geometric nonlinearity, the Euler-Bernoulli beam theory 
and Galerkin procedure, we obtain a second-order 
nonlinear differential equation with quadratic and cubic 
nonlinear terms. This equation is solved by using a new 
analytical approximate approach – OAFM. The accuracy 
of the analytical results obtained through the proposed 
approach is proved by numerical simulations developed 
in order to validate analytical results. Several numerical 
examples show that the proposed procedure is simple 
and easy to use. 

2 The governing equations 

In what follows, we consider a FGB of length L, 
width b, and thickness h resting on an elastic 

foundation of Winkler-Pasternak type and subjected 
to an axial force P (fig.1). 

 
Fig.1. Schematic of the FGB with nonlinear foundation 
 

The mechanical properties of the FGB can be varied 
as a function along thickness, based on the rule of 
mixtures. Taking into account the rule of mixtures, we 
have  
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where subscript 1 and 2 denote the top surface (z=-h/2) 
and bottom surface (z=h/2) respectively. The constant k 
characterizes the distributions of material properties. The 
case k=0 corresponds to an isotropic homogenous beam.  

For a small strain, moderate deformation and 
rotation, the axial strain of the midplane of the beam 
accounting for the midplane stretching is given by [19]: 
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where, based on Euler-Bernoulli beam theory, the 
displacement of an arbitrary point along the x and z axes 
are ),,( tzxU and ),,( tzxW  respectively. If ),( txU and 

),( txW are displacement components in the midplane, 
then we have 
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where t is the time. The normal stress for the von 
Karaman type of geometry is given by the law 
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The curvature of the beam is given by 
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The axial, coupling and bending stiffness are defined 
by 
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Assuming that the initial temperature of the beam is 
zero, resultant force and thermal momentum are defined 
as 
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The total induced axial force Nx and bending moment 
Mx are related to the stress resultants as  
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The equations of motion for axial and transverse 
vibration of FGB based on Euler-Bernoulli beam theory 
and von Karaman geometric nonlinearity are 
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and Fw is reaction of the elastic Winkler-Pasternak 
foundation. 

Now, if the axial inertia is neglected, then from 
Eq.(14) gives 
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and therefore Nx is independent of x . From Eq.(17) we 
obtain  
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Supposing that the beam has immovable ends, 
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and integrating Eq.(20) with respect to x and having in 
attention that Nx is independent of x , we obtain 
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From Eqs.(14) and (22) results 
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Differentiating Eq.(24) with respect to x yields 
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where prime denotes derivative with respect to x . 
Substituting Eq.(24) into Eq.(15), we obtain  
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Furthermore, using Eqs.(15) and (26) we have  
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By replacing the Eqs.(22) and (27) into Eq.(17), the 
governing nonlinear thermomechanical vibration 
equation of FGM is obtained as follows 
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where the dot denotes derivative with respect to time. 
Due to the nonlinear elastic Winkler-Pasternak 

foundation, the second side of the Eq.(8) is defined as 
follows: 
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where kL and kNL are the linear and nonlinear coefficients 
respectively and ks is the shear coefficient of elastic 
foundation. In order to derive general results 
independent of dimensions and specific sizes, we 
introduce the dimensionless parameters: 
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By replacing Eq.(30) into Eq.(28) it results 
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The Eq.(31) is a partial differential equation in two 
dimension, displacement x and time t. Using the 
Galerkin method, Eq.(31) becomes an ordinary 
differential equation. Assuming that the transverse 
displacement is expressed as 
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where X(x) is the linear fundamental vibration mode and 
T(t) is the time dependent function to be determined. 
Substituting Eq.(32) into Eq.(31) and applying 
Galerkin’s method, in which the orthogonality property 
of the mode shapes is used, yields: 
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For the case of simply supported beam, the 
fundamental vibration mode is 

xxX sin2)(     (35) 

The Eq.(33) contains a quadratic nonlinear term due 
to the presence of bending-extension coupling effect in 
FGB and cubic nonlinear term due to the Winkler-
Pasternak foundation. This equation does not have an 
exact solution, but by means of OAFM may be obtained 
an approximate solution using a set of auxiliary 
functions. We remark that in Eq. (33) there exists no 
small or large parameter. 

The beam centroid is subjected to the following 
initial conditions 
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3 The Optimal Auxiliary Functions 
Method 
In the following, we consider the general form of a 
nonlinear differential equation 
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where L is a linear operator and N is a nonlinear 
operator, t denotes the independent variable and T(t) is 
an unknown function. 

It is known that an exact solution for strongly 
nonlinear differential equations of type (37) and (38) is 
frequently hard to be found. To find an approximate 
solution, we suppose that this solution can be expressed 
in the form 
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where the initial and the first approximation will be 
determined as described in what follows. 

Substituting Eq.(39) into (37), it results in 
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The initial approximation T0(t) can be identified from 
the linear equation 
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The nonlinear term in the last equation is expanded in 
the form 
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To avoid the difficulties that appear in solving the 
nonlinear differential equation (43), and to accelerate the 
rapid convergence of the first approximation T1, instead 
of the last term arising in (43), we propose another 
expression such that Eq.(43) can be written in a new 
form 
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where A1 and A2 are two arbitrary auxiliary functions 
depending on the initial approximation T0(t) and several 
unknown parameters Cj and Ck i=1,2,…,n, j=1,2,…,s, 
k=s+1,s+2,…,n and P[N(T0(t)] is a part of N[T0(t)]. The 
auxiliary function A1 and A2 (namely auxiliary functions) 
are not unique and are of the same form as T0(t). If 
N[T0(t)]=0 then it is clear that T0(t) is an exact solution 
of Eq.(37). 

The unknown parameters Ci can be optimally 
identified via different methods, such as Galerkin 
method, Ritz method, the least square method, 
colocation method and so on [19-23]. If 
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Alternatively, an equivalent system of algebraic 
equations useful for identifying the values of the 
parameters Ci would be given by 
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By means of this novel method, the first-order 
approximate solution given by Eq.(39) is well 
determined after the identification of the optimal values 
of the initial unknown convergence-control parameters 
Ci, i=1,2,…,n.  

It will be proved that our procedure is a powerful tool 
for solving nonlinear problems without small or large 
parameters. 

4 Application of OAFM to Eqs. (33) and 
(36) 
If we introduce the independent variable t  and the 
dependent variable T=Ay, then Eqs. (33) and (36) 
become, respectively 

03
2

2
2

22  ycAybAyay


  (50) 

0)0(,1)0(  yy    (51) 

where prime denotes derivative with respect to τ and ω is 
the frequency of the system. 

For Eq.(50) the linear operator may be written 

yyyL )]([      (52) 

and the corresponding nonlinear operator becomes 

3
2

2
2

22 1)]([ ycAybAyayN


 





    (53) 

The Eqs.(41) and (42) become 

0)0(,1)0(,0 000  yyyy   (54) 

and has the solution 

 cos)(0 y     (55) 

Substituting Eqs.(55) into (53), we obtain 












3cos
4

2cos

cos
4
31

2
)]([

2

2

2

2

2

220

cAbA

cAabAyN















 (56) 

The Eq.(46) can be written as 

0)0()0(,0),(cos

))](([),(cos

112

0111





yyCA

yNPCAyy

j

j




   (57) 
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where  










2coscos
4
31

2
))](([

22

2

2

20

bAcAa

bAyNP















  (58) 

)2cos2cos2(),(cos 3211  CCCCA j     (59) 

)4cos3cos(),(cos 442  CCCA k   (60) 

where C1, C2, C3 and C4 are unknown parameters at this 
moment. However, the function A1, A2 and P are not 
unique. Alternatively, we may choose these functions in 
the form: 




 cos
4
31

2
))](([ 2

2

220 










cAabAyNP   (61) 

)cos2(),(cos 211  CCCA j    (62) 

)5cos3cos(),(cos 432  CCCA k   (63) 

or yet 







 3cos
4

2cos
2

))](([ 2220
cAbAbAyNP     (64) 

)3cos22cos2

cos2(),(cos

43

211





CC

CCCA j




 (65) 

0),(cos2 kCA     (66) 

and so on. Using only Eqs. (58), (59) and (60), Eq.(57) 
becomes 

0)0()0(4cos

3cos1
4

34

2cos1
4

34)
2
1(

cos)(1
4

34
2
3

2
1

4
34

2

11532

42232

2

22

2

132

312

2

22

2
3

22

2

1211







 




























































































yyCCbA

CCbACcAa

CcAaCCbA

CCcAaCbA

bACCcAaCbAyy















  (67) 

The solution of Eq.(67) is chosen so that to contain 
no secular terms, which lead to the condition  

31

222

2
3

4
3

CC
CbAcAa


   (68) 

The solution of Eq.(67) is given by 

)4cos(cos
215

1)3cos](cos

1
4

34
28

1)2cos

(cos1
4

34)2(
23

1

2
1

4
34

2
),(

4

324

32

2

22

22

2

312

3222

2

121



















 











































 
















C

CbAC

CcAaCbA

CcAaCCbA

CbACcAaCbACy i

(69) 

From Eqs. (55), (69) and (39) and taking into account 
that t  and T=Ay, we can get the first-order 
approximate solution of Eqs.(33) and (36) in the form 

 

 ttACCbAt

tACCAcAaACbA

ttCAcAaA

CCbAtCbA

CcAaACbAtAtT




















4coscos
215

1)3cos

(cos
4

34
28

1

2coscos
4

34

2
)2(

3
1)cos1(

2

1
4

34
2

cos)(

52
3

2

432

2

2
2

2

22

3

2
31

2

2
3

2

22

2

12

2



































































































(70) 

where ω is given by Eq.(68). 

5 Numerical examples 
We consider the following three cases, in which the 

parameters a, b and c are obtained from Eqs. (34) and 
(35):  

42

3
3

2
1

4

2
3

22,








kc

bkka
(71) 

5.1 Case 1  

For k1=k3=50 and k3=25, α=1, λ=0.1, A=0.6, the 
parameters Ci and ω are obtained using the described 
procedure as 

9571.25 2958,0.00005451=C
 08542,-0.0241556=C 6496,0.16503638=C
 31152,-0.2868078=C 48507,-0.8035880=C

5

43

21


(72) 

The first-order approximate solution of Eqs.(33) and 
(36) is 
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tcos4 720.00002359
+tcos3 0.00121644+tcos2 570.00006798-

-tcos 0.598237+ 30.00059062=(t)T







  (73) 

To emphasize the accuracy of the obtained solution, 
we compare the approximate result obtained through 
OAFM with the numerical integration results. Fig.2 
presents a comparison of the present solution (72) and 
numerical results obtained by a fourth-order Runge-
Kutta method. 

 

 
Fig.2. Comparison between the approximate solution (73) and 
numerical integration results 

________ numerical; _ _ _ _ analytical 

5.2 Case 2  

In the second case, for k1=50, k2=40 and k3=20, we 
have 

9352.23 46,00055225990.00005828=C
 510421,-0.0271212=C 03513,0.17079213=C
 209976,-0.2991968=C 353162,-0.8086487=C

5

43

21


(74) 

and therefore 

tcos4 290.00002904
+tcos3 0.00133548+tcos2 290.00004228-

-tcos 0.59808+ 0.00059746=(t)T







  (75) 

 
Fig.3. Comparison between the approximate solution (75) and 
numerical integration results 
________ numerical; _ _ _ _ analytical 

5.3 Case 3 

In the last considered case, k1=40, k2=30 and k3=50, 

such that 

7944.25 754,62546717160.00003236=C
 276983,-0.0266366=C 531247,0.18086458=C
 1383991,-0.3458418=C 750014,-0.8652502=C

5

43

21


(76) 

and therefore 

tcos4 280.00002731
+tcos3 0.00129126+tcos2 870.00001642

+tcos 0.598285+ 50.00037982=(t)T











  (77) 

In figs.3 and 4 are compared the solutions (75) and 
(77) with the corresponding numerical integration 
results. 

 

 
 

Fig.4. Comparison between the approximate solution (77) and 
numerical integration results 

________ numerical; _ _ _ _ analytical 
 
From Figs.2-4 one can be observed that the first-

order approximate analytical results obtained by means 
of OAFM are almost identical with the numerical 
simulation results in all considered cases for various 
values of the parameters ki, i=1,2,3. 

6 Conclusions 
In this work, we proposed a reliable new technique, 
namely the Optimal Auxiliary Functions Method 
(OAFM), which accelerates the rapid convergence of the 
approximate analytical solution of nonlinear 
thermomechanical vibration of a FGB on Winkler-
Pasternak foundation.  

The proposed procedure is valid even if the nonlinear 
equation does not contain any small or large parameters. 
Our construction of the first iteration is different from 
other traditional approaches especially concerning the 
optimal auxiliary functions which depend on some 
initially unknown parameters Ci. 

The initially unknown parameters, called 
convergence-control parameters, after identifying their 
optimal values, provide a fast convergence of the 
approximate analytical solutions using only one 
iteration. 

The main advantage of the proposed procedure is the 
possibility to optimally control and adjust the 
convergence of the solutions through the auxiliary 
functions. 
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The obtained approximate analytical solutions are in 
excellent agreement with the numerical integration 
results. This proves the validity of our approach, and on 
the other hand, proves that this method is very efficient 
in practice. 
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