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Abstract
This article deals with the differential equations of fractional order on the half-line. By
the recent Leggett-Williams norm-type theorem due to O’Regan and Zima, we
present some new results on the existence of positive solutions for the fractional
boundary value problems at resonance on unbounded domains.
MSC: 26A33; 34A08; 34A34

Keywords: fractional order; half-line; coincidence degree; at resonance

1 Introduction
In this article, we are concerned with the fractional differential equation

⎧⎨
⎩
Dα

+u(t) = f
(
t,u(t)

)
, t ∈ [, +∞),

u() = u′() = u′′() = , Dα–
+ u() = lim

t→+∞Dα–
+ u(t),

(.)

whereDα
+ is the Riemann-Liouville fractional derivative,  < α < , and f : [, +∞)×R →

R satisfies the following condition:

(H) f : [, +∞) × R → R is continuous and for each l > , there exists φl ∈ C[, +∞) ∩
L[, +∞) satisfying supt≥ |φl(t)| < +∞ and φl(t) > , t >  such that

|u| < l implies
∣∣f (t, ( + tα–

)
u
)∣∣ ≤ φl(t), a.e. t ≥ .

The problem (.) happens to be at resonance in the sense that the kernel of the linear
operator Dα

+ is not less than one-dimensional under the boundary value conditions.
Fractional calculus is a generalization of the ordinary differentiation and integration.

It has played a significant role in science, engineering, economy, and other fields. Some
books on fractional calculus and fractional differential equations have appeared recently
(see [–]); furthermore, today there is a large number of articles dealing with the frac-
tional differential equations (see [–]) due to their various applications.
In [], the researchers dealt with the existence of solutions for boundary value problems

of fractional order of the form

CDα
+y(t) = f

(
t, y(t)

)
, t ∈ [, +∞),

y() = y, y is bounded in [,+∞),
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where  < α ≤  and f : [, +∞)×R→R is continuous. The results are based on the fixed
point theorem of Schauder combined with the diagonalization method.
In [], Su and Zhang studied the following fractional differential equations on the half-

line using Schauder’s fixed point theorem

Dα
+u(t) = f

(
t,u(t),Dα–

+ u(t)
)
, t ∈ (, +∞),  < α ≤ ,

u() = , lim
t→∞Dα–

+ u(t) = u∞.

Employing the Leray-Schauder alternative theorem, in [], Zhao andGe considered the
fractional boundary value problem

Dα
+u(t) + f

(
t,u(t)

)
= , t ∈ (, +∞),  < α < ,

u() = , lim
t→∞Dα–

+ u(t) = βu(ξ ).

However, the articles on the existence of solutions of fractional differential equations on
the half-line are still few, and most of them deal with the problems under nonresonance
conditions. And as far as we know, recent articles, such as [, , ], investigating resonant
problems are on the finite interval.
Motivated by the articles [–], in this article we study the differential equations (.)

under resonance conditions on the unbounded domains. Moreover, we have successfully
established the existence theorem by the recent Leggett-Williams norm-type theorem due
to O’Regan and Zima. To our best knowledge, there is no article dealing with the resonant
problems of fractional order on unbounded domains by the theorem.
The rest of the article is organized as follows. In Section , we give the definitions of

the fractional integral and fractional derivative, some results about fractional differential
equations, and the abstract existence theorem. In Section , we obtain the existence result
of the solution for the problem (.) by the recent Leggett-Williams norm-type theorem.
Then, an example is given in Section  to demonstrate the application of our result.

2 Preliminaries
First of all, we present some fundamental facts on the fractional calculus theory which we
will use in the next section.

Definition . ([–]) The Riemann-Liouville fractional integral of order ν >  of a func-
tion h : (,∞)→R is given by

Iν+h(t) =D–ν
+h(t) =


�(ν)

∫ t


(t – s)ν–h(s)ds, (.)

provided that the right-hand side is pointwise defined on (,∞).

Definition . ([–]) The Riemann-Liouville fractional derivative of order ν >  of a
continuous function h : (,∞)→R is given by

Dν
+h(t) =


�(n – ν)

(
d
dt

)n ∫ t


(t – s)n–ν–h(s)ds, (.)

where n = [ν] + , provided that the right-hand side is pointwise defined on (,∞).

http://www.boundaryvalueproblems.com/content/2012/1/64
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Lemma . ([, ]) Assume that h(t) ∈ L(, +∞). If ν,ν,ν > , then

Iν+I
ν
+h(t) = Iν+ν

+ h(t), Dν
+I

ν
+h(t) = h(t). (.)

Lemma . ([]) Assume that Dν
+h(t) ∈ L(, +∞), ν > . Then we have

Iν+D
ν
+h(t) = h(t) +Ctν– +Ctν– + · · · +CNtν–N , t > , (.)

for some Ci ∈R, i = , , . . . ,N, where N is the smallest integer greater than or equal to ν .

Now, let us recall some standard facts and the fixed point theorem due to O’Regan and
Zima, and these can be found in [, , –].
Let X, Z be real Banach spaces. Consider an operation equation

Lu =Nu,

where L : domL ⊂ X → Z is a linear operator, N : X → Z is a nonlinear operator. If
dimKerL = codim ImL < +∞ and ImL is closed in Z, then L is called a Fredholm map-
ping of index zero. And if L is a Fredholm mapping of index zero, there exist linear con-
tinuous projectors P : X → X and Q : Z → Z such that KerL = ImP, ImL =KerQ and X =
KerL⊕KerP,Z = ImL⊕ImQ. Then it follows thatLP = L|domL∩KerP : domL∩KerP → ImL
is invertible. We denote the inverse of this map by KP . For ImQ is isomorphic to KerL,
there exists an isomorphism J : ImQ→KerL.
It is known that the coincidence equation Lu =Nu is equivalent to

u = (P + JQN)u +KP(I –Q)Nu.

A nonempty convex closed set C ⊂ X is called a cone if
(i) κx ∈ C for all x ∈ C and κ ≥ ;
(ii) x, –x ∈ C implies x = .

Note that C induces a partial order � in X by

x � y if and only if y – x ∈ C.

The following lemma is valid for every cone in a Banach space.

Lemma . ([, ]) Let C be a cone in the Banach space X. Then for every u ∈ C \ {},
there exists a positive number σ (u) such that

‖x + u‖ ≥ σ (u)‖x‖,

for all x ∈ C.

Let γ : X → C be a retraction, i.e., a continuous mapping such that γ (x) = x for all x ∈ C.
Denote

� := P + JQN +KP(I –Q)N ,

http://www.boundaryvalueproblems.com/content/2012/1/64
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and

�γ :=� ◦ γ .

Theorem . ([, ]) Let C be a cone in X and let �, � be open bounded subsets of X
with � ⊂ � and C ∩ (� \ �) �= ∅. Assume that:

◦ L is a Fredholm operator of index zero;
◦ QN : X → Z is continuous and bounded and KP(I –Q)N : X → X is compact on every

bounded subset of X ;
◦ Lu �= λNu for all u ∈ C ∩ ∂� ∩ domL and λ ∈ (, );
◦ γ maps subsets of � into bounded subsets of C;
◦ dB([I – (P + JQN)γ ]|KerL,KerL∩ �, ) �= , where dB stands for the Brouwer degree;
◦ there exists u ∈ C \ {} such that ‖u‖ ≤ σ (u)‖�u‖ for u ∈ C(u)∩ ∂�, where C(u) =

{u ∈ C : μu � u for some μ > } and σ (u) is such that ‖u + u‖ ≥ σ (u)‖u‖ for every
u ∈ C;

◦ (P + JQN)γ (∂�) ⊂ C;
◦ �γ (� \ �) ⊂ C.

Then the equation Lx =Nx has a solution in the set C ∩ (� \ �).

Let

X =
{
x
∣∣∣x ∈ C[, +∞), lim

t→+∞
x(t)

 + tα–
exists

}

with the norm

‖x‖X = sup
t≥

|x(t)|
 + tα–

,

and

Z =
{
z
∣∣z ∈ C[, +∞)∩ L[, +∞), sup

t≥

∣∣z(t)∣∣ < +∞
}
,

equipped with the norm

‖z‖Z = sup
t≥

∣∣z(t)∣∣ +
∫ +∞



∣∣z(t)∣∣dt.

Remark . It is easy for us to prove that (X,‖ · ‖X ) and (Z,‖ · ‖Z ) are Banach spaces.

Set

domL =
{
u ∈ X

∣∣Dα
+u(t) ∈ C[, +∞)∩ L[, +∞),u() = u′() = u′′() = ,

Dα–
+ u() = lim

t→+∞Dα–
+ u(t)

}
.

Define

L : domL → Z, u→Dα
+u(t), (.)

http://www.boundaryvalueproblems.com/content/2012/1/64
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and

N : X → Z, u → f
(
t,u(t)

)
. (.)

Then the multi-point boundary value problem (.) can be written by

Lu =Nu, u ∈ domL.

Definition . u ∈ X is called a solution of the problem (.) if u ∈ domL and u satisfied
Equation (.).

Next, similar to the compactness criterion in [, ], we establish the following crite-
rion, and it can be proved in a similar way.

Lemma . U is a relatively compact set in X if and only if the following conditions are
satisfied:
(a) U is uniformly bounded, that is, there exists a constant R >  such that for each

u ∈ U , ‖u‖X ≤ R.
(b) The functions from U are equicontinuous on any compact subinterval of [, +∞),

that is, let J be a compact subinterval of [, +∞), then ∀ε > , there exists δ = δ(ε) > 
such that for t, t ∈ J , |t – t| < δ,

∣∣∣∣ u(t)
 + tα–

–
u(t)

 + tα–

∣∣∣∣ < ε, ∀u ∈ U .

(c) The functions from U are equiconvergent, that is, given ε > , there exists
T = T(ε) >  such that

∣∣∣∣ u(s)
 + sα–

–
u(s)
 + sα–

∣∣∣∣ < ε,

for s, s > T , ∀u ∈ U .

3 Main results
In this section, we will present the existence theorem for the fractional differential equa-
tion on the half-line. In order to prove our main result, we need the following lemmas.

Lemma . Let g ∈ Z. Then u ∈ X is the solution of the following fractional differential
equation:

⎧⎨
⎩
Dα

+u(t) = g(t), t ∈ [, +∞),

u() = u′() = u′′() = , Dα–
+ u() = lim

t→+∞Dα–
+ u(t),

if and only if

u(t) = ctα– +


�(α)

∫ t


(t – s)α–g(s)ds, c ∈ R,

http://www.boundaryvalueproblems.com/content/2012/1/64
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and
∫ +∞


g(t)dt = .

Proof In view of Lemmas . and ., we can certify the conclusion easily, so we omit the
details here. �

Lemma . The operator L is a Fredholm mapping of index zero. Moreover,

KerL =
{
u|u = ctα–, t ≥ , c ∈R

} ⊂ X, (.)

and

ImL =
{
g ∈ Z

∣∣∣
∫ +∞


g(t)dt = 

}
⊂ Z. (.)

Proof It is obvious that Lemma . implies (.) and (.). Now, let us focus our minds on
proving that L is a Fredholm mapping of index zero.
Define Q : Z → Z

(Qg)(t) = e–t
∫ +∞


g(s)ds, t ≥ , (.)

where g ∈ Z. Evidently, KerQ = ImL, ImQ = {g|g = ce–t , t ≥ , c ∈ R}, and Q : Z → Z is a
continuous linear projector. In fact, for an arbitrary g ∈ Z, we have

Qg =Q(Qg) =Q
(
e–t

∫ +∞


g(s)ds

)
=Q

(
e–t

)∫ +∞


g(s)ds = e–t

∫ +∞


g(s)ds =Qg,

that is to say, Q : Z → Z is idempotent.
Let g = g –Qg +Qg = (I –Q)g +Qg , where g ∈ Z is an arbitrary element. SinceQg ∈ ImQ

and (I –Q)g ∈KerQ, we obtain that Z = ImQ+KerQ. Take z ∈ ImQ∩KerQ, then z can
be written as z = ce–t , c ∈ R , for z ∈ ImQ. Since z ∈ KerQ = ImL, by (.), we get that
Q(z) = Q(ce–t) = cQ(e–t) = ce–t = , which implies that c = , and then z = . Therefore,
ImQ∩KerQ = {}, thus, Z = ImQ⊕KerQ = ImQ⊕ ImL.
Now, dimKerL =  = dim ImQ = codimKerQ = codim ImL < +∞, and observing that

ImL is closed in Z, so L is a Fredholm mapping of index zero. �

Let P : X → X be defined by

(Pu)(t) =
(


�(α)

∫ +∞


e–su(s)ds

)
tα–, t ≥ ,u ∈ X. (.)

It is clear that P : X → X is a linear continuous projector and

ImP =
{
u|u = ctα–, t ≥ , c ∈ R

}
=KerL.

Also, proceeding with the proof of Lemma ., we can show that X = ImP ⊕ KerP =
KerL⊕KerP.

http://www.boundaryvalueproblems.com/content/2012/1/64
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Consider the mapping KP : ImL → domL∩KerP

(KPg)(t) = –
(


�(α)

∫ +∞


e–sg(s)ds

)
tα– +


�(α)

∫ t


(t – s)α–g(s)ds, g ∈ ImL.

Note that

(KPL)u = KP(Lu) = u, ∀u ∈ domL∩KerP,

and

(LKP)g = L(KPg) = g, ∀g ∈ ImL.

Thus, KP = (LP)–, where LP = L|domL∩KerP : domL∩KerP → ImP.
Define the linear isomorphism J : ImQ →KerL as

J
(
ce–t

)
= ctα–, t ≥ , c ∈R.

Thus, JQN +KP(I –Q)N : X → X is given by

[
JQN +KP(I –Q)N

]
u(t) =

tα–

�(α)

∫ +∞


G(t, s)f

(
s,u(s)

)
ds, t ≥ , (.)

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t = ;

�(α) +


– e–s –

∫ t



(t – τ )α–

tα–
e–τ dτ +

(t – s)α–

tα–
,

t �=  and  ≤ s ≤ t < +∞;

�(α) +


– e–s –

∫ t



(t – τ )α–

tα–
e–τ dτ ,  < t ≤ s < +∞.

Then, it is easy to verify that

 < �(α) –



≤ G(t, s) ≤ �(α) +


. (.)

Now, we state the main result on the existence of the positive solutions to the problem
(.) in the following.

Theorem . Let f : [, +∞) × R → R satisfy the condition (H). Assume that there exist
six nonnegative functions αi(t) (i = , , ), βj(t) (j = , ) and μ(t) such that

f (t,u) ≤ –α(t)
∣∣f (t,u)∣∣ + α(t)

u
 + tα–

+ α(t), t ≥ , (.)

and

–μ(t)
u

 + tα–
≤ f (t,u)≤ –β(t)

u
 + tα–

+ β(t), t ≥ , (.)

http://www.boundaryvalueproblems.com/content/2012/1/64


Chen and Tang Boundary Value Problems 2012, 2012:64 Page 8 of 13
http://www.boundaryvalueproblems.com/content/2012/1/64

where  ≤ u
+tα– ≤ R, R > R, and R is defined by (.), α(t) is bounded on [, +∞),

β(t) > , t ≥ , α(t),α(t),β(t),β(t) ∈ L[, +∞),

α := inf
t≥

α(t) > ,
∫ +∞


α(t)dt > ,

∫ +∞


β(t)dt > , (.)

� :=

α

sup
t≥

α(t) + αe–t( + tα–)/
β(t)

< +∞, (.)

and

∫ +∞


μ(t)dt <

�(α) + 
(�(α) + /)(�(α) + /)

, etμ(t) <
 + tα–

�(α) + /
. (.)

Then the problem (.) has at least one positive solution in domL.

Proof For the simplicity of notation, we denote

ε :=
�(α)

�(α) + /
+

�(α) + /
�(α) + 

∫ +∞


μ(s)ds < , β :=

∫ +∞



sα–β(s)
 + sα–

ds,

and

R :=max

{
�

�(α)

∫ +∞


β(s)ds +


α�(α)

∫ +∞


α(s)ds,


β

∫ +∞


β(s)ds

}
. (.)

Consider the cone

C = {u|u ∈ X,u(t)≥ , t ≥ }.

Set

� =
{
u ∈ X

∣∣∣ε‖u‖X <
u(t)

 + tα–
< R, t ≥ 

}
, � =

{
u ∈ X|‖u‖X < R, t ≥ 

}
,

where R ∈ (R,R),R ∈ (,R), ε ∈ (ε, ). Clearly, � and � are an open bounded set
of X.
Step : In view of Lemma ., the condition ◦ of Theorem . is fulfilled.
Step : By virtue of Lemma ., we can get thatQN : X → Z is continuous and bounded

and KP(I –Q)N : X → X is compact on every bounded subset of X, which ensures that the
assumption ◦ of Theorem . holds.
Step : Suppose that there exist u* ∈ C ∩ ∂� ∩ domL and λ* ∈ (, ) such that Lu* =

λ*Nu*.
Since

u* = (I – P)u* + Pu* = KPL(I – P)u* + Pu* = KPLu* + Pu*,

we have

u*(t)
 + tα–

= –


�(α)

∫ +∞


e–sDα

+u
*(s)ds · tα–

 + tα–
+


�(α)

∫ t



(t – s)α–

 + tα–
Dα

+u
*(s)ds

http://www.boundaryvalueproblems.com/content/2012/1/64
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+


�(α)

∫ +∞


e–su*(s)ds · tα–

 + tα–
(.)

<


�(α)

∫ +∞



∣∣Dα
+u

*(s)
∣∣ds + 

�(α)

∫ +∞


e–su*(s)ds.

From (.) and (.), we get that

Dα
+u

*(t) = λ*f
(
t,u*(t)

) ≤ –λ*α(t)
∣∣f (t,u*(t))∣∣ + λ*α(t)

u*(t)
 + tα–

+ λ*α(t)

≤ –α(t)
∣∣Dα

+u
*(t)

∣∣ + α(t)
u*(t)

 + tα–
+ α(t),

(.)

and

Dα
+u

*(t) = λ*f
(
t,u*(t)

) ≤ –λ*β(t)
u*(t)

 + tα–
+ λ*β(t). (.)

On account of the fact that
∫ +∞


Dα

+u
*(s)ds =

∫ +∞


D

(
Dα–

+ u*(s)
)
ds = lim

t→+∞Dα–
+ u*(t) –Dα–

+ u*() = ,

and considering (.) and (.), we have

 =
∫ +∞


Dα

+u
*(s)ds

≤ –
∫ +∞


α(s)

∣∣Dα
+u

*(s)
∣∣ds +

∫ +∞


α(s)

u*(s)
 + sα–

ds +
∫ +∞


α(s)ds,

and

 =
∫ +∞


Dα

+u
*(s)ds≤ –

∫ +∞


λ*β(s)

u*(s)
 + sα–

ds +
∫ +∞


λ*β(s)ds.

Thus,

∫ +∞



∣∣Dα
+u

*(s)
∣∣ds≤ 

α

∫ +∞


α(s)

u*(s)
 + sα–

ds +

α

∫ +∞


α(s)ds,

and

∫ +∞


β(s)

u*(s)
 + sα–

ds ≤
∫ +∞


β(s)ds.

By (.), (.) and (.), we obtain that

u*(t)
 + tα–

<


�(α)

∫ +∞



∣∣Dα
+u

*(s)
∣∣ds + 

�(α)

∫ +∞


e–su*(s)ds

≤ 
α�(α)

∫ +∞


α(s)

u*(s)
 + sα–

ds +


α�(α)

∫ +∞


α(s)ds +


�(α)

∫ +∞


e–su*(s)ds

http://www.boundaryvalueproblems.com/content/2012/1/64
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=


�(α)

∫ +∞



(

α

α(s) + αe–s( + sα–)/
β(s)

)
β(s)

u*(s)
 + sα–

ds +


α�(α)

∫ +∞


α(s)ds

≤ �

�(α)

∫ +∞


β(s)

u*(s)
 + sα–

ds +


α�(α)

∫ +∞


α(s)ds

≤ �

�(α)

∫ +∞


β(s)ds +


α�(α)

∫ +∞


α(s)ds≤ R < R,

which is a contradiction to u* ∈ C ∩ ∂� ∩ domL. Therefore, ◦ is satisfied.
Step : Let (γu)(t) = |u(t)|, thenwe can verify that γ : X → C is a retraction and ◦ holds.
Step : Let u ∈ KerL ∩ �, then u(t) = ctα–, t ≥ , c ∈ R. Inspired by Aijun and Wang

[], we set

H
(
ctα–,ρ

)
=

[
I – ρ(P + JQN)γ

](
ctα–

)
=

(
c – ρ|c| – ρ

∫ +∞


f
(
s, |c|sα–)ds

)
tα–,

where c ∈ [–R,R] and ρ ∈ [, ].
Define homeomorphism J :KerL∩ � →R by J(ctα–) = c, then

dB
(
H

(
ctα–,ρ

)
,KerL∩ �, 

)
= dB

(
JH

(
J– c,ρ

)
, J(KerL∩ �), J()

)
= dB

(
JH

(
J– c,ρ

)
, J(KerL∩ �), 

)
.

It is obvious that JH(J– c,ρ) =  implies that c≥  by (.) and (.).
Take c ∈ J(KerL ∩ ∂�), then |c| = R. Suppose that JH(J– c,ρ) = , ρ ∈ (, ], then

we have that c = R. Also, in view of (.),

R = ρ

(
R –

∫ +∞


f
(
s,Rsα–

)
ds

)

≤ ρ

(
R + R

∫ +∞


β(s)

sα–

 + sα–
ds +

∫ +∞


β(s)ds

)

< ρR ≤ R.

It is a contradiction. Besides, if ρ = , then R = , which is impossible. Hence, for c ∈
J(KerL∩ ∂�), JH(J– c,ρ) �= , ρ ∈ [, ].
Therefore,

dB
([
I – (P + JQN)γ

]∣∣
KerL,KerL∩ �, 

)
= dB

(
H(·, ),KerL∩ �, 

)
= dB

(
JH

(
J– c, 

)
, J(KerL∩ �), 

)
= dB

(
JH

(
J– c, 

)
, J(KerL∩ �), 

)
= dB

(
I, J(KerL∩ �), 

)
=  �= ,

which shows that ◦ is true.
Step : Let u =  + tα– ∈ C \ {}, then we have

C(u) =
{
u ∈ C

∣∣∣ inf
t≥

u(t)
 + tα–

> 
}
.
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And we can take σ (u) = .
Let t >  such that

tα–

 + tα–
>

�(α) + /
�(α) + 

.

For u ∈ C(u)∩ ∂�, we have that

‖u‖X ≤ R < R,
u(t)

 + tα–
≥ ε‖u‖X .

Therefore, combining (.), (.) and (.), we get that

(�u)(t)
 + tα–

=


 + tα–

(
Pu(t) +

[
JQN +KP(I –Q)N

]
u(t)

)

=
tα–

 + tα–

(


�(α)

∫ +∞


e–su(s)ds +


�(α)

∫ +∞


G(t, s)f

(
s,u(s)

)
ds

)

>
�(α) + /
�(α) + 

(
ε‖u‖X


�(α)

∫ +∞


e–s

(
 + sα–

)
ds –

‖u‖X

�(α)

∫ +∞


G(t, s)μ(s)ds

)

≥ ‖u‖X
�(α) + /
�(α) + 

(
ε

�(α) + 
�(α)

–
�(α) + /

�(α)

∫ +∞


μ(s)ds

)

= ‖u‖X .

Thus, ‖u‖X ≤ σ (u)‖�u‖X for all u ∈ C(u)∩ ∂�. So, ◦ holds.
Step : For u ∈ ∂�, from (.) and (.), we have

(P + JQN)(γu)(t) =
(


�(α)

∫ +∞


e–s

∣∣u(s)∣∣ds +
∫ +∞


f
(
s,

∣∣u(s)∣∣)ds
)
tα–

≥ tα–

�(α)

∫ +∞



[
e–s

(
 + sα–

)
–μ(s)

] |u(s)|
 + sα–

ds≥ ,

which implies that (P + JQN)γ (∂�) ⊂ C. Hence, ◦ holds.
Step : For u ∈ � \ �, by (.), (.) and (.), we obtain that

�γu(t) =
[
P + JQN +KP(I –Q)N

]∣∣u(t)∣∣
=

(


�(α)

∫ +∞


e–s

∣∣u(s)∣∣ds + 
�(α)

∫ +∞


G(t, s)f

(
s,

∣∣u(s)∣∣)ds
)
tα–

≥ tα–

�(α)

(∫ +∞



[
e–s

(
 + sα–

)
–G(t, s)μ(s)

] |u(s)|
 + sα–

ds
)

≥ tα–

�(α)

(∫ +∞



[
e–s

(
 + sα–

)
–

(
�(α) +




)
μ(s)

] |u(s)|
 + sα–

ds
)

≥ .

Thus, �γ (� \ �) ⊂ C, that is, ◦ is satisfied.
Hence, applying Theorem ., the problem (.) has a positive solution in the set C ∩

(� \ �). �
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4 Examples
To illustrate our main result, we will present an example.

Example .

⎧⎨
⎩
Dα

+u(t) = f
(
t,u(t)

)
, t ∈ [, +∞),

u() = u′() = u′′() = , Dα–
+ u() = lim

t→+∞Dα–
+ u(t),

(.)

where α = ., and for (t,u) ∈R
,

f (t,u) = –β(t)
u

 + tα–
+ β(t),

and

β(t) =



e–t
(
 + tα–

)
, β(t) =


 + t

.

It is easy for us to certify that f satisfies the condition (H).
Noting that

f (t,u) ≤ –α(t)
∣∣f (t,u)∣∣ + α(t)

u
 + tα–

+ α(t), t ≥ ,

and

–μ(t)
u

 + tα–
≤ f (t,u)≤ –β(t)

u
 + tα–

+ β(t), t ≥ ,

for u≥ , where

α(t) = , α(t) = β(t), α(t) = β(t), μ(t) = β(t).

Evidently, μ(t) satisfies (.).
Meanwhile, by simple computation we can get that

α = ,
∫ +∞


α(t)dt =

π

,

∫ +∞


β(t)dt =

π


, � = .

Thus, to sum up the points which we have just indicated, by Theorem ., we can con-
clude that the problem (.) has at least one positive solution.
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