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Background initialization and foreground
segmentation for bootstrapping video sequences
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Abstract

In this study, an effective background initialization and foreground segmentation approach for bootstrapping video
sequences is proposed. First, a modified block representation approach is used to classify each block of the current
video frame into one of four categories, namely, “background,” “still object,” “illumination change,” and “moving
object.” Then, a new background updating scheme is developed, in which a side-match measure is used to
determine whether the background is exposed. Finally, using the edge information, an improved noise removal
and shadow suppression procedure with two morphological operations is adopted to enhance the final segmented
foreground. Based on the experimental results obtained in this study, as compared with three comparison
approaches, the proposed approach produces better background initialization and foreground segmentation
results.
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suppression
1. Introduction
The main purpose of foreground/background segmenta-
tion, a basic process of a computer vision application sys-
tem, is to extract some interesting objects (the foreground)
from the rest (the background) of each video frame in a
video sequence [1]. Background subtraction is a popular
foreground/background segmentation approach, which
detects the foreground by thresholding the difference be-
tween the current video frame and the modeled back-
ground in a pixel-by-pixel manner [2]. The correctness of
the modeled background is usually affected by three factors
[3]: (1) illumination changes; (2) dynamic backgrounds:
some “moving” objects, such as waving trees, fountains,
and flickering monitors, are not interested for a vision-
based surveillance system; and (3) shadows: foreground
objects often cast shadows, which are different from the
modeled background.
A background subtraction approach usually considers

three main issues: background representation, background
updating, and background initialization [1]. For the popu-
lar background subtraction approach called the Gaussian
background model, Stauffer and Grimson [4] presented a
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pixel-wise background representation scheme using the
mixture of Gaussians (MoG) and pixel-wise background
updating to update the intensity mean and variance of
each pixel in real-time. The MoG-based methods are ef-
fective for dynamic background scenes with multiple
background variations, but they are sensitive to noise and
illumination changes. Several existing MoG-based approa-
ches are proposed to improve their performances by adap-
tation of some MoG parameters [5], such as the number
of components [6,7], weights, mean, and variance [8-11],
learning rate [8,9,12,13], and feature type [9,14-17], and by
smoothing among spatially and temporally neighboring
pixels using spatial and temporal dependencies [18]. In
general, a training duration without foreground objects
(non-bootstrapping) is required and some ghost (false
positive) objects may be detected when some foreground
objects change their motion status (static or moving)
suddenly.
Recently, the background subtraction methods fo-

cused on background initialization for bootstrapping
video sequences [19-24], in which a training duration
without foreground objects is not available in some
cluttered environments [3,19]. That is, background
initialization for bootstrapping video sequences can be
defined as follows: given a video sequence captured by a
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stationary camera, in which the background is occluded
by some foreground objects in each frame of the video se-
quence, the aim is to estimate a background frame without
foreground objects [22,24]. Background initialization for
bootstrapping video sequences (or simply background
initialization) is widely used in the intelligent video sur-
veillance systems for monitoring crowded infrastructures,
such as banks, subway, airports, and lobby.
Two simple background initialization techniques are

the pixel-wise temporal mean and median filters over a
large number of video frames [20,21]. For the pixel-wise
temporal median filter, it is assumed that for each pixel
within the estimation duration, the exposure of the
background must be more than that of the foreground.
Based on the block-wise strategy, Farin et al. [19] used a
block similarity matrix to segment the input video
frames into foreground and background regions, which
contain the block-wise temporal differences between any
video frame pair. Reddy et al. [22] proposed a block se-
lection approach using the discrete cosine transform
(DCT) among some neighboring blocks to estimate the
unconstructed parts of the background. This approach is
usually degraded by similar frequency content within a
block candidate set and error propagation if some blocks
in a video frame are erroneously estimated. Note that, to
obtain the processing results, the whole video sequence
should be available to Reddy et al.’s approach. Then, the
DCT is replaced by the Hadamard transform to reduce
the computation time for block selection [23]. In addition,
a block selection refinement step using spatial continuity
along block borders is added to prevent erroneous block
selection. Most block-wise background initialization ap-
proaches need large memories and are computationally
expensive. Furthermore, one free-background video frame
is usually obtained as its output during the “learning”
duration.
For the frame-wise strategy with temporal smoothing,

the first video frame of a video sequence is usually treated
as the initial background for background initialization.
Most background initialization approaches maintain a
modeled background by iterative updating with tem-
poral smoothing between each input video frame and
the modeled background. Liu and Chen [25] proposed a
background modeling method, in which the background
similarity using the mean and variance information is
adopted to identify the background image. Moreover,
Scott et al. [26] updated the mean and variance informa-
tion by Kalman filter updating equations for maintaining
the modeled background. Maddalena and Petrosino [27]
automatically generated the background model without
prior knowledge by using self-organizing artificial neu-
ral networks. Each color pixel is represented by n × n
weight vectors to form a neural map. It is claimed that
they can handle bootstrapping scenes containing dynamic
backgrounds, gradual illumination changes, and shadows.
Using the growing self-organizing map, Ghasemi and
Safabakhsh [28] generated a codebook for detecting mov-
ing objects in the dynamic background scenes. The major
advantage of the methods using variant self-organizing
maps [27,28] is low computational complexity. Chiu et al.
[29] proposed a pixel-wise color background modeling ap-
proach using probability theory and clustering. To esti-
mate the modeled background completely, a suitable time
duration is required, because each of the R, G, and B color
components is iteratively updated by increasing/decreas-
ing 1 in the range of 0–255. The main weakness for the
background initialization and foreground segmentation
approaches using the frame-wise strategy with temporal
smoothing is that the “erroneous” parts in the modeled
background are slowly updated. Furthermore, this type of
approaches can work properly only when the video se-
quence contains fast “moving” foreground objects so that
the background is exposed most of the time.
On the other hand, within some existing approaches

[30-34], temporal smoothing is not adopted in background
updating. Chein et al. [30] proposed a pixel-wise video
segmentation approach with adaptive thresholding to de-
termine each pixel as a moving or stationary one. Each
pixel in the modeled background is then replaced by the
corresponding pixel in the current video frame if the pixel
is detected as a stationary one for some time duration.
That is, this type of approaches might not work well in
illumination-changing environments. Verdant et al. [31]
proposed three analog-domain motion detection algo-
rithms in video surveillance, namely, the scene-based
adaptive algorithm, the recursive average with estimator
algorithm, and the adaptive wrapping thresholding algo-
rithm, in which background estimation and variance of
each pixel are computed with nonlinear operations to per-
form adaptive local thresholding. Lin et al. [32] used a
classifier to determine whether an image block belongs to
the background for block-wise background updating. The
classifier using two learning methods, namely, the sup-
port vector machine and column generation boost, is
trained by some training data, which are manually
labeled as foreground/background blocks before back-
ground initialization. In addition, some foreground pre-
diction approaches may segment accuracy foreground
without background modeling. For example, Tang et al.
[33] proposed a foreground prediction algorithm, which
estimates each pixel in the current video frame belonging
to the foreground one. Given a segmentation result (an
alpha matte) of the previous video frame as an opacity
map, the opacity values [0–1] in an opacity map are
propagated from the previous video frame to the current
video frame using the foreground prediction algorithm. It
was claimed that the foreground can be predicted accur-
ately in sudden illumination changes. Zhao et al. [34]
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Figure 1 The framework of the proposed video background
initialization and foreground segmentation approach.
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proposed a learning-based background subtraction ap-
proach based on sparse representation and dictionary
learning. They made two important assumptions, which
enabled their approach to handle both sudden and gradual
background changes.
In this study, an effective background initialization and

foreground segmentation approach for bootstrapping vi-
deo sequences is proposed, which contains a block-wise
background initialization procedure and a pixel-wise fore-
ground segmentation procedure. First, a modified block
representation approach is used to classify each block of
the current video frame into one of four categories. Then,
a new background updating scheme is developed, in which
a side-match measure is used to determine whether the
background is exposed so that the modeled background
can be well determined. Finally, using the edge informa-
tion, an improved noise removal, and shadow suppression
procedure with two morphological operations is adopted
to enhance the final foreground segmentation results. The
main contributions of the proposed approach include: (1)
using motion estimation and correlation coefficient com-
putation to perform block representation (classification);
(2) developing four types of background updating for four
types of block representation; (3) using side-match meas-
ure to perform background updating of “moving object”
blocks; and (4) using a modified noise removal and sha-
dow suppression procedure to improve final foreground
segmentation results.
This article is organized as follows. In Section 2, the

proposed background initialization and foreground seg-
mentation approach is addressed. Experimental results
are described in Section 3, followed by concluding
remarks given in Section 4.

2. Proposed background initialization and
foreground segmentation approach
Figure 1 shows the framework of the proposed video back-
ground initialization and foreground segmentation ap-
proach for bootstrapping video sequences, which contains
four major processing steps, namely, block representation,
background updating, initial segmented foreground, and
noise removal and shadow suppression with two morpho-
logical operations. In Figure 1, the input includes the
current (gray-level) video frame It and the previous (gray-
level) video frame It–1 of a bootstrapping video sequence,
and the output includes the modeled background frame Bt

and the segmented foreground frame Ft, where i denotes
the frame number (index). Here, I(x,y)

t , I(x,y)
t−1 , B(x,y)

t , and
F(x,y)
t denote pixels (x,y) in It, It–1, Bt, and Ft, respectively.

Each video frame is W × H (pixels) in size, and each video
frame is partitioned into non-overlapping and equal-sized
blocks of size N × N (pixels). Let (i,j) be the block index,
where i = 0,1,2,. . .,(W/N) – 1 and j = 0,1,2,. . .,(H/N) – 1.
Here, b(i,j)

t = {I(iN+a,jN+b)
t : a, b = 0, 1, 2,. . .,N − 1}, b(i,j)

t−1 =
{I(iN+a,jN+b)
t−1 : a, b = 0, 1, 2,. . .,N − 1}, and ebti;jð Þ ¼
Bt

iNþa;jNþbð Þ : a; b ¼ 0; 1; 2; . . . ;N � 1
n o

, denote blocks

(i,j) in It, It–1, and Bt, respectively. In addition, let B̂
t
de-

note the initial modeled background frame and b̂ i;jð Þt ¼
B̂
t
iNþa;jNþbð Þ : a; b ¼ 0; 1; 2; . . . ;N � 1

n o
; denote block

(i,j) in B̂
t
.

2.1. Initial modeled background processing
As the illustrated example shown in Figure 2, a sequence

of initial modeled background frames B̂
t
(t = 1,2,. . .) will

be obtained in the initial modeled background processing

procedure. At the beginning (t = 1), each block b̂ i;jð Þ1 of

size N × N (pixels) in B̂
1
is set to “undefined” (labeled in

black), as shown in Figure 2l. Then, the initial modeled

background frame B̂
t
(t = 2,3,. . .,19) is obtained based

on the “updated” modeled background frame Bt–1 (see
Section 2.3) and the block motion representation frame

R̂
t
. Each block of size N × N (pixels) in R̂

t
is determi-

ned as either a “static” block (labeled in blue) or a “mo-
ving” block (labeled in red) by motion estimation (see
Section 2.2) between two consecutive (gray-level) video
frames It–1 and It of the bootstrapping video sequence,
as shown in Figure 2g–k. For one “undefined” block

b̂ i;jð Þt � 1 in B̂
t�1

, if its corresponding block in R̂
t
is
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Figure 3 An illustrated example of block representation: (a) the
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Figure 2 An illustrated example of initial modeled background processing: (a)-(f) the original video frames; (g)-(k) the block motion
representation frames; (l)-(q) the initial modeled background frames.
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determined as a “static” block, i.e., its motion vector is

(0,0), the “static” block b̂ i;jð Þt in B̂
t
is duplicated from the

corresponding block b(i,j)
t in It. Then, each “static” block

b̂ i;jð Þt in B̂
t
will perform the background updating pro-

cedure (see Section 2.3) to obtain ebti;jð Þ in Bt Otherwise,

the “undefined” block b̂ i;jð Þt � 1 in B̂
t�1

will remain as

the “undefined” block b̂ i;jð Þt in B̂
t
. That is, each “un-

defined” block b̂ i;jð Þt will not participate the background

updating procedure until b̂ i;jð Þt is determined as a

“static” block. As shown in Figure 2, each block in R̂
t
is

determined by motion estimation between two consecu-
tive (gray-level) video frames, It–1 and It, of the boot-
strapping video sequence. Each block in the initial

modeled background frame B̂
2
is based on B1 and R̂

2
, in

which some blocks in B̂
2
are still “undefined” (labeled in

black). The initial modeled background frame B̂
3

is

obtained based on B2 and R̂
3
. R̂

4
, R̂

5
,. . ., and R̂

19
in the

illustrated example can similarly be obtained. Note that,
in the illustrated example shown in Figure 2, each initial

modeled background frame B̂
t
(t = 1,2,. . .,18) contains

at least one “undefined” block.
Finally, as shown in Figure 2q, the initial modeled

background frame B̂
19

contains no “undefined” block.
Here, for the illustrated example shown in Figure 2, the
performance index T1(=19) is defined as the frame index
for initial modeled background processing. Afterwards,

the initial modeled background frame B̂
t
(t = 20,21,. . .)

is duplicated from the “updated” modeled background

frame Bt–1, i.e., B̂
t ¼ Bt�1 (t = 20,21,. . .) [35].
2.2. Block representation
As the illustrated example shown in Figure 3, in the
proposed block representation approach, each block of
the current video frame It is classified into one of the
four categories, namely, “background,” “still object,” “il-
lumination change,” and “moving object.” In Figure 3b,
each block of the block representation frame Rt for It is
labeled in four different gray levels. The block represen-
tation frame Rt is obtained based on the two consecutive
video frames, It and It–1, and the initial modeled back-

ground frame B̂
t
by the proposed block representation

approach (as shown in Figure 4), in which motion esti-
mation and correlation coefficient computation are used
to perform block representation (classification).
Motion estimation is performed between the two con-

secutive video frames, It and It–1 using a block matching
algorithm so that each block in It is determined as either
“static” or “moving.” In this study, the sum of absolute
differences (SAD) is used as the cost function for block
matching between block b(i,j)

t in It and the corresponding
block in It–1 and the search range for motion estimation
is set to ±N/2 [35,36]. For a block in It, if the minimum
SAD, Dmv(u,v), for motion vector (u,v), is smaller than
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Figure 4 The flowchart of the proposed block representation approach.
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90% of the SAD for the null-vector (0,0), Dmv(0,0), the
block is determined as a “moving” block; otherwise, it is
determined as a “static” block [19,35].
On the other hand, the correlation coefficient CB(i, j)

between block b(i,j)
t in It and block b̂ i;jð Þt in the initial

modeled background frame B̂
t
is computed as

CB i; jð Þ ¼

X
bti;jð Þ � μbti;jð Þ

�j jb̂t
i;jð Þ

� μb̂
t
i;jð Þ

���� ����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
jbti;jð Þ � μbti;jð Þ

j2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

jb̂t

i;jð Þ � μb̂
t
i;jð Þ

2j
r

ð1Þ
where μb is the mean of the pixel values in block b. As
shown in Figure 4, based on CB(i,j) and the threshold
THCB a “static” block can be further classified into either
a “background” block (if CB(i,j) ≥ THCB) or a “still ob-
ject” block (otherwise), whereas a “moving” block can be
further classified into either an “illumination change”
block (if CB(i,j) ≥ THCB) or a “moving object” block
(otherwise). Afterwards, four different block represen-
tations are obtained.

2.3. Background updating

By background updating, each block b̂ i;jð Þt in the initial

modeled background frame B̂
t
can be updated to obtain

the corresponding block ebti;jð Þ in the modeled background

frame Bt as follows. Both the “background” and “illumin-
ation change” blocks are updated by temporal smoothing,

i.e., block ebti;jð Þ in Bt is updated as the linearly weighted

sum of block b̂ i;jð Þt in B̂
t
and block b(i,j)

t in It. On the
(a) 33I (b) 33R

Figure 5 An illustrated example of background updating for a “still o
representation frame; (c) the initial modeled background frame; (d) th
other hand, both the “still object” and “moving ob-
ject” blocks are updated by block replacement.

(a) Background: the modeled background block ebti;jð Þ in
Bt is updated by

ebti;jð Þ ¼ α:b̂ i;jð Þt þ 1� αð Þ:bti;jð Þ ð2Þ

where α, the updating weight, is empirically set to 0.9
in this study.
(b) Still object: the modeled background block ebti;jð Þ in
Bt is updated by

ebti;jð Þ ¼ bti;jð Þ; if Count i;jð Þ≥THstill;ebti;jð Þ ¼ b
^ t

i;jð Þ; otherwise;

8<: ð3Þ

where Count(i,j) is the number of times that b(i,j)
t in It is

successively determined as a “still object” block
previously, and THstill is a threshold for the time
duration (in terms of the number of frames) that a “still
object” block will learn to be a “background” block.
That is, if an object (or a block b(i,j)

t in It) does not
“move” for a sufficient time duration, it will become
some part of the background. As the illustrated
example shown in Figure 5, the marked block b(11,13)

33 in
I33 is detected as a “still object” block (in R33) for a
sufficient time duration (THstill = 20). Then, its
corresponding block eb3311;13ð Þ in B33 will be updated
(replaced) by b(11,13)

33 in I33.
(c) Illumination change: the modeled background blockebti;jð Þ in Bt is similarly updated by Equation (2).
(c) 33B̂ (d) 33B

bject” block: (a) the original video frame; (b) the block
e modeled background frame.
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(d) Moving object: the modeled background block ebti;jð Þ
in Bt is updated by

ebti;jð Þ ¼ bti;jð Þ; if SM bti;jð Þ
� �

< SM b
^ t

i;jð Þ
� �

ebti;jð Þ ¼ b
^ t

i;jð Þ; otherwise;

8<:
ð4Þ

where SM(b(i,j)
t ) and SM b̂

t

i;jð Þ
� �

denote the side-match
measures for block b(i,j)

t from It embedded in B̂
t
and

that for block b̂ i;jð Þt “embedded” in B̂
t
, respectively, as

shown in Figure 6. The side-match measure (or the
boundary match measure) [37,38] is widely used in
various image/video error concealment algorithms due
to its good trade-off in complexity and visual quality.
SM(b(i,j)

t ) is defined as the sum of squared differences
between the boundary of the embedded block b(i,j)

t from
It and the boundaries of the four neighboring blocks
b̂ i�1;jð Þt; b̂ iþ1;jð Þt; b̂ i;j�1ð Þt; and b̂ i;jþ1ð Þt; in B̂

t
(Figure 6a),

i.e.,

SM bti;jð Þ
� �

¼
XN�1

b¼0

B̂
t
iN�1;jNþbð Þ � ItiN ;jNþbð Þ

� �2

þ
XN�1

b¼0

B̂
t
iNþN ;jNþbð Þ � ItiNþN�1;jNþbð Þ

� �2

�
XN�1

a¼0

B̂
t
iNþa;jN�1ð Þ � ItiNþa;jNð Þ

� �2

þ
XN�1

a¼0

B̂
t
iNþa;jNþNð Þ � ItiNþa;jNþN�1ð Þ

� �2

ð5Þ

Similarly, SM b̂
t
i;jð Þ

� �
is defined as the sum of squared

differences between the boundary of block b̂ i;jð Þt and the
t
ji ),(b

( - )2)( ),(
t

jiSM b

t
ji ),1(b̂

t
ji ),1(b̂

t
ji )1,(b̂

t
ji )1,(b̂

(a)

-

-

+

+

= ∑

Figure 6 The side-match measures SM(b(i,j)
t ) and SM(b(i,j)

t )of a “moving
boundaries of its four neighboring blocks b̂ i�1;jð Þt;

b̂ iþ1;jð Þt; b̂ i;j�1ð Þt; and b̂ i;jþ1ð Þt; in B̂
t
(Figure 6b), i.e.,

SM b
^ t

i;jð Þ
� �

¼
XN�1

b¼0

B̂
t
iN�1;jNþbð Þ � B̂ iN ;jNþbð Þt

� �2

þ
XN�1

b¼0

B̂
t
iNþN ;jNþbð Þ � B̂ iNþN�1;jNþbð Þt

� �2

�
XN�1

a¼0

B̂
t
iNþa;jN�1ð Þ � B̂ iNþa;jNð Þt

� �2

þ
XN�1

a¼0

B̂
t
iNþa;jNþNð Þ � B̂ iNþa;jNþN�1ð Þt

� �2
:

ð6Þ

Note that if a block in Rt is determined as a “moving
object” block two times consecutively, the correspon-

ding modeled background block ebti;jð Þ in Bt is updated by

Equation (4). The side-match measure uses the camou-
flage of each “moving object” block to search the more
suitable modeled background block so that we can speed
up the background updating procedure. As the illustrated
example shown in Figure 7, two marked blocks b(12,9) and
b(11,10) in both I12 and I13 are detected as two “moving ob-
ject” blocks in both R12 and R13 consecutively. Thus, their

corresponding blocks eb1312;9ð Þ and eb1311;10ð Þ in B13 will be

updated (replaced) by blocks b(12,9)
13 and b(11,10)

13 in I13,
respectively.
2.4. Initial segmented foreground
Based on the modeled background frame Bt performing
background updating, as an illustrated example shown in
t
ji ),(b̂

( - )2)ˆ( ),(
t

jiSM b

t
ji ),1(b̂

t
ji ),1(b̂

t
ji )1,(b̂

t
ji )1,(b̂

(b)

-

-

+

+

= ∑

object” block in background updating.
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Figure 7 An illustrated example of background updating for
two “moving object” blocks: (a) and (d) are two original video
frames; (b) and (e) are the corresponding block representation
frames; (c) and (f) are the corresponding modeled background
frames.
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Figure 8, the initial (binary) segmented foreground frame

F̂
t
can be obtained as

F̂
t ¼ 1; if It � Bt≥THisf ;

0; otherwise;

�
ð7Þ

where THisf is a threshold, which is empirically set to 15
in this study.

2.5. Noise removal and shadow suppression with two
morphological operations

As shown in Figure 8, F̂
t
usually contains some frag-

mented (noisy) parts and shadows. To obtain the precise
segmented foreground frame Ft, a noise removal and
shadow suppression procedure is adopted, which com-
bines the shadow suppression approach in [39] and the

edge information extracted from It with F̂
t
being the

(binary) operation mask.

Let F̂St be the S (saturation) component of the original
video frame (frame t) represented in the HSV color

space and F̂Et be the gradient image of It using the Sobel

operator [40] with F̂
t
being the (binary) operation mask.

The segmented foreground frame �Ft is defined as
(a) tI (b) tB (c) tF̂

Figure 8 An illustrated example of initial segmented foreground:
(a) the current video frame; (b) the modeled background frame;
(c) the initial segmented foreground frame.
�Ft ¼ 1; if F̂
t \ F̂

t
S≥σ F̂ S

t [ F̂
t
E≥THE ;

0; otherwise;

ð8Þ

where \ and [ denote the logical AND and OR operators,

respectively, σ F̂ S
t is the standard deviation of F̂St , and

THE is a threshold. Here, THE is empirically set to 120 in
this study. Figure 9 shows an illustrated example
performing the noise removal and shadow suppression
procedure. By applying the shadow suppression approach
in [39], the “second” (binary) segmented foreground frame

(shown in Figure 9b) is obtained based on F̂
t
(shown in

Figure 8c) and F̂St≥σ F̂ S
t (shown in Figure 9a). Based on

the “second” (binary) segmented foreground frame (shown

in Figure 9b), combining the gradient image F̂Et of It

(shown in Figure 9c) preserving the edge information in

the initial (binary) segmented foreground frame F̂
t
, the

segmented foreground frame �Ft (shown in Figure 9d) is
obtained by Equation (8). Finally, the final segmented fore-
ground frame (shown in Figure 9e) is obtained as Ft with
two morphological (erosion and dilation) operations [40].
3. Experimental results
In this study, experimental results are performed using
Borland C++ on Intel Core 2 Quad CPU 2.4 GHz
Microsoft Windows XP platform. Six bootstrapping video
sequences, selected from three benchmark datasets,
namely, ATON (http://cvrr.ucsd.edu/aton/shadow/index.
html), PETS2006 (http://www.cvg.rdg.ac.uk/PETS2006/
data.html), and BPI [24], are used in this study, which are
listed and categorized in Table 1. In Table 1, the six boot-
strapping video sequences are categorized as jiggled
(a) (b) (c)

(d) (e) 

Figure 9 An illustrated example for noise removal and shadow

suppression: (a) F̂St≥σF̂ S
t, (b) F̂

t\(F̂St≥σF̂ S
t); (c) F̂Et≥TE; (d) F

t,
(e) Ft with two morphological (erosion and dilation) operations.

http://cvrr.ucsd.edu/aton/shadow/index.html
http://cvrr.ucsd.edu/aton/shadow/index.html
http://www.cvg.rdg.ac.uk/PETS2006/data.html
http://www.cvg.rdg.ac.uk/PETS2006/data.html


Table 1 The six bootstrapping video sequences and their categories

Video sequences Benchmark and category Video sequences Benchmark and category

ATON PETS2006

15 fps 25 fps

Jiggled capture Shadow effect

“Highway-1” “S1-T1-C-4”

ATON BPI

15 fps 18 fps

Jiggled capture Heavy clutter

“Highway-2” “Vignal”

PETS2006 BPI

25 fps 18 fps

Shadow effect Heavy clutter

“S1-T1-C-3” “Granguardia”
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capture, shadow effect, and heavy clutter. The video
frames in Table 1 are 320 × 240 in size.
To evaluate the performance of the proposed approach,

three comparison approaches, namely, MoG [4], Reddy
background estimation (Reddy) [22], and self-organizing
background subtraction (SOBS) [27], are implemented in
this study. In MoG and Reddy, only the gray-level compo-
nent of each video frame is employed, in SOBS, the H, S,
and V components of each video frame are employed, and
in the proposed approach, the gray-level video frames are
used and additionally the S component is only used for
shadow suppression. Note that, for the SOBS approach,
each SOBS high-resolution video frame (3 W × 3H pixels)
is downsampled to a video frame of the original resolution
(W × H pixels) by local averaging.
3.1. Parameter setting
THstill in Equation (3) is a threshold for the time dur-
ation (in terms of the number of frames) that a “still ob-
ject” block will learn to be a “background” block. If an
object (or a block b(i,j)

t in It) does not “move” for a
sufficient time duration THstill it will be treated as some
part of the background. If THstill is set to a small value,
the modeled background frame Bt will easily be
disturbed by moving objects in each bootstrapping video
sequence. On the contrary, if THstill is set to a large
value, the modeled background frame Bt might not be
updated immediately. As the illustrated example shown
in Figure 10, the modeled background frames Bt with
THstill = 20 and THstill = 40 are illustrated, where
performance index T1 is defined as the frame index for
initial modeled background processing (Section 2.1) and
it is identically set to 21 for both THstill = 20 and THstill =
40. If performance index T2 is defined as the frame index
for constructing the free (“true”) modeled background
frame, for the illustrated example shown in Figure 10, T2 =
152 for THstill = 20, whereas T2 = 128 for THstill = 40. The
two performance indexes (T1 and T2) for different
thresholding values THstill of four bootstrapping video
sequences, namely, “Highway-1,” “Highway-2,” “S1-T1-C-
3,” and “S1-T1-C-4,” are illustrated in Figure 11.
Actually, THstill depends on the sizes of moving

objects, the velocities of moving objects, and the frame
rate (frames per second, fps) of each bootstrapping video
sequence. Let At be the minimum bounding rectangle of
a moving object in frame It and At-FR be the minimum
bounding rectangle of the moving object in frame It-FR

where FR (fps) is the frame rate of a bootstrapping video
sequence. Note that the time difference between the two
frames, It-FR and It, is 1 s. Here, the moving object is
roughly determined as “high-motion” if At-FR and At do
not contain any overlapping part. Otherwise, the moving
object is roughly determined as “low-motion.” In this
study, if a bootstrapping video sequence contains “high-
motion” moving object(s), then (FR/2) ≤ THstill ≤ FR.
Otherwise, FR ≤ THstill ≤ (FR + FR/2). The threshold
values THstill for the six video sequences, namely,
“Highway-1,” “Highway-2,” “S1-T1-C-3,” “S1-T1-C-4,”
“Vignal,” and “Granguardia,” by the proposed approach
are empirically set to 15, 15, 35, 35, 20, and 20,
respectively.



1I 21I 58I 78I 100I 128I 152I

(a) Sequence “S1-T1-C-3”

1B 21B 58B 78B 100B 128B 152B

(b) tB with stillTH =20

1B 21B 58B 78B 100B 128B 152B

(c) tB with stillTH =40

Figure 10 An illustrated example for frames I1 I21, I58, I78, I100, I128, and I152 of the bootstrapping video sequence “S1-T1-C-3” (a) and
the corresponding modeled background frames Bt with T1 = 21, THstill = 20, (b) and THstill = 40 (c).
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3.2. Subjective comparisons
For background initialization, Figures 12, 13, 14, 15, 16,
and 17 illustrate some frames of the six bootstrapping
video sequences (a) and the corresponding modeled
background frames Bt by Reddy (b), SOBS (c), and the
proposed approach (d) with block size of 16 × 16. For
(a) 

(c) 

Highway-1

0

50

100

150

200

10 15 20 25 30 35 40 45 50

TH still

t

T1 T2-T1

S1-T1-C-3

0

50

100

150

200

10 15 20 25 30 35 40 45 50

TH still

t

T1 T2-T1

Figure 11 The performance indexes (T1 and T2) of four bootstrapping
performance indexes (T1 and T2) of “Highway-1” (a); “Highway-2” (b);
the Reddy approach, given a video sequence of T video
frames, each video frame is divided into non-overlapping
blocks of size 16 × 16. Agglomerative clustering back-
ground estimation is applied in a block-by-block manner.
Background areas are iteratively filled by selecting the
most appropriate (smooth) candidate blocks. For the
(b)

(d)

Highway-2

0

50

100

150

200

10 15 20 25 30 35 40 45 50

TH still

t

T1 T2-T1

S1-T1-C-4

0

100

200

300

400

10 15 20 25 30 35 40 45 50

TH still

t

T1 T2-T1

video sequences with different thresholding values THstill: the
“S1-T1-C-3” (c); and “S1-T1-C-4” (d).



1I 20I 40I 60I 80I 100I
(a) Sequence “Highway-1”

1B 20B 40B 60B 80B 1 0B

(b) Reddy

1B 20B 40B 60B 80B 1 0B

(c) SOBS

1B 20B 40B 60B 80B 1 0B

(d) Proposed

Figure 12 Some background initialization results Bt of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence
“Highway-1” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 15.
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Reddy approach, a bootstrapping video sequence with a
large number of video frames is required to obtain the free
(“true”) modeled background frame, due to some blocks
in each video frame might be erroneously estimated based
on the corresponding candidate block set in the frequency
domain. For the SOBS approach, the modeled background
frame Bl = Il. Then, each subsequent modeled background
frame Bt is obtained by pixel-wise background updating.
The SOBS approach can obtain the modeled background
frame of a bootstrapping video sequence with suitable par-
ameter values [27]. However, as a pixel-based approach, to
obtain the free (“true”) modeled background frame, it
needs a long time duration to eliminate the foreground
objects in Bl Based on our experimented results, the
performance indexes T2 for the six video sequences by
the SOBS approach are 220 for “Highway-1,” 306 for
“Highway-2,” 305 for “S1-T1-C-3,” 335 for “S1-T1-C-4,”
>260 for “Vignal,” and >450 for “Granguardia,” respecti-
vely. For each bootstrapping video sequence, the proposed
approach can obtain the free (“true”) modeled background
frame “completely” after T2 The performance indexes
T2 for the six video sequences, namely, “Highway-1,”
“Highway-2,” “S1-T1-C-3,” “S1-T1-C-4,” “Vignal,” and
“Granguardia,” by the proposed approach are 80, 48, 62,
236, 205, and 414, respectively, which are indeed less than
the corresponding values by the SOBS approach.
For foreground segmentation, Figures 18, 19, 20, 21,

22, and 23 illustrate some segmented foreground frames
Ft by MoG (a), Reddy (b), SOBS (c), and the proposed
approach (d). For Reddy, SOBS, and the proposed ap-
proach, the segmented foreground frames are obtained
by background subtraction of the corresponding boot-
strapping video sequences shown in Figures 12, 13, 14,
15, 16, and 17, whereas, for MoG, the segmented fore-
ground frames are obtained by the pixel-wise MoG
method in [4]. For SOBS, the contents of red rectangles
in the segmented foreground frames indicate the ghost
objects. As shown in Figures 18, 19, 20, 21, 22, and 23,
the segmented foreground frames of the MoG approach
are usually good for bootstrapping video sequences
containing some dynamic background, but the seg-
mented foreground frames of the MoG approach may
obtain fragmented (noisy) foreground objects for boot-
strapping video sequences containing some low-motion
moving objects and some noisy background due to
jiggled capture. The SOBS approach may obtain good
segmented foreground objects without shadow. How-
ever, each modeled background frame Bt of the SOBS



1I 20I 40I 60I 80I 100I
(a) Sequence “S1-T1-C-3”

1B 20B 40B 60B 80B 1 0B

(b) Reddy

1B 20B 40B 60B 80B 1 0B

(c) SOBS

1B 20B 40B 60B 80B 1 0B

(d) Proposed

Figure 14 Some background initialization results Bt of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence “S1-T1-C-
3” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 35.

1I 20I 40I 60I 80I 100I
(a) Sequence “Highway-2”

1B 20B 40B 60B 80B 1 0B

(b) Reddy

1B 20B 40B 60B 80B 1 0B

(c) SOBS

1B 20B 40B 60B 80B 1 0B

(d) Proposed

Figure 13 Some background initialization results Bt of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence
“Highway-2” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 15.
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1I 140I 180I 200I 220I 240I
(a) Sequence “Vignal”

1B 1 4B 1 8

1 4 1 8

B 200B 220B 240B
(b) Reddy

1B 1 4B 1 8B 200B 220B 240B
(c) SOBS

1B 1 4B 1 8B 200B 220B 240B
(d) Proposed

Figure 16 Some background initialization results Bt of frames I1, I140, I180, I200, I220, and I240 of the bootstrapping video sequence
“Vignal” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 20.

1I 80I 150I 200I 240I 260I
(a) Sequence “S1-T1-C-4”

1B 80B 1 5B 200B 240B 260B
(b) Reddy

1B 80B 1 5B 200B 240B 260B
(c) SOBS

1B 80B 1 5B 200B 240B 260B
(d) Proposed

Figure 15 Some background initialization results Bt of frames I1, I80, I150, I200, I240, and I260 of the bootstrapping video sequence “S1-T1
-C-4” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 35.
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1F 20F 40F 60F 80F 100F
(a) MoG

1F 20F 40F 60F 80F 100F
(b) Reddy

1F 20F 40F 60F 80F 100F
(c) SOBS

1F 20F 40F 60F 80F 100F
(d) Proposed

Figure 18 Some foreground segmentation results Ft of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence
“Highway-1” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 80.

1I 50I 100I 200I 330I 420I
(a) Sequence “Granguardia”

1B 50B 1 0B 200B 330B 420B
(b) Reddy

1B 50B 1 0B 200B 330B 420B
(c) SOBS

1B 50B 1 0B 200B 330B 420B
(d) Proposed

Figure 17 Some background initialization results Bt of frames I1, I50, I100, I200, I330, and I420 of the bootstrapping video sequence
“Granguardia” (a) by Reddy (b), SOBS (c), and the proposed approach (d) with block size 16 × 16 and THstill = 20.
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1F 20F 40F 60F 80F 100F
(a) MoG

1F 20F 40F 60F 80F 100F
(b) Reddy

1F 20F 40F 60F 80F 100F
(c) SOBS

1F 20F 40F 60F 80F 100F
(d) Proposed

Figure 20 Some foreground segmentation results Ft of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence “S1-T1
-C-3” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 62.

1F 20F 40F 60F 80F 100F
(a) MoG

1F 20F 40F 60F 80F 100F
(b) Reddy

1F 20F 40F 60F 80F 100F
(c) SOBS

1F 20F 40F 60F 80F 100F
(d) Proposed

Figure 19 Some foreground segmentation results Ft of frames I1, I20, I40, I60, I80, and I100 of the bootstrapping video sequence
“Highway-2” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 48.
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1F 140F 180F 200F 220F 240F
(a) MoG

1F 140F 180F 200F 220F 240F
(b) Reddy

1F 140F 180F 200F 220F 240F
(c) SOBS

1F 140F 180F 200F 220F 240F
(d) Proposed

Figure 22 Some foreground segmentation results Ft of frames I1, I140, I180, I200, I220, and I240 of the bootstrapping video sequence
“Vignal” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 205.

1F 80F 150F 200F 240F 260F
(a) MoG

1F 80F 150F 200F 240F 260F
(b) Reddy

1F 80F 150F 200F 240F 260F
(c) SOBS

1F 80F 150F 200F 240F 260F
(d) Proposed

Figure 21 Some foreground segmentation results Ft of frames I1, I80, I150, I200, I240, and I260 of the bootstrapping video sequence
“S1-T1-C-4” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 236.
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1F 50F 100F 200F 330F 420F
(a) MoG

1F 50F 100F 200F 330F 420F
(b) Reddy

1F 50F 100F 200F 330F 420F
(c) SOBS

1F 50F 100F 200F 330F 420F
(d) Proposed

Figure 23 Some foreground segmentation results Ft of frames I1, I50, I100, I200, I330, and I420 of the bootstrapping video sequence
“Granguardia” by MoG (a), Reddy (b), SOBS (c), and the proposed approach (d) with T2 = 414.
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approach may preserve some foreground objects in Il

resulting in some ghost objects in the segmented fo-
reground frame Ft. The proposed approach has good
foreground segmentation results for bootstrapping video
sequences, i.e., good segmented foreground objects
(without shadow and ghost objects) can be obtained
after T2.
Table 2 lists the average processing times (s) of

obtaining a segmented foreground frame for the six
bootstrapping video sequences by MoG, Reddy, SOBS,
and the proposed approach with block size 16 × 16.
Note that the average processing times (s) of obtaining a
segmented foreground frame for the six video sequences
are evaluated by 100 bootstrapping video frames. The
average frame processing times of each comparison ap-
proach (except Reddy) for different bootstrapping video
sequences are similar. However, the average frame
processing times of Reddy for different video sequences
Table 2 The average frame processing times (s) for the
six bootstrapping video sequences by MoG, Reddy, SOBS,
and the proposed approach with block size 16 × 16

MoG Reddy SOBS Proposed

Average 0.068 ± 0.004 0.403 ± 0.252 0.389 ± 0.025 0.615 ± 0.024
are not similar, which are influenced on the complexity
(contents) of video sequences. Table 3 lists the average
frame processing times (s) of the three processing steps,
namely, block representation, background updating, and
foreground segmentation, for the six bootstrapping video
sequences by the proposed approach with block size 16
× 16. Note that foreground segmentation contains initial
segmented foreground (processing time ≈ 0 second) and
noise removal and shadow suppression with two mor-
phological operations. The average frame processing
times (0.488 and 0.124 seconds) for the two processing
steps, namely, block representation and foreground seg-
mentation, depend on the total number of blocks/pixels
of a bootstrapping video frame, which are relatively
stable. On the other hand, the average frame processing
time of the processing step, namely, background updat-
ing, depends on temporal smoothing and block replace-
ment for various block representations, which is
relatively small. As the results listed in Table 3, motion
estimation of block representation using a block
matching algorithm constitutes the major part of the
processing time of a bootstrapping video sequence by
the proposed approach, which may be greatly reduced
by parallel implementation.



Table 3 The average frame processing times (s) of the three processing steps, namely, block representation,
background updating, and foreground segmentation, for the six bootstrapping video sequences by the proposed
approach with block size 16 × 16

Background initialization Foreground
segmentationBlock representation Background updating

Average 0.488 ± 0.0243 0.002 ± 0.0005 0.124 ± 0.0026
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3.3. Objective comparisons
For foreground segmentation, to perform objective
comparisons between the three comparison approaches
(MoG, SOBS, and the proposed approach), the “base-
line” category of “changedetection.net” video dataset [41]
is employed. For MoG, SOBS, and the proposed ap-
proach, both the input video sequences and the
processing results are processed in a frame-by-frame
manner. On the other hand, for Reddy, to obtain the
processing results, the whole video sequence should be
available to Reddy. Therefore, Reddy is excluded in the
following comparisons. Let TP be number of true
positives, TN be number of true negatives, FN be num-
ber of false negatives, and FP be number of false
positives. The four evaluation metrics, namely, FPR,
FNR, PWC, and FM, are employed in this study, which
are defined as [41]

1. false positive rate (FPR): FP/(FP + TN),
2. false negative rate (FNR): FN/(TN + FP),
3. percentage of wrong classifications (PWC):
100 × (FN + FP)/(TP + FN + FP + TN),

4. f-measure (FM): 2 × (PR × RE)/(PR + RE).

Table 4 lists the objective performance comparisons by
four evaluation metrics, FPR, FNR, PWC, and FM, for
the four video sequences in the “baseline” category of
“changedetection.net” video dataset by MoG, SOBS, and
the proposed approach. Table 5 lists the objective per-
formance comparisons by four evaluation metrics, FPR,
FNR, PWC, and FM, for the four video sequences in the
“baseline” category of “changedetection.net” video
dataset by the proposed approach with different block
sizes (8 × 8, 16 × 16, and 32 × 32). In Tables 4 and 5,
Table 4 Objective performance comparisons by four
evaluation metrics FPR, FNR, PWC, and FM for the four
video sequences in the “baseline” category of
“changedetection.net” video dataset by MoG, SOBS, and
the proposed approach

FPR FNR PWC FM

MoG 0.0158 0.0169 3.0802 0.5998

SOBS 0.0577 0.0007 5.5604 0.5076

Proposed 0.0043 0.0174 2.0448 0.6997
the best evaluation metrics FPR, FNR, PWC, and FM
are marked in bold font. Note that the smaller FPR and
FNR values respond the better performances, whereas
the larger PWC and FM values respond the better
performances. Here, for a fair comparison, the proposed
approach does not perform the two morphological
operations in the noise removal and shadow suppression
procedure. Based on the experimental results listed in
Table 4, in general, the foreground segmentation results
of the proposed approach are better than those of MoG
and SOBS. On the other hand, based on the experimen-
tal results listed in Table 5, the foreground segmentation
results of the proposed approach using three different
block sizes (8 × 8, 16 ×16, and 32 × 32) are substantially
similar. The average frame processing times of the
proposed approach using three different block sizes (8 ×
8, 16 × 16, and 32 × 32) are 0.256, 0.615, and 2.166
seconds, respectively. To reduce the average frame
processing time of the proposed approach, block size
8 × 8 is recommended.
For background initialization, including the evaluation

of foreground masks, we can also evaluate the perform-
ance of the estimated background. In this study, the
PSNR value of the estimated background, with respect-
ive to one “free” background (the groundtruth), is
employed. The “free” background (the groundtruth) is
synthesized by the “static” parts in different frames of
the whole bootstrapping video sequence. The average
PSNR values of SOBS and the proposed approach for
the “baseline” category of “changedetection.net” video
dataset [41] are 26.46 and 28.96 dB, respectively.
Table 5 Objective performance comparisons by four
evaluation metrics FPR, FNR, PWC, and FM for the four
video sequences in the “baseline” category of
“changedetection.net” video dataset by the proposed
approach with different block sizes (8 × 8, 16 × 16, and
32 × 32)

FPR FNR PWC FM

8 × 8 0.0043 0.0174 2.0448 0.6997

16 × 16 0.0044 0.0178 2.0942 0.6992

32 × 32 0.0049 0.0189 2.2429 0.6730
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4. Concluding remarks
In this study, an effective background initialization and
foreground segmentation approach for bootstrapping
video sequences is proposed, in which a modified block
representation approach, a new background updating
scheme, and an improved noise removal and shadow
suppression procedure with two morphological ope-
rations are employed. Based on the experimental results
obtained in this study, as compared with MoG [4],
Reddy [22] and SOBS [27], the proposed approach has
better background initialization and foreground segmen-
tation results. In addition, bootstrapping video sequen-
ces with jiggled capture, shadow effect, and heavy clutter
can be well handled by the proposed approach.
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