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Abstract
Eigenvalue problems with eigenparameter appearing in the boundary conditions
usually have complicated characteristic determinant where zeros cannot be explicitly
computed. In this paper we use the derivative sampling theorem ‘Hermite
interpolations’ to compute approximate values of the eigenvalues of Dirac systems
with eigenvalue parameter in one or two boundary conditions. We use recently
derived estimates for the truncation and amplitude errors to compute error bounds.
Using computable error bounds, we obtain eigenvalue enclosures. Examples with
tables and illustrative figures are given. Also numerical examples, which are given at
the end of the paper, give comparisons with the classical sinc-method in Annaby and
Tharwat (BIT Numer. Math. 47:699-713, 2007) and explain that the Hermite
interpolations method gives remarkably better results.
MSC: 34L16; 94A20; 65L15

Keywords: Dirac systems; eigenvalue problems with eigenparameter in the
boundary conditions; Hermite interpolations; truncation error; amplitude error; sinc
methods

1 Introduction
Let σ >  and PW 

σ be the Paley-Wiener space of all L(R)-entire functions of exponential
type σ . Assume that f (t) ∈ PW 

σ ⊂ PW 
σ . Then f (t) can be reconstructed via theHermite-

type sampling series

f (t) =
∞∑

n=–∞

[
f
(
nπ

σ

)
Sn(t) + f ′

(
nπ

σ

)
sin(σ t – nπ )

σ
Sn(t)

]
, (.)

where Sn(t) is the sequences of sinc functions

Sn(t) :=

⎧⎨⎩
sin(σ t–nπ )
(σ t–nπ ) , t �= nπ

σ
,

, t = nπ
σ
.

(.)

Series (.) converges absolutely and uniformly on R, cf. [–]. Sometimes, series (.) is
called the derivative sampling theorem. Our task is to use formula (.) to compute eigen-
values of Dirac systems numerically. This approach is a fully new technique that uses the
recently obtained estimates for the truncation and amplitude errors associated with (.),
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cf. []. Both types of errors normally appear in numerical techniques that use interpo-
lation procedures. In the following we summarize these estimates. The truncation error
associated with (.) is defined to be

RN (f )(t) := f (t) – fN (t), N ∈ Z
+, t ∈R, (.)

where fN (t) is the truncated series

fN (t) =
∑

|n|≤N

[
f
(
nπ

σ

)
Sn(t) + f ′

(
nπ

σ

)
sin(σ t – nπ )

σ
Sn(t)

]
. (.)

It is proved in [] that if f (t) ∈ PW 
σ and f (t) is sufficiently smooth in the sense that there

exists k ∈ Z+ such that tkf (t) ∈ L(R), then, for t ∈R, |t| <Nπ/σ , we have

∣∣RN (f )(t)
∣∣ ≤ TN ,k,σ (t)

:=
ξk,σEk| sinσ t|√

(N + )k

(


(Nπ – σ t)/
+


(Nπ + σ t)/

)

+
ξk,σ (σEk + kEk–)| sinσ t|

σ (N + )k

(
√

Nπ – σ t
+

√
Nπ + σ t

)
, (.)

where the constants Ek and ξk,σ are given by

Ek :=

√∫ ∞

–∞

∣∣tkf (t)∣∣ dt, ξk,σ :=
σ k+/

π k+
√
 – –k

. (.)

The amplitude error occurs when approximate samples are used instead of the exact ones,
which we cannot compute. It is defined to be

A(ε, f )(t) =
∞∑

n=–∞

[{
f
(
nπ

σ

)
– f̃

(
nπ

σ

)}
Sn(t)

+
{
f ′

(
nπ

σ

)
– f̃ ′

(
nπ

σ

)}
sin(σ t – nπ )

σ
Sn(t)

]
, t ∈R, (.)

where f̃ ( nπ
σ
) and f̃ ′( nπ

σ
) are approximate samples of f ( nπ

σ
) and f ′( nπ

σ
), respectively. Let us

assume that the differences εn := f ( nπ
σ
) – f̃ ( nπ

σ
), ε′

n := f ′( nπ
σ
) – f̃ ′( nπ

σ
), n ∈ Z, are bounded by

a positive number ε, i.e., |εn|, |ε′
n| ≤ ε. If f (t) ∈ PW 

σ satisfies the natural decay conditions

|εn| ≤
∣∣∣∣f(nπ

σ

)∣∣∣∣, ∣∣ε′
n
∣∣ ≤

∣∣∣∣f ′
(
nπ

σ

)∣∣∣∣, (.)

∣∣f (t)∣∣ ≤ Mf

|t|α+ , t ∈R – {}, (.)

 < ω ≤ , then for  < ε ≤ min{π/σ ,σ /π , /√e}, we have, [],

∥∥A(ε, f )
∥∥∞ ≤ e/

σ (ω + )
{√

e( + σ ) +
(
(π/σ )A +Mf

)
ρ(ε)

+
(
σ +  + log()

)
Mf

}
ε log(/ε), (.)
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where

A :=
σ
π

(∣∣f ()∣∣ +Mf

(
σ

π

)ω)
, ρ(ε) := γ +  log(/ε), (.)

and γ := limn→∞[
∑n

k=

k – logn] ∼= . is the Euler-Mascheroni constant.

The classical [] sampling theorem of Whittaker, Kotel’nikov and Shannon (WKS) for
f ∈ PW 

σ is the series representation

f (t) =
∞∑

n=–∞
f
(
nπ

σ

)
Sn(t), t ∈R, (.)

where the convergence is absolute and uniform on R and it is uniform on compact sets
ofC, cf. [–]. Series (.), which is of Lagrange interpolation type, has been used to com-
pute eigenvalues of second-order eigenvalue problems; see, e.g., [–]. The use of (.) in
numerical analysis is known as the sinc-method established by Stenger, cf. [–]. In [,
], the authors applied (.) and the regularized sinc-method to compute eigenvalues of
Dirac systems with a derivation of the error estimates as given by [, ]. In [] the Dirac
system has an eigenparameter appearing in the boundary conditions. The aim of this pa-
per is to investigate the possibilities of using Hermite interpolations rather than Lagrange
interpolations, to compute the eigenvalues numerically. Notice that, due to Paley-Wiener’s
theorem [], f ∈ PW 

σ if and only if there is g(·) ∈ L(–σ ,σ ) such that

f (t) =
√
π

∫ σ

–σ

g(x)eixt dx. (.)

Therefore f ′(t) ∈ PW 
σ , i.e., f ′(t) also has an expansion of the form (.). However, f ′(t)

can be also obtained by the term-by-term differentiation formula of (.)

f ′(t) =
∞∑

n=–∞
f
(
nπ

σ

)
S′
n(t), (.)

see [, p.] for convergence. Thus the use of Hermite interpolations will not cost any
additional computational efforts since the samples f ( nπ

σ
) will be used to compute both

f (t) and f ′(t) according to (.) and (.), respectively.
Consider the Dirac system which consists of the system of differential equations

u′
(x) – r(x)u(x) = λu(x), u′

(x) + r(x)u(x) = –λu(x), x ∈ [, ] (.)

and the boundary conditions

αu() – αu() = –λ
(
α′
u() – α′

u()
)
, (.)

βu() – βu() = –λ
(
β ′
u() – β ′

u()
)
, (.)

where r(·), r(·) ∈ L(, ) and αi,βi,α′
i ,β ′

i ∈ R, i = , , satisfying

((
α′
,α

′

)
= (, ) or α′

α – αα
′
 > 

)
and((

β ′
,β

′

)
= (, ) or ββ

′
 – β ′

β > 
)
.

(.)
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The eigenvalue problem (.)-(.) will be denoted by �(r,α,β ,α′,β ′) when (α′
,α′

) �=
(, ) �= (β ′

,β ′
). It is a Dirac system when the eigenparameter λ appears linearly in both

boundary conditions. The classical problem when α′
 = α′

 = β ′
 = β ′

 = , which we denote
by �(r,α,β , , ), is studied in the monographs of Levitan and Sargsjan [, ]. Annaby
and Tharwat [] used Hermite-type sampling series (.) to compute the eigenvalues of
problem �(r,α,β , , ) numerically. In [], Kerimov proved that �(r,α,β ,α′,β ′) has a de-
numerable set of real and simple eigenvalues with ±∞ as the limit points. Similar results
are established in [] for the problemwhen the eigenparameter appears in one condition,
i.e., when α′

 = α′
 = , (β ′

,β ′
) �= (, ) or equivalently when (α′

,α′
) �= (, ) and β ′

 = β ′
 = ,

where also sampling theorems have been established. These problems will be denoted by
�(r,α,β , ,β ′) and �(r,α,β ,α′, ), respectively. The aim of the present work is to compute
the eigenvalues of �(r,α,β ,α′,β ′) and �(r,α,β , ,β ′) numerically by the Hermite inter-
polations with an error analysis. This method is based on sampling theorem, Hermite
interpolations, but applied to regularized functions hence avoiding any (multiple) inte-
gration and keeping the number of terms in the Cardinal series manageable. It has been
demonstrated that themethod is capable of delivering higher-order estimates of the eigen-
values at a very low cost; see []. In Sections  and , we derive the Hermite interpolation
technique to compute the eigenvalues of Dirac systems with error estimates. We briefly
derive some necessary asymptotics for Dirac systems’ spectral quantities. The last section
contains three worked examples with comparisons accompanied by figures and numerics
with the Lagrange interpolation method.

2 Treatment of�(r,α,β ,α′,β ′)
In this section we derive approximate values of the eigenvalues of �(r,α,β ,α′,β ′). Re-
call that �(r,α,β ,α′,β ′) has a denumerable set of real and simple eigenvalues, cf. []. Let
ϕ(·,λ) = (ϕ(·,λ),ϕ(·,λ))� be a solution of (.) satisfying the following initial:

ϕ(,λ) = α + λα′
, ϕ(,λ) = α + λα′

. (.)

Here A� denotes the transpose of a matrix A. Since ϕ(·,λ) satisfies (.), then the eigen-
values of the problem �(r,α,β ,α′,β ′) are the zeros of the function

�(λ) :=
(
β + λβ ′


)
ϕ(,λ) –

(
β + λβ ′


)
ϕ(,λ). (.)

Similarly to [, p.], ϕ(·,λ) and ϕ(·,λ) satisfy the system of integral equations

ϕ(x,λ) = –
(
α + λα′


)
sinλx +

(
α + λα′


)
cosλx + Tϕ(x,λ) + T̃ϕ(x,λ), (.)

ϕ(x,λ) =
(
α + λα′


)
sinλx +

(
α + λα′


)
cosλx – T̃ϕ(x,λ) + Tϕ(x,λ), (.)

where Ti and T̃i, i = , , are the Volterra operators defined by

Tiu(x,λ) :=
∫ x


sinλ(x – t)ri(t)u(t,λ)dt,

T̃iu(x,λ) :=
∫ x


cosλ(x – t)ri(t)u(t,λ)dt, i = , .

(.)
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For convenience, we define the constants

c :=max
{|α| + |α|,

∣∣α′

∣∣ + ∣∣α′


∣∣}, c :=

∫ 



[∣∣r(t)∣∣ + ∣∣r(t)∣∣]dt,
c := cc, c := c exp(c),

c :=max
{|β| + |β|,

∣∣β ′

∣∣ + ∣∣β ′


∣∣}, c := cc.

(.)

Define h(·,λ) and h(·,λ) to be

h(x,λ) := Tϕ(x,λ) + T̃ϕ(x,λ), h(x,λ) := –T̃ϕ(x,λ) + Tϕ(x,λ). (.)

As in [] we split �(λ) into two parts via

�(λ) := G(λ) + S(λ), (.)

where G(λ) is the known part

G(λ) :=
(
β + λβ ′


)(
–
(
α + λα′


)
sinλ +

(
α + λα′


)
cosλ

)
–

(
β + λβ ′


)((

α + λα′

)
sinλ +

(
α + λα′


)
cosλ

)
(.)

and S(λ) is the unknown one

S(λ) :=
(
β + λβ ′


)
h(,λ) –

(
β + λβ ′


)
h(,λ). (.)

Then the function S(λ) is entire in λ for each x ∈ [, ] for which, cf. [],

∣∣S(λ)∣∣ ≤ c
(
 + |λ|)e|�λ|, λ ∈C. (.)

The analyticity of S(λ) as well as estimate (.) are not adequate to prove that S(λ) lies
in a Paley-Wiener space. To solve this problem, we will multiply S(λ) by a regularization
factor. Let θ >  andm ∈ Z

+,m ≥ , be fixed. Let Fθ ,m(λ) be the function

Fθ ,m(λ) :=
(
sin θλ

θλ

)m

S(λ), λ ∈C. (.)

We choose θ sufficiently small forwhich |θλ| < π .More specifications onm, θ will be given
latter on. Then Fθ ,m(λ), see [], is an entire function of λ which satisfies the estimate

∣∣Fθ ,m(λ)
∣∣ ≤ cm c( + |λ|)

( + θ |λ|)m e|�λ|(+mθ ), λ ∈ C. (.)

Moreover, λm–Fθ ,m(λ) ∈ L(R) and

Em–(Fθ ,m) =

√∫ ∞

–∞

∣∣λm–Fθ ,m(λ)
∣∣ dλ ≤ √

cm cξ, (.)
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where

ξ :=

√


θm–

(
 + m – θ + θ + mθ – m

m – m + m – 
+

θ(θ + m – )
(m – m + m – )(m – )(m – )

)
.

What we have just proved is that Fθ ,m(λ) belongs to the Paley-Wiener space PW 
σ with

σ =  +mθ . Since Fθ ,m(λ) ∈ PW 
σ ⊂ PW 

σ , then we can reconstruct the functions Fθ ,m(λ)
via the following sampling formula:

Fθ ,m(λ) =
∞∑

n=–∞

[
Fθ ,m

(
nπ

σ

)
Sn(λ) +F ′

θ ,m

(
nπ

σ

)
sin(σλ – nπ )

σ
Sn(λ)

]
. (.)

Let N ∈ Z
+, N >m, and approximate Fθ ,m(λ) by its truncated series Fθ ,m,N (λ), where

Fθ ,m,N (λ) :=
N∑

n=–N

[
Fθ ,m

(
nπ

σ

)
Sn(λ) +F ′

θ ,m

(
nπ

σ

)
sin(σλ – nπ )

σ
Sn(λ)

]
. (.)

Since all eigenvalues are real, then from now on we restrict ourselves to λ ∈ R. Since
λm–Fθ ,m(λ) ∈ L(R), the truncation error, cf. (.), is given for |λ| < Nπ

σ
by

∣∣Fθ ,m(λ) –Fθ ,m,N (λ)
∣∣ ≤ TN ,m–,σ (λ), (.)

where

TN ,m–,σ (λ)

:=
ξm–,σEm–| sinσλ|√

(N + )m–

(


(Nπ – σλ)/
+


(Nπ + σλ)/

)

+
ξm–,σ (σEm– + (m – )Em–)| sinσλ|

σ (N + )m–

(
√

Nπ – σλ
+

√
Nπ + σλ

)
. (.)

The samples {Fθ ,m( nπ
σ
)}Nn=–N and {F ′

θ ,m(
nπ
σ
)}Nn=–N , in general, are not known explicitly. So,

we approximate them by solving numerically N +  initial value problems at the nodes
{ nπ

σ
}Nn=–N . Let {F̃θ ,m( nπ

σ
)}Nn=–N and {F̃ ′

θ ,m(
nπ
σ
)}Nn=–N be the approximations of the samples of

{Fθ ,m( nπ
σ
)}Nn=–N and {F ′

θ ,m(
nπ
σ
)}Nn=–N , respectively. Now we define F̃θ ,m,N (λ), which approx-

imates Fθ ,m,N (λ)

F̃θ ,m,N (λ)

:=
N∑

n=–N

[
F̃θ ,m

(
nπ

σ

)
Sn(λ) + F̃ ′

θ ,m

(
nπ

σ

)
sin(σλ – nπ )

σ
Sn(λ)

]
, N >m. (.)

Using standard methods for solving initial problems, we may assume that for |n| <N ,

∣∣∣∣Fθ ,m

(
nπ

σ

)
– F̃θ ,m

(
nπ

σ

)∣∣∣∣ < ε,
∣∣∣∣F ′

θ ,m

(
nπ

σ

)
– F̃ ′

θ ,m

(
nπ

σ

)∣∣∣∣ < ε (.)
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Tharwat Boundary Value Problems 2013, 2013:36 Page 7 of 21
http://www.boundaryvalueproblems.com/content/2013/1/36

for a sufficiently small ε. From (.) we can see that Fθ ,m(λ) satisfies the condition (.)
whenm ≥  and therefore whenever  < ε ≤ min{π/σ ,σ /π , /√e}, we have

∣∣Fθ ,m,N (λ) – F̃θ ,m,N (λ)
∣∣ ≤A(ε), λ ∈ R, (.)

where there is a positive constantMFθ ,m for which, cf. (.),

A(ε) :=
e/

σ

{√
e( + σ ) +

(
π

σ
A +MFθ ,m

)
ρ(ε)

+
(
σ +  + log()

)
MFθ ,m

}
ε log(/ε). (.)

Here

A :=
σ
π

(∣∣Fθ ,m()
∣∣ + σ

π
MFθ ,m

)
, ρ(ε) := γ +  log(/ε).

In the following, we use the technique of [], where only the truncation error analysis is
considered, to determine enclosure intervals for the eigenvalues; see also [, ]. Let λ∗

be an eigenvalue with |θλ∗| < π , that is,

�
(
λ∗) = G

(
λ∗) +(

sin θλ∗

θλ∗

)–m

Fθ ,m
(
λ∗) = .

Then it follows that

G
(
λ∗) +(

sin θλ∗

θλ∗

)–m

F̃θ ,m,N
(
λ∗)

=
(
sin θλ∗

θλ∗

)–m

F̃θ ,m,N
(
λ∗) –(

sin θλ∗

θλ∗

)–m

Fθ ,m
(
λ∗)

=
[(

sin θλ∗

θλ∗

)–m

F̃θ ,m,N
(
λ∗) –(

sin θλ∗

θλ∗

)–m

Fθ ,m,N
(
λ∗)]

+
[(

sin θλ∗

θλ∗

)–m

Fθ ,m,N
(
λ∗) –(

sin θλ∗

θλ∗

)–m

Fθ ,m
(
λ∗)]

and so∣∣∣∣G(
λ∗) +(

sin θλ∗

θλ∗

)–m

F̃θ ,m,N
(
λ∗)∣∣∣∣ ≤

∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣–m(
TN ,m–,σ

(
λ∗) +A(ε)

)
.

Since G(λ∗) + ( sin θλ∗
θλ∗ )–mF̃θ ,m,N (λ∗) is given and | sin θλ∗

θλ∗ |–m(TN ,m–,σ (λ∗) + A(ε)) has com-
putable upper bound, we can define an enclosure for λ∗ by solving the following system
of inequalities:

–
∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣–m(
TN ,m–,σ

(
λ∗) +A(ε)

) ≤ G
(
λ∗) +(

sin θλ∗

θλ∗

)–m

F̃θ ,m,N
(
λ∗)

≤
∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣–m(
TN ,m–,σ

(
λ∗) +A(ε)

)
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/36
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Its solution is an interval containing λ∗, and over which the graph

G
(
λ∗) +(

sin θλ∗

θλ∗

)–m

F̃θ ,m,N
(
λ∗)

is squeezed between the graphs

–
∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣–m(
TN ,m–,σ

(
λ∗) +A(ε)

)
(.)

and ∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣–m(
TN ,m–,σ

(
λ∗) +A(ε)

)
. (.)

Using the fact that

F̃θ ,m,N (λ) →Fθ ,m(λ)

uniformly over any compact set, and since λ∗ is a simple root, we obtain, for large N and
sufficiently small ε,

∂

∂λ

(
G(λ) +

(
sin θλ

θλ

)–m

F̃θ ,m,N (λ)
)

�= 

in a neighborhood of λ∗. Hence the graph of G(λ)+( sin θλ
θλ

)–mF̃θ ,m,N (λ) intersects the graphs
–| sin θλ

θλ
|–m(TN ,m–,σ (λ) +A(ε)) and | sin θλ

θλ
|–m(TN ,m–,σ (λ) +A(ε)) at two points with abscis-

sae a–(λ∗,N , ε) ≤ a+(λ∗,N , ε) and the solution of the system of inequalities (.) is the
interval

Iε,N :=
[
a–

(
λ∗,N , ε

)
,a+

(
λ∗,N , ε

)]
and in particular λ∗ ∈ Iε,N . Summarizing the above discussion, we arrive at the following
lemma which is similar to that of [] for Sturm-Liouville problems.

Lemma . For any eigenvalue λ∗, we can find N ∈ Z
+ and sufficiently small ε such that

λ∗ ∈ Iε,N for N >N.Moreover,

[
a–

(
λ∗,N , ε

)
,a+

(
λ∗,N , ε

)] → {
λ∗} as N → ∞ and ε → . (.)

Proof Since all eigenvalues of �(r,α,β ,α′,β ′) are simple, then for large N and sufficiently
small ε, we have ∂

∂λ
(G(λ) + ( sin θλ

θλ
)–mF̃θ ,m,N (λ)) >  in a neighborhood of λ∗. Choose N

such that

G(λ) +
(
sin θλ

θλ

)–m

F̃θ ,m,N (λ) = ±
∣∣∣∣ sin θλ

θλ

∣∣∣∣–m(
TN,m–,σ (λ) +A(ε)

)
has two distinct solutions which we denote by a–(λ∗,N, ε) ≤ a+(λ∗,N, ε). The decay of
TN ,m–,σ (λ) →  as N → ∞ and A(ε) →  as ε →  will ensure the existence of the solu-
tions a–(λ∗,N , ε) and a+(λ∗,N , ε) as N → ∞ and ε → . For the second point, we recall

http://www.boundaryvalueproblems.com/content/2013/1/36
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that F̃θ ,m,N (λ) →Fθ ,m(λ) as N → ∞ and as ε → . Hence, by taking the limit, we obtain

G
(
a+

(
λ∗,∞, 

))
+

(
sin θλ∗

θλ∗

)–m

Fθ ,m
(
a+

(
λ∗,∞, 

))
= ,

G
(
a–

(
λ∗,∞, 

))
+

(
sin θλ∗

θλ∗

)–m

Fθ ,m
(
a–

(
λ∗,∞, 

))
= ,

that is, �(a+) = �(a–) = . This leads us to conclude that a+ = a– = λ∗ since λ∗ is a simple
root.
Let �̃N (λ) := G(λ) + ( sin θλ

θλ
)–mF̃θ ,m,N (λ). Then (.) and (.) imply

∣∣�(λ) – �̃N (λ)
∣∣ ≤

∣∣∣∣ sin θλ

θλ

∣∣∣∣–m(
TN ,m–,σ (λ) +A(ε)

)
, |λ| < Nπ

σ
. (.)

Therefore θ ,mmust be chosen so that for |λ| < Nπ
σ

m ≥ , |θλ| < π .

Let λ∗ be an eigenvalue and λN be its approximation. Thus �(λ∗) =  and �̃N (λN ) = .
From (.) we have |�̃N (λ∗)| ≤ | sin θλ∗

θλ∗ |–m(TN ,m–,σ (λ∗)+A(ε)). Nowwe estimate the error
|λ∗ – λN | for an eigenvalue λ∗. �

Theorem . Let λ∗ be an eigenvalue of �(r,α,β ,α′,β ′). For sufficient large N , we have
the following estimate:

∣∣λ∗ – λN
∣∣ < ∣∣∣∣ sin θλN

θλN

∣∣∣∣–mTN ,m–,σ (λN ) +A(ε)
infζ∈Iε,N |�′(ζ )| . (.)

Moreover, |λ∗ – λN | →  when N → ∞ and ε → .

Proof Since �(λN ) – �̃N (λN ) = �(λN ) – �(λ∗), then from (.) and after replacing λ by
λN , we obtain

∣∣�(λN ) –�
(
λ∗)∣∣ ≤

∣∣∣∣ sin θλN

θλN

∣∣∣∣–m(
TN ,m–,σ (λN ) +A(ε)

)
. (.)

Using the mean value theorem yields that for some ζ ∈ Jε,N := [min(λ∗,λN ),max(λ∗,λN )],

∣∣(λ∗ – λN
)
�′(ζ )

∣∣ ≤
∣∣∣∣ sin θλN

θλN

∣∣∣∣–m(
TN ,m–,σ (λN ) +A(ε)

)
, ζ ∈ Jε,N ⊂ Iε,N . (.)

Since the eigenvalues are simple, then for sufficiently large N infζ∈Iε,N |�′(ζ )| >  and we
get (.). The rest of the proof follows from the fact that �N (λ) converges uniformly to
�(λ) in R and A(ε) →  when ε → . �

3 The case of�(r,α,β , 0,β ′)
This section includes briefly a treatment similar to that of the previous section for the
eigenvalue problem �(r,α,β , ,β ′) introduced in Section  above. Notice that the condi-
tion (.) implies that the analysis of problem �(r,α,β , ,β ′) is not included in that of

http://www.boundaryvalueproblems.com/content/2013/1/36
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�(r,α,β ,α′,β ′). Let ψ(·,λ) = (ψ(·,λ),ψ(·,λ))� be a solution of (.) satisfying the fol-
lowing initial:

ψ(,λ) = α, ψ(,λ) = α. (.)

Therefore, the eigenvalues of the problem in question are the zeros of the function

�(λ) :=
(
β + λβ ′


)
ψ(,λ) –

(
β + λβ ′


)
ψ(,λ). (.)

Similarly to [, p.], ψ(·,λ) satisfies the system of integral equations

ψ(x,λ) = α cosλx – α sinλx + Tψ(x,λ) + T̃ψ(x,λ), (.)

ψ(x,λ) = α cosλx + α sinλx – T̃ψ(x,λ) + Tψ(x,λ), (.)

where Ti and T̃i, i = , , are the Volterra operators defined in (.) above. Define g(·,λ)
and g(·,λ) to be

g(x,λ) := Tψ(x,λ) + T̃ψ(x,λ), g(x,λ) := –T̃ψ(x,λ) + Tψ(x,λ). (.)

As in [] we split �(λ) into

�(λ) :=K(λ) + U (λ), (.)

where K(λ) is the known part

K(λ) :=
(
β + λβ ′


)
(α cosλ – α sinλ) –

(
β + λβ ′


)
(α cosλ + α sinλ) (.)

and U (λ) is the unknown one

U (λ) :=
(
β + λβ ′


)
g(,λ) –

(
β + λβ ′


)
g(,λ). (.)

Then U (λ) is entire in λ for each x ∈ [, ] for which, see [],

∣∣U (λ)∣∣ ≤ c
(
 + |λ|)e|�λ|, λ ∈ C. (.)

DefineRm,θ (λ) to be

Rm,θ (λ) =
(
sin θλ

θλ

)m

U (λ), λ ∈ C, (.)

where θ is sufficiently small, for which |θλ| < π and m are as in the previous section, but
m ≥ . Hence

∣∣Rm,θ (λ)
∣∣ ≤ cm c( + |λ|)

( + θ |λ|)m e|�λ|(+mθ ), λ ∈C (.)

http://www.boundaryvalueproblems.com/content/2013/1/36
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and λm–Rm,θ (λ) ∈ L(R) with

Em–(Rm,θ ) =

√∫ ∞

–∞

∣∣λm–Rm,θ (λ)
∣∣ dλ ≤ cm cω, (.)

where

ω :=

√
( – m + m – θ + mθ + θ)
θm–(– + m – m + m)

.

Thus, Rm,θ (λ) belongs to the Paley-Wiener space PW 
σ with σ =  +mθ . Since Rθ ,m(λ) ∈

PW 
σ ⊂ PW 

σ , then we can reconstruct the functions Rθ ,m(λ) via the following sampling
formula:

Rθ ,m(λ) =
∞∑

n=–∞

[
Rθ ,m

(
nπ

σ

)
Sn(λ) +R′

θ ,m

(
nπ

σ

)
sin(σλ – nπ )

σ
Sn(λ)

]
. (.)

Let N ∈ Z
+, N >m, and approximateRθ ,m(λ) by its truncated seriesRθ ,m,N (λ), where

Rθ ,m,N (λ) :=
N∑

n=–N

[
Rθ ,m

(
nπ

σ

)
Sn(λ) +R′

θ ,m

(
nπ

σ

)
sin(σλ – nπ )

σ
Sn(λ)

]
. (.)

Since all eigenvalues are real, then from now on we restrict ourselves to λ ∈ R. Since
λm–Rθ ,m(λ) ∈ L(R), the truncation error, cf. (.), is given for |λ| < Nπ

σ
by

∣∣Rθ ,m(λ) –Rθ ,m,N (λ)
∣∣ ≤ TN ,m–,σ (λ), (.)

where

TN ,m–,σ (λ)

:=
ξm–,σEm–| sinσλ|√

(N + )m–

(


(Nπ – σλ)/
+


(Nπ + σλ)/

)

+
ξm–,σ (σEm– + (m – )Em–)| sinσλ|

σ (N + )m–

(
√

Nπ – σλ
+

√
Nπ + σλ

)
. (.)

The samples {Rθ ,m( nπ
σ
)}Nn=–N and {R′

θ ,m(
nπ
σ
)}Nn=–N , in general, are not known explicitly. So,

we approximate them by solving numerically N +  initial value problems at the nodes
{ nπ

σ
}Nn=–N . Let {R̃θ ,m( nπ

σ
)}Nn=–N and {R̃′

θ ,m(
nπ
σ
)}Nn=–N be the approximations of the samples

of {Rθ ,m( nπ
σ
)}Nn=–N and {R′

θ ,m(
nπ
σ
)}Nn=–N , respectively. Now we define R̃θ ,m,N (λ), which ap-

proximatesRθ ,m,N (λ)

R̃θ ,m,N (λ)

:=
N∑

n=–N

[
R̃θ ,m

(
nπ

σ

)
Sn(λ) + R̃′

θ ,m

(
nπ

σ

)
sin(σλ – nπ )

σ
Sn(λ)

]
, N >m. (.)

http://www.boundaryvalueproblems.com/content/2013/1/36
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Using standard methods for solving initial problems, we may assume that for |n| <N ,∣∣∣∣Rθ ,m

(
nπ

σ

)
– R̃θ ,m

(
nπ

σ

)∣∣∣∣ < ε,
∣∣∣∣R′

θ ,m

(
nπ

σ

)
– R̃′

θ ,m

(
nπ

σ

)∣∣∣∣ < ε (.)

for a sufficiently small ε. From (.) we can see that Rθ ,m(λ) satisfies the condition (.)
whenm ≥  and therefore whenever  < ε ≤ min{π/σ ,σ /π , /√e}, we have

∣∣Rθ ,m,N (λ) – R̃θ ,m,N (λ)
∣∣ ≤A(ε), λ ∈R, (.)

where there is a positive constantMRθ ,m for which, cf. (.),

A(ε) :=
e/

σ

{√
e( + σ ) +

(
π

σ
A +MRθ ,m

)
ρ(ε)

+
(
σ +  + log()

)
MRθ ,m

}
ε log(/ε). (.)

Here

A :=
σ
π

(∣∣Rθ ,m()
∣∣ + σ

π
MRθ ,m

)
, ρ(ε) := γ +  log(/ε).

As in the above section, we have the following lemma.

Lemma . For any eigenvalue λ∗ of the problem �(r,α,β , ,β ′), we can find N ∈ Z
+ and

sufficiently small ε such that λ∗ ∈ Iε,N for N >N, where

Iε,N :=
[
b–

(
λ∗,N , ε

)
,b+

(
λ∗,N , ε

)]
,

b–, b+ are the solutions of the inequalities

–
∣∣∣∣ sin θλ

θλ

∣∣∣∣–m(
TN ,m–,σ (λ) +A(ε)

) ≤ �̃N (λ)≤
∣∣∣∣ sin θλ

θλ

∣∣∣∣–m(
TN ,m–,σ (λ) +A(ε)

)
. (.)

Moreover,

[
b–

(
λ∗,N , ε

)
,b+

(
λ∗,N , ε

)] → {
λ∗} as N → ∞ and ε → . (.)

Let �̃N (λ) :=K(λ) + ( sin θλ
θλ

)–mR̃θ ,m,N (λ). Then (.) and (.) imply

∣∣�(λ) – �̃N (λ)
∣∣ ≤

∣∣∣∣ sin θλ

θλ

∣∣∣∣–m(
TN ,m–,σ (λ) +A(ε)

)
, |λ| < Nπ

σ
. (.)

Therefore, θ ,mmust be chosen so that for |λ| < Nπ
σ
,

m ≥ , |θλ| < π .

Let λ∗ be an eigenvalue and λN be its approximation. Thus �(λ∗) =  and �̃N (λN ) = .
From (.) we have |�̃N (λ∗)| ≤ | sin θλ∗

θλ∗ |–m(TN ,m–,σ (λ∗)+A(ε)). Nowwe estimate the error
|λ∗ – λN | for an eigenvalue λ∗. Finally, we have the following estimate.

http://www.boundaryvalueproblems.com/content/2013/1/36
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Theorem . Let λ∗ be an eigenvalue of the problem �(r,α,β , ,β ′). For sufficient large N ,
we have the following estimate:

∣∣λ∗ – λN
∣∣ < ∣∣∣∣ sin θλN

θλN

∣∣∣∣–mTN ,m–,σ (λN ) +A(ε)
infζ∈Iε,N |�′(ζ )| . (.)

Moreover, |λ∗ – λN | →  when N → ∞ and ε → .

In the following section, we have taken θ = /(N – m), where σ =  + mθ , in order to
avoid the first singularity of ( sin θλN

θλN
)–.

4 Examples
This section includes three detailed worked examples illustrating the above technique ac-
companied by comparison with the sinc-method derived in []. It is clearly seen that the
Hermite interpolations method gives remarkably better results. The first two examples
are computed in [] with the classical sinc-method where r(x) = r(x). But in the last ex-
ample, where eigenvalues cannot be computed concretely, r(x) �= r(x). By ES and EH we
mean the absolute errors associated with the results of the classical sinc-method and our
new method (Hermite interpolations), respectively. We indicate in these examples the ef-
fect of the amplitude error in the method by determining enclosure intervals for different
values of ε. We also indicate the effect of the parametersm and θ by several choices. Each
example is exhibited via figures that accurately illustrate the procedure near to some of
the approximated eigenvalues. More explanations are given below. Recall that a±(λ) and
b±(λ) are defined by

a±(λ) = �̃N (λ)±
∣∣∣∣ sin θλ

θλ

∣∣∣∣–m(
TN ,m–,σ (λ) +A(ε)

)
, |λ| < Nπ

σ
, (.)

b±(λ) = �̃N (λ)±
∣∣∣∣ sin θλ

θλ

∣∣∣∣–m(
TN ,m–,σ (λ) +A(ε)

)
, |λ| < Nπ

σ
, (.)

respectively. Recall also that the enclosure intervals Iε,N := [a–,a+] and Iε,N := [b–,b+] are
determined by solving

a±(λ) = , |λ| < Nπ

σ
, (.)

b±(λ) = , |λ| < Nπ

σ
, (.)

respectively. We would like to mention that Mathematica has been used to obtain the
exact values for the three examples where eigenvalues cannot be computed concretely.
Mathematica is also used in rounding the exact eigenvalues, which are square roots.

Example  The boundary value problem

u′
(x) – xu(x) = λu(x), u′

(x) + xu(x) = –λu(x),  ≤ x≤ , (.)

u() = –λu(), u() = λu() (.)

is a special case of the problem �(r,α,β ,α′,β ′) when r(x) = r(x) = x, α′
 = α = β ′

 = β =
, α = – and α′

 = β = β ′
 = . Here the characteristic function is

http://www.boundaryvalueproblems.com/content/2013/1/36
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Table 1 N = 20,m = 10, θ = 1/10

λk Sinc λk,N Exact λk Hermite λk,N ES EH
λ–2 –1.505786875767961 –1.5057868758327264 –1.5057868758327246 6.47653× 10–11 1.77636× 10–15

λ–1 –0.11141619186432938 –0.11141619146375636 –0.11141619146375908 4.00573× 10–10 2.72005× 10–15

λ0 1.1223201536675476 1.1223201551741047 1.1223201551741295 1.50656× 10–9 2.4869× 10–14

λ1 3.3830704087110752 3.383070408212596 3.3830704082125935 4.98479× 10–10 2.66454× 10–15

Table 2 N = 20,m = 15, θ = 1/5

λk Sinc λk,N Exact λk Hermite λk,N

λ–2 –1.5057868758327237144550336 –1.5057868758327218561623117 –1.5057868758327237144491654
λ–1 –0.1114161914637569327965574 –0.1114161914637563667829627 –0.1114161914637563668056111
λ0 1.1223201551741129577354075 1.1223201551741041543767735 1.1223201551741041544693398
λ1 3.3830704082126126090125379 3.3830704082125963004202471 3.3830704082125963003644934

Table 3 Absolute error |λk – λk,N| for N = 20,m = 15, θ = 1/5

λk λ–2 λ–1 λ0 λ1

ES 1.858× 10–15 5.660× 10–16 8.803× 10–15 1.630× 10–14

EH 5.868× 10–21 2.265× 10–20 9.257× 10–20 5.575× 10–20

Table 4 For N = 20,m = 10 and θ = 1/10, the exact solutions λk are all inside the interval
[a–,a+] for different values of ε

λk Exact λk [a–,a+], ε = 10–10 [a–,a+], ε = 10–15

λ–2 –1.5057868758327264 [–1.650349, –1.220683] [–1.508403, –1.502664]
λ–1 –0.11141619146375636 [–0.179803, –0.071447] [–0.130019, –0.100199]
λ0 1.1223201551741047 [0.429491, 1.314588] [0.884579, 1.206467]
λ1 3.383070408212596 [3.314309, 3.464923] [3.369349, 3.400197]

E7(Fθ ,m) = 3.05294× 1011 , E6(Fθ ,m) = 2.53419× 109 , ω = 1, MFθ ,m
= 3.56048× 106 .

Table 5 With N = 20,m = 15 and θ = 1/5, λk are all inside the interval [a–,a+] for different
values of ε

λk Exact λk [a–,a+], ε = 10–10 [a–,a+], ε = 10–15

λ–2 –1.5057868758327218561623117 [–1.652755, –1.334613] [–1.505894, –1.505678]
λ–1 –0.1114161914637563667829627 [–0.331996, 0.121731] [–0.111834, –0.111003]
λ0 1.1223201551741041543767735 [0.923906, 1.285003] [1.120633, 1.124014]
λ1 3.3830704082125963004202471 [3.241846, 3.533914] [3.382059, 3.384093]

E12(Fθ ,m) = 1.61064× 1013 , E11(Fθ ,m) = 1.71043× 1011 , ω = 1, MFθ ,m
= 3.98665× 106 .

�(λ) := λ cos
(


+ λ

)
–

(
λ – 

)
sin

(


+ λ

)
. (.)

The function G(λ) will be

G(λ) := λ cosλ +
(
 – λ) sinλ. (.)

As is clearly seen, eigenvalues cannot be computed explicitly. Five tables indicate the ap-
plication of our technique to this problem and the effect of ε, θ and m (Tables , , , 
and ). By exact, we mean the zeros of �(λ) computed by Mathematica.
Figures  and  illustrate the comparison between �(λ) and �̃N (λ) for different values

ofm and θ . Figures  and , for N = ,m =  and θ = /, illustrate the enclosure inter-

http://www.boundaryvalueproblems.com/content/2013/1/36
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Figure 1 �(λ), ˜�N(λ) with N = 20,m = 10 and
θ = 1/10.

Figure 2 �(λ), ˜�N(λ) with N = 20,m = 15 and
θ = 1/5.

Figure 3 a+, �(λ), a– with N = 20,m = 10,
θ = 1/10 and ε = 10–10.

Figure 4 a+, �(λ), a– with N = 20,m = 10,
θ = 1/10 and ε = 10–15.

http://www.boundaryvalueproblems.com/content/2013/1/36


Tharwat Boundary Value Problems 2013, 2013:36 Page 16 of 21
http://www.boundaryvalueproblems.com/content/2013/1/36

Figure 5 a+, �(λ), a– with N = 20,m = 15, θ = 1/5
and ε = 10–10.

Figure 6 a+, �(λ), a– with N = 20,m = 15, θ = 1/5
and ε = 10–15.

vals for ε = – and ε = –, respectively. Also, Figures  and  illustrate the enclosure
intervals for ε = – and ε = –, respectively, but form = , θ = /.

Example  The Dirac system

u′
(x) – xu(x) = λu(x), u′

(x) + xu(x) = –λu(x),  ≤ x≤ , (.)

u() = , u() = –λu() (.)

is a special case of the problem treated in the previous section with r(x) = r(x) = x,
α = β ′

 = , α = β = β ′
 =  and β = –. The characteristic function is

�(λ) := cos

(


+ λ

)
– λ sin

(


+ λ

)
. (.)

The function K(λ) will be

K(λ) := cosλ – λ sinλ. (.)

As in the previous example, Figures , , , ,  and  illustrate the results of Tables , ,
,  and . Figures  and  illustrate the comparison between�(λ) and �̃N (λ) for different
values ofm and θ . Figures  and , forN = ,m =  and θ = /, illustrate the enclosure
intervals for ε = – and ε = –, respectively. Also, Figures  and  illustrate the
enclosure intervals for ε = – and ε = –, respectively, but form = , θ = /.
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Figure 7 	(λ), ˜	N(λ) with N = 20,m = 6 and
θ = 1/14.

Figure 8 	(λ), ˜	N(λ) with N = 20,m = 12 and
θ = 1/8.

Figure 9 b+, 	(λ), b– with N = 20,m = 6, θ = 1/14
and ε = 10–10.

Figure 10 b+, 	(λ), b– with N = 20,m = 6,
θ = 1/14 and ε = 10–15.

http://www.boundaryvalueproblems.com/content/2013/1/36
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Figure 11 b+, 	(λ), b– with N = 20,m = 12,
θ = 1/8 and ε = 10–10.

Figure 12 b+, 	(λ), b– with N = 20,m = 12,
θ = 1/8 and ε = 10–15.

Table 6 N = 20,m = 6, θ = 1/14

λk Sinc λk,N Exact λk Hermite λk,N ES EH
λ–2 –3.7364320716761927 –3.736432198331617 –3.7364321983463715 1.26655× 10–7 1.47544× 10–11

λ–1 –1.0801974353048152 –1.0801976714797825 –1.0801976714531203 2.36175× 10–7 2.66622× 10–11

λ0 0.6565189567613093 0.6565187872152198 0.6565187872029187 1.69546× 10–7 1.23012× 10–11

λ1 3.118561532798614 3.1185614501648167 3.1185614501681216 4.98479× 10–8 3.30491× 10–12

Table 7 N = 20,m = 12, θ = 1/8

λk Sinc λk,N Exact λk Hermite λk,N

λ–2 –3.736432198332202082929465 –3.736432198331617091212013 –3.736432198331617091189782
λ–1 –1.080197671476027921290673 –1.080197671479782493157863 –1.080197671479782493947136
λ0 0.6565187872242083579354743 0.6565187872152199183983102 0.6565187872152199230592640
λ1 3.118561450158043898832776 3.118561450164816849643922 3.118561450164816845810261

Table 8 Absolute error |λk – λk,N| for N = 20,m = 12, θ = 1/8

λk λ–2 λ–1 λ0 λ1

ES 5.849× 10–13 3.755× 10–12 8.988× 10–12 6.773× 10–12

EH 2.223× 10–20 7.893× 10–19 4.661× 10–18 3.834× 10–18

Table 9 For N = 20,m = 6 and θ = 1/14, the exact solutions λk are all inside the interval
[b–,b+] for different values of ε

λk Exact λk [b–,b+], ε = 10–10 [b–,b+], ε = 10–15

λ–2 –3.736432198331617091212013 [–3.881037, –3.476447] [–3.836682, –3.557513]
λ–1 –1.080197671479782493157863 [–1.435432, –0.665868] [–1.365324, –0.760935]
λ0 0.6565187872152199183983102 [0.410872, 1.116247] [0.492155, 1.004381]
λ1 3.118561450164816849643922 [2.884061, 3.390359] [2.940901, 3.331955]

E4(Rθ ,m ) = 2.9056× 107 , E3(Rθ ,m ) = 2.29859× 106 , ω = 1, MRθ ,m
= 98845.4.
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Table 10 With N = 20,m = 12 and θ = 1/8, λk are all inside the interval [b–,b+] for different
values of ε

λk Exact λk [b–,b+], ε = 10–10 [b–,b+], ε = 10–15

λ–2 –3.736432198331617 [–4.1011429, –3.3717065] [–3.7364598, –3.7364045]
λ–1 –1.0801976714797825 [–1.5078873, –0.4433678] [–1.0808585, –1.07952734]
λ0 0.6565187872152198 [0.0168549, 1.1086918] [0.6528005, 0.6602210]
λ1 3.1185614501648167 [2.7401391, 3.1185614] [3.1157222, 3.1214041]

E10(Rθ ,m ) = 6.2724× 1012 , E9(Rθ ,m ) = 8.21004× 1011 , ω = 1, MRθ ,m
= 501421.

Figure 13 b+, 	(λ), b– with N = 20,m = 16,
θ = 1/4 and ε = 10–12.

Figure 14 b+, 	(λ), b– with N = 20,m = 16,
θ = 1/4 and ε = 10–15.

Table 11 N = 20,m = 16, θ = 1/4

λk Exact λk λk,N EH
λ–2 –3.1976270593385675784857858037 –3.1976270593385675784857498452 3.596× 10–23

λ–1 –0.64351783872891518984316280760 –0.64351783872891518984316309998 2.924× 10–25

λ0 1.4487204290456776077365351429 1.4487204290456776077365176362 1.751× 10–23

λ1 3.8015200831700579923508826075 3.8015200831700579923509045951 2.199× 10–23

Table 12 With N = 20,m = 16 and θ = 1/4, λk are all inside the interval [b–,b+] for different
values of ε

λk Exact λk [b–,b+], ε = 10–10 [b–,b+], ε = 10–15

λ–2 –3.1976270593385675784857858037 [–3.30255437, –3.11013060] [–3.19791869, –3.19733846]
λ–1 –0.64351783872891518984316280760 [–0.67219637, –0.61489406] [–0.64356572, –0.64346999]
λ0 1.4487204290456776077365351429 [1.40795687, 1.49107473] [1.44812338, 1.44932224]
λ1 3.8015200831700579923508826075 [3.60636554, 4.19453907] [3.80103975, 3.80200804]

E14(Rθ ,m ) = 2.16956× 1013 , E13(Rθ ,m ) = 5.61116× 1012 , ω = 1, MRθ ,m
= 3.15557× 106 .
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Example  The boundary value problem

u′
(x) – xu(x) = λu(x), u′

(x) – u(x) = –λu(x), ≤ x ≤ , (.)

u() = , u() = λu() (.)

is a special case of the problem �(r,α,β , ,β ′) when r(x) = x, r(x) = –, α = β = β ′
 = 

and α = β ′
 = β = . Here the characteristic function is

�(λ) := /
(
AiryAiPrime

[
λ( – λ)/

]
AiryBi

[
λ( – λ)/

]
–AiryAi

[
λ( – λ)/

]
AiryBiPrime

[
λ( – λ)/

])
× [

λ( – λ)/AiryAi
[
( + λ)( – λ)/

]
AiryBi

[
λ( – λ)/

]
+AiryAiPrime

[
(λ + )( – λ)/

]
AiryBi

[
λ( – λ)/

]
–AiryAiPrime

[
λ( – λ)/

](
λ( – λ)/AiryBi

[
(λ + )( – λ)/

]
+AiryBiPrime

[
(λ + )( – λ)/

])]
, (.)

where AiryAi[z] and AiryBi[z] are Airy functions Ai(z) and Bi(z), respectively, and
AiryAiPrime[z] and AiryBiPrime[z] are derivatives of Airy functions. The function K(λ)
will be

K(λ) := cosλ – λ sinλ. (.)

Figures ,  and Tables ,  illustrate the applications of the method to this problem.
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