
Hu and Xu Boundary Value Problems 2012, 2012:130
http://www.boundaryvalueproblems.com/content/2012/1/130

RESEARCH Open Access

Positive solutions of nonhomogeneous
boundary value problems for some nonlinear
equation with φ-Laplacian
Liang-Gen Hu* and Jing Xu

*Correspondence:
hulianggen@yahoo.cn
Department of Mathematics,
Ningbo University, Ningbo, 315211,
P.R. China

Abstract
We will consider the nonhomogeneous φ-Laplacian differential equation

{
(φ(u′(t)))′ = –h(t)f (u(t)), t ∈ (0, T ),

u(0) =
∑k

i=1 αiu(ηi), φ(u′(T )) = β ,

where φ :R → (–b,b) (0 < b ≤ +∞) is an increasing homeomorphism such that
φ(0) = 0, h : [0, T ] →R

+ and f :R+ → R
+ are continuous, β ≥ 0 and ηi ∈ (0, T ) and

αi ∈ R, i = 1, 2, . . . , k. Based on the Krasnosel’skii fixed point theorem, the existence of
a positive solution is obtained, even if some of the αi coefficients are negative. Two
examples are also given to illustrate our main results.

Keywords: nonhomogeneous; φ-Laplacian; positive solution; fixed point; negative
coefficient

1 Introduction
We are concerned with the φ-Laplacian differential equation with the nonhomogeneous
Dirichlet-Neumann boundary conditions

⎧⎨
⎩(φ(u′(t)))′ = –h(t)f (u(t)), t ∈ (,T),

u() = ω(u) :=
∑k

i= αiu(ηi), φ(u′(T)) = β ,
(.)

where φ :R → (–b,b) ( < b ≤ +∞) is an increasing homeomorphism such that φ() = ,
h : [,T] → R

+ and f : R+ → R
+ are continuous (R+ = [,+∞)), β ≥ , αi ∈ R and ηi ∈

(,T), for i ∈ I := {, , . . . ,k}.
Boundary value problems, including the φ-Laplacian operator, have received a lot of

attention with respect to the existence and multiplicity of solutions. Since , with a
number of papers, Bereanu and Mawhin have considered such problems with Dirichlet,
Neumann or periodic boundary conditions (see [–] and the references therein). In these
papers, the various boundary value problems are reduced to the search for fixed points of
some nonlinear operators defined on Banach spaces. In particular, they have studied some
boundary value problems with nonhomogeneous boundary conditions and obtained the
existence of solutions by the use of Schauder’s fixed point theorem (see [, ]). Recently,
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Torres [] has proved the existence of a solution of a forced Liénard differential equation
with φ-Laplacian by means of Schauder’s fixed point theorem.
However, many nonlinear differential equations need to seek the existence of positive

solutions because the positive solutions are very meaningful. The existence of positive
solutions for homogeneous and nonhomogeneous boundary value problems have been
studied by several authors and many interesting results have been obtained (only to men-
tion some of them, see [–], their references and the papers citing them). The problems
with negative coefficients for the boundary conditions (see [–]) often occur in some
heat flow problems, the deflection of a beam, and Floquet theory of the beam equation
and have been considered by some experts (see [, , –]). If the coefficient takes a
negative value, then it is sometimes difficult to find an appropriate cone to guarantee the
existence of a positive solution of the corresponding differential equation. Comparingwith
the previous result [–], the cone may be smaller.
The purpose of this paper is to establish the criteria of the existence of a positive solution

to the problem (.) by utilizing the Krasnosel’skii fixed point theorem, even if some of the
αi coefficients are negative. The method of proof is inspired by the ideas exposed in [–,
, ]. As we will see, our results are new, and the interesting points of those results are
the following two aspects: (i) Some of the αi coefficients appearing in (.) are allowed to
take a negative value. (ii) The existence of a positive solution for the class of φ-Laplacian
differential equations with a nonhomogeneous boundary condition is proved. Notice that
the existence of a positive solution for the class of φ-Laplacian equations has been less
studied in the related literature.
This paper is organized as follows. In Section , we give some lemmas, which play an

important role in the proof of the main theorem. In Section , we obtain the existence of a
positive solution to the problem (.). Moreover, two examples are also given to illustrate
the main results.

2 Preliminaries and lemmas
Let X denote the Banach space C([,T],R) of continuous functions endowed with the
maximum norm ‖u‖ =maxt∈[,T] |u(t)|. Define a nonlinear operator S : X → X by

(Su)(t) :=
k∑
i=

αiu(ηi) +
∫ t


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

= ω(u) +
∫ t


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds. (.)

Deriving on both sides of (.) leads to

(Su)′(t) = φ–
(

β +
∫ T

t
h(s)f

(
u(s)

)
ds

)
, (.)

i.e.,

φ
(
(Su)′(t)

)
= β +

∫ T

t
h(s)f

(
u(s)

)
ds. (.)
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Again, deriving in (.) implies

(
φ
(
(Su)′(t)

))′ = –h(t)f
(
u(t)

)
.

Moreover, from (.) and (.), we get that (Su)() = ω(u) and φ((Su)′(T)) = β . Therefore,
the existence of a solution for Eq. (.) is equivalent to seeking a fixed point of the nonlinear
operator S.
For the sake of convenience, we give the following conditions.
(A) Denote � := {i ∈ I : αi < } and ∇ := {i ∈ I : αi > }, and αi satisfies the conditions

k∑
i=

αi ≥ 

and

∑
i∈∇

αi < .

(F) The function f :R+ →R
+ is continuous and satisfiesM ≤ f (u) ≤ M, for any

u≥ , where  <M <M are two constants.
(B) β +M

∫ T
 h(t)dt < b (for  < b < +∞).

(H) There exists a d ∈ (,T) such that h(d) > , and let the inequality

∑
i∈�

αi

∫ ηi


φ–

[
β +M

∫ T

s
h(τ )dτ

]
ds+

∑
i∈∇

αi

∫ ηi


φ–

[
β +M

∫ T

s
h(τ )dτ

]
ds≥ 

be true.
For the unbounded φ-Laplacian (b = +∞), we obtain the following results.

Lemma  Assume that the conditions (F) and (H) hold, u(t) ≥ , ω(u) ≥ , and  < a < T .
Then there exists a constant γ ∈ (, ) such that

min
t∈[a,T]

(Su)(t) ≥ γ ‖Su‖.

Proof From the representation (.) and the conditions (F)-(H), we have

(Su)′(t) = φ–
(

β +
∫ T

t
h(τ )f

(
u(τ )

)
dτ

)
≥ .

Again since β ≥ , we get that ‖Su‖ = (Su)(T). Therefore, applying the condition (F) leads
to

‖Su‖ = (Su)(T)

= ω(u) +
∫ T


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

≤ ω(u) +
∫ T


φ–

(
β +M

∫ T

s
h(τ )dτ

)
ds,
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and

min
t∈[a,T]

(Su)(t) = (Su)(a)

= ω(u) +
∫ a


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

≥ ω(u) +
∫ a


φ–

(
β +M

∫ T

s
h(τ )dτ

)
ds

≥ γ ‖Su‖,

where

γ =
∫ a
 φ–(β +M

∫ T
s h(τ )dτ )ds∫ T

 φ–(β +M
∫ T
s h(τ )dτ )ds

.

This completes the proof. �

Next, let us define a cone by

P :=
{
u ∈ X : u≥ ,ω(u) ≥ , min

t∈[a,T]
u(t) ≥ γ ‖u‖

}
.

The definition of the cone is inspired by the results in [, ]. To show our main results, the
following lemma is essential.

Lemma  Let the conditions (A), (F), and (H) hold and the nonlinear operator S be defined
by (.). Then S :P →P .

Proof From the definition of the operator S, we find for any u ∈P that

(Su)(t) = ω(u) +
∫ t


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds≥ .

The conditions (F) and (H) yield

ω(Su) =
k∑
i=

αi(Su)(ηi)

=
k∑
i=

αi

{
ω(u) +

∫ ηi


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

}

= ω(u) ·
( k∑

i=

αi

)
+

∑
i∈�

αi

∫ ηi


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

+
∑
i∈∇

αi

∫ ηi


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

≥
∑
i∈�

αi

∫ ηi


φ–

(
β +M

∫ T

s
h(τ )dτ

)
ds
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+
∑
i∈∇

αi

∫ ηi


φ–

(
β +M

∫ T

s
h(τ )dτ

)
ds

≥ .

Further, Lemma  shows

min
t∈[a,T]

(Su)(t) ≥ γ ‖Su‖.

Consequently, we get that S :P →P . �

Remark  If the coefficients {αi : i ∈ I} are nonnegative, then the conclusion in Lemma 
also holds without the hypothesis (H).

Lemma  If  < b < +∞ and, in addition, the assumptions of Lemma  and the condition
(B) are satisfied, then the conclusions of Lemma  and Lemma  hold.

Lemma  (See []) Let X be a Banach space and P ⊆ X be a cone. Suppose that 
 and

 are bounded open sets contained in X such that  ∈ 
 and 
 ⊆ 
. Suppose further
that S :P ∩ (
\
) →P is a completely continuous operator. If either

(i) ‖Su‖ ≤ ‖u‖ for u ∈P ∩ ∂
 and ‖Su‖ ≥ ‖u‖ for u ∈P ∩ ∂
 or
(ii) ‖Su‖ ≥ ‖u‖ for u ∈P ∩ ∂
 and ‖Su‖ ≤ ‖u‖ for u ∈P ∩ ∂
,

then S has at least one fixed point in P ∩ (
\
).

3 Themain result
Theorem  Assume that the conditions (A), (F), and (H) hold and b = +∞. Then Eq. (.)
has at least one positive solution.

Proof Lemma  shows that S : P → P . In addition, a standard argument involving the
Arzela-Ascoli theorem implies that S is a completely continuous operator.
Now, we choose a positive constant r such that

r ≤
∫ a


φ–

(
β +M

∫ T

s
h(τ )dτ

)
ds

and define
 := {u ∈ X : ‖u‖ < r}. For any u ∈P ∩ ∂
, we get from the condition (F) that

‖Su‖ = (Su)(T) = ω(u) +
∫ T


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

≥
∫ T


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

≥
∫ a


φ–

(
β +M

∫ T

s
h(τ )dτ

)
ds

≥ r = ‖u‖.

Thus, for any u ∈P ∩ ∂
, we find that

‖Su‖ ≥ ‖u‖. (.)
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From the hypothesis (A), we can let
∑

i∈∇ αi = – ε, ε ∈ (, ). Next, we choose a positive
constant r such that

r =max

{

ε

∫ T


φ–

(
β +M

∫ T

s
h(τ )dτ

)
ds,

r
ε

}

and define 
 := {u ∈ X : ‖u‖ < r}. Clearly, for any u ∈P ∩ ∂
, we obtain

‖Su‖ = (Su)(T) = ω(u) +
∫ T


φ–

(
β +

∫ T

s
h(τ )f

(
u(τ )

)
dτ

)
ds

≤
∑
i∈∇

αi‖u‖ +
∫ T


φ–

(
β +M

∫ T

s
h(τ )dτ

)
ds

≤
∑
i∈∇

αi‖u‖ + εr

= r
[∑
i∈∇

αi + ε

]
= r = ‖u‖.

Then, for any u ∈P ∩ ∂
, it implies that

‖Su‖ ≤ ‖u‖. (.)

Based on Lemma , we get from (.) and (.) that the operator S has at least one fixed
point. Thus, it follows that Eq. (.) has at least one positive solution. �

Remark  If the coefficients {αi : i ∈ I} are nonnegative, then the condition (A) is replaced
with

(A′)
∑k

i= αi ∈ (, ).

Applying the results in Remark  and Theorem , we get the following result.

Corollary  Assume that the conditions (A′) and (F) hold and b = +∞. Then Eq. (.) has
at least one positive solution.

If φ :R → (–b,b) ( < b < +∞), then we have the following result.

Theorem  Assume that the conditions (A), (F), (B), and (H) hold. Then Eq. (.) has at
least one positive solution.

Proof Using Lemma  and the proof of Theorem , we get that the conclusion holds. �

Example  Consider the differential equation

(∣∣u′(t)
∣∣u′(t)

)′ = –t
(
e– sinu(t) + cosu(t) + 

)
, t ∈ (, ), (.)

subjected to the boundary conditions

u() =


u() –



u() +



u(), φ

(
u′()

)
= . (.)
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Clearly, we find

φ = φ is one p-Laplacian operator, p = ,

h(t) = t, f (u) = e– sinu + cosu + ,

ω(u) =


u() –



u() +



u(),

α =


, α = –



, α =



,

∑
i=

αi =



and α + α =


.

Computing yields

 +

e

≤ f (u) ≤  + e,

–



∫ 


φ–

[
 + ( + e)

∫ 

s
τdτ

]
ds +




∫ 


φ–

[
 +

(
 +


e

)∫ 

s
τdτ

]
ds

+



∫ 


φ–

[
 +

(
 +


e

)∫ 

s
τdτ

]
ds≈ . > .

Therefore, we conclude from Theorem  that Eq. (.)-(.) has at least one positive solu-
tion.

Example  Consider the differential equation

(
u′(t)√

 + (u′(t))

)′
= –t

(
sinu(t) + 

)
, t ∈ (, ), (.)

subjected to the boundary conditions

u() = –



u(.) +


u(.) +



u(.), φ

(
u′()

)
=


. (.)

Obviously, we obtain

φ(u) =
u√
 + u

,

h(t) = t, f (u) = sinu(t) + ,

ω(u) = –



u(.) +


u(.) +



u(.),

α = –



, α =


, α =



,

∑
i=

αi =



and α + α =


.

It is easy to verify that the conditions (B), (F), and (H) hold. Consequently, we get from
Theorem  that the equation (.)-(.) has at least one positive solution.
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