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Abstract
This paper uses the forward transformation defined in Currie and Love (Adv. Differ.
Equ. 2010:947058, 2010) to develop a hierarchy for difference boundary value
problems with eigenparameter-dependent boundary conditions. In particular, we
show how various sets of these boundary conditions transform under this forward
transformation. The resulting hierarchy is then illustrated in a tabular form where the
number of eigenvalues for each of the problems is also given. In addition, we point
out certain analogies to the work done in Currie and Love (Bound. Value Probl.
2011:743135, 2011) where the reverse Crum-type transformation was used to
establish a hierarchy of difference boundary value problems.
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1 Introduction
One of the main reasons for studying the Darboux-Crum transformation on a discrete
second-order difference equation is its relevance to quantum mechanics in the computa-
tion of discrete energy levels and corresponding eigenfunctions. This follows from the fact
that a second-order difference equation can be factorised as a product of two Crum-type
transformations, see [].
This paper develops an alternative hierarchy to that given in [] for difference boundary

problems by using the forward Crum-type transformation that was given initially in [].
Our interest in this alternate hierarchy is its value in the study of the associated inverse
problem which is our current project. Although the results appear similar to those in
[–], it should be noted that they do not follow directly from these papers and as such, it
is necessary that these new results be proved as shown in Sections . and ..
We consider a weighted second-order difference equation of the form

c(n)y(n + ) – b(n)y(n) + c(n – )y(n – ) = –c(n)λy(n), (.)

where c(n) >  represents a weight function and b(n) a potential function. General
eigenparameter-dependent boundary conditions of the form
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y(–) =

[
gλ + h –

p∑
k=

uk
λ – ek

]
y(), g ≥ ,uk > , (.)

y(m – ) =

[
aλ + b –

s∑
k=

ck
λ – dk

]
y(m), a≤ , ck <  (.)

are imposed at the initial and terminal endpoints.
We prove how (.) transforms under transformation (.). It is necessary to consider

the cases of g =  and g >  separately in order to establish our results (see Theorem .).
The majority of the work carried out in this paper pertains to the transformation of (.)
under (.) (see Theorems ., . and .). Here we consider the cases a =  and a < 
separately because when a =  it is necessary to then further consider independently the
cases of b =  and b �= . It should be noted that when a <  the sign of b is immaterial.
Interestingly, in Theorem ., the case when both a =  and b =  is unique in that the
interval of the transformed boundary value problem shrinks by one unit. Furthermore,
a comparison of the original and transformed boundary value problems and their corre-
sponding eigenvalues is given in Tables  and  in Section . In addition, the analogies
between the hierarchy presented in this paper and that found in [–] are mentioned.
In mathematics, the difference equation is often used as a means to study its continuous

counterpart, the differential equation. However, difference equations are interesting and
useful in their own right. Difference equations or recurrence relations describe a situation
where there is a discrete sequence of entities, each of which either gives an input to its
successor, or perhaps interacts with both its neighbors.
Difference equations have applications in the theory of orthogonal polynomials and con-

tinued fractions, electrical circuit analysis, signals and systems analysis, computer visual-
ization, mathematical biology, dynamical systems and statistics etc. In particular, second-
order difference equations or three-term recurrence relations of the form (.) are used to
model a variety of problems, see [], such as the famous ‘gamblers ruin’ model in proba-
bility theory, the national income model in economics and the model for the propagation
of annual plants in biology. Moreover, in dynamical systems, three-term recurrence rela-
tions are used to model population dynamics; for example, the Fibonacci numbers, which
are defined by the relation

y(n) = y(n – ) + y(n – )

with y() =  and y() = , were once used as a model for the growth of rabbit populations.
For an application of (.) with variable coefficients together with eigenparameter-

dependent boundary conditions, we turn our attention to quantum physics. Here c(n)
being a variable indicates that the medium or space considered is non-uniform. The co-
efficient b(n), which may or may not vary, is the discrete analogue of the potential in the
continuous case. The significance of the eigenparameter-dependent boundary conditions
is that the boundary of the space responds to the energy of the system, i.e. is not fixed,
where the eigenparameter λ represents the energy level (up to a scaling factor). In partic-
ular, in the one-dimensional discrete model of an electron in an atom, λ gives the energy
state of the electron.
It should be noted that Harmsen and Li, in [], study discrete Sturm-Liouville problems

where the eigenparameter appears linearly in the boundary conditions. These results are
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then extended by the authors in [] to difference boundary value problemswhere the spec-
tral parameter appears quadratically in the boundary conditions. The operator is extended
to a self-adjoint operator and an expansion theorem is proved.
Difference equations are also being studied using Lie group theory. This usually involves

a symmetry-based approach to solving a given ordinary difference equation by considering
the structure of the solution set. A symmetry is a continuous group which leaves the sys-
tem of equations invariant. For example, if a one-dimensional difference equation admits
a symmetry, then it becomes a linear equation and an analytic solution may be obtained
as described in [] and []. Hydon in [] develops a method for finding one-parameter
Lie groups of symmetries to achieve successive reductions of order. The difference equa-
tion can be completely solved provided there are a sufficient number of symmetries. Levi
and Winternitz in [] show how the apparent mismatch between discrete equations and
continuous symmetries can be resolved. Their approach is either to use generalised sym-
metries on the solutions of the difference equations which leave the lattice invariant or,
alternatively, restrict to point symmetries which allow them to transform the lattice.
Section  provides the preliminary results from [–]. Section  pertains to the trans-

formation of boundary conditions (.) and (.) under mapping (.) as discussed above,
while Section  provides the reader with a tabularized comparison of various sets of
boundary conditions and eigenvalues for the original boundary value problem with those
of the transformed boundary value problem.

2 Preliminaries
This section provides a recap of the necessary results from [–].
Consider equation (.) for n = , . . . ,m – . Note that the values of y(–) and y(m) are

given by the boundary conditions.
The mapping y �→ v is defined by

v(n) := y(n + ) – y(n)
z(n + )
z(n)

, n = –, , . . . ,m – , (.)

where, throughout this paper, z(n) is a solution to (.) for λ =  such that z(n) >  for all
n = –, . . . ,m.

Note Without loss of generality:
(i) If z(n) does satisfy both given boundary conditions (.) and (.), then the spectral

parameter must be shifted so that the original boundary value problem has least
eigenvalue precisely .

(ii) If z(n) does not obey one or both given boundary conditions (.) and (.), then
the spectral parameter of the original given boundary value problem must first be
shifted so as to ensure that all the eigenvalues are nonnegative.

(iii) Once the required shifts above have been made, z(n) is taken to be a solution to the
shifted equation, which we may assume is given again by (.) for λ = .

From [] we have the following theorem.

Theorem . Under mapping (.), equation (.) transforms to

cv(n)v(n + ) – bv(n)v(n) + cv(n – )v(n – ) = –λcv(n)v(n), (.)

http://www.advancesindifferenceequations.com/content/2013/1/311
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for n = , . . . ,m – , and where for n = –, , . . . ,m – ,

cv(n) =
c(n)z(n)
z(n + )

> , (.)

bv(n) =
[

c(n)z(n)
c(n + )z(n + )

+
z(n + )
z(n)

]
c(n)z(n)
z(n + )

. (.)

As in our previous research [–], Nevanlinna functions play an important role. For the
reader’s convenience, the particular properties of Nevanlinna functions that are employed
are listed below.
(A) If N(λ), B(λ) are positive Nevanlinna functions, then


N(λ)

= –B(λ). (.)

In particular, it follows from (A) that the results below hold:
(B) If

N(λ) = b –
s∑
j=

cj
λ – dj

, cj > ,b �= , (.)

then


N(λ)

= β –
s∑
j=

σj

λ – δj
, σj < ,β �= .

(C) If

N(λ) = aλ + b –
s∑
j=

cj
λ – dj

, a, cj > , (.)

then


N(λ)

= –
s+∑
j=

σj

λ – δj
, σj < . (.)

The graph given in Figure  depicts the positive Nevanlinna function

y(λ) = Aλ + B –
s∑

k=

�k

λ – xk
, �k > ,

together with the horizontal line y(λ) = K , where the intersections are labeled by τi ’s. For
illustrative purposes, we have taken s = . This graph will be referred to throughout Sec-
tion .
The notation used will follow that in [], namely N�

s,j(λ) will denote a Nevanlinna func-
tion where:

s is the number of terms in the sum;

http://www.advancesindifferenceequations.com/content/2013/1/311
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Figure 1 Positive Nevanlinna function.

j indicates the value of n at which the boundary condition is imposed and

� =

⎧⎨
⎩± if the coefficient of λ is positive or negative resp.,

 if the coefficient of λ is zero.

The number of eigenvalues that a particular boundary value problem has depends on
the form of the boundary conditions and the theorem below was proved in [].

Theorem . Consider the boundary value problem given by equation (.) for n =
, . . . , r – , together with boundary conditions

y(–) =

[
aλ + b –

p∑
k=

ck
λ – dk

]
y(), a≥ , ck > ; (.)

y(r – ) =

[
αλ + β –

s∑
j=

γj

λ – σj

]
y(r), α ≤ ,γj < . (.)

Then boundary value problem (.), (.), (.) has
(i) s + p + r +  eigenvalues if α < ,
(ii) s + p + r eigenvalues if α =  and β �= ,
(iii) s + p + r –  eigenvalues if α = β = .

(Note that the number of unit intervals considered is r + .)

3 Transformation of boundary conditions
In this sectionwe investigate how y(n) obeying general eigenparameter-dependent bound-
ary conditions of the form given in (.) and (.) transforms under (.) to v(n) obeying
corresponding boundary conditions which depend on the spectral parameter. Choosing
various zero or non-zero values for a, b, g , h gives rise to the different results which are
proved below. By considering the number of zero’s and poles (singularities) of the various
Nevanlinna functions involved, we obtain the precise formof these transformed boundary
conditions.

http://www.advancesindifferenceequations.com/content/2013/1/311
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3.1 Boundary condition at the terminal end point
The following lemma could be considered as an analogy to Lemma . in [].

Lemma . If y(n) obeys the boundary condition

y(m – ) =

[
aλ + b –

s∑
k=

ck
λ – dk

]
y(m), ck < 

:= R�
s,m(λ)y(m) for � =

{
– if a < ,
 if a = ,

(.)

then the domain of v(n) may be extended from n = –, . . . ,m –  to n = –, . . . ,m by forcing
the condition

v(m – )
v(m)

=

W

, (.)

where

W =
c(m – )z(m – )

c(m)z(m)
– λ +

z(m)λ
z(m–)

z(m)
z(m–) –


R�
s,m(λ)

. (.)

Proof The transformed equation, (.), for n =m – , together with (.) gives

cv(m – )Wv(m – ) – bv(m – )v(m – ) + cv(m – )v(m – )

= –λcv(m – )v(m – ). (.)

From mapping (.), with n =m – , and boundary condition (.), we obtain

v(m – ) = y(m)
[
 – R�

s,m(λ)
z(m)

z(m – )

]
. (.)

Similarly, (.) with n =m –  and (.) yields

v(m – ) = R�
s,m(λ)y(m) – y(m – )

z(m – )
z(m – )

. (.)

Rearranging equation (.) with n =m –  gives

c(m – )y(m – ) = b(m – )y(m – ) – λc(m – )y(m – ) – c(m – )y(m). (.)

Solving for y(m – ) in (.) and substituting this result into (.) together with boundary
condition (.), we have that

v(m – ) = y(m)
[
R�
s,m(λ)

–
z(m – )

c(m – )z(m – )
([
b(m – ) – λc(m – )

]
R�
s,m(λ) – c(m – )

)]
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/311
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Now substitute (.) and (.) into (.) and divide through by y(m) �=  to obtain

W =
bv(m – ) – λcv(m – )

cv(m – )
–
cv(m – )
cv(m – )

× [R�
s,m(λ) –

z(m–)
c(m–)z(m–) (R

�
s,m(λ)[b(m – ) – λc(m – )] – c(m – ))]

 – z(m)
z(m–)R�

s,m(λ)
. (.)

The above equation may be simplified as follows. First, divide the numerator and denom-
inator of the second term on the right-hand side by R�

s,m(λ) �=  to get

W =
bv(m – )
cv(m – )

– λ

–
cv(m – )
cv(m – )

[ – z(m–)
c(m–)z(m–) (b(m – ) – λc(m – ) – c(m–)

R�
s,m(λ) )


R�
s,m(λ) –

z(m)
z(m–)

]
. (.)

Since z(n) obeys (.) for λ =  with n =m – , we obtain

 –
b(m – )z(m – )
c(m – )z(m – )

= –
c(m – )z(m)

c(m – )z(m – )
. (.)

If we substitute (.) into the numerator of the term in square brackets in (.), then the
numerator becomes

c(m – )z(m – )
c(m – )z(m – )

(
λ +


R�
s,m(λ)

–
z(m)

z(m – )

)
, (.)

and so the ratio contained in the square brackets simplifies to

c(m–)z(m–)
c(m–)z(m–)λ


R�
s,m(λ) –

z(m)
z(m–)

+
c(m – )z(m – )
c(m – )z(m – )

. (.)

Substitution of (.) into equation (.) results in the following expression forW :

W =
bv(m – )
cv(m – )

– λ –
cv(m – )
cv(m – )

c(m – )z(m – )
c(m – )z(m – )

–
cv(m–)c(m–)z(m–)
cv(m–)c(m–)z(m–)λ


R�
s,m(λ) –

z(m)
z(m–)

. (.)

From (.),

cv(n) =
c(n)z(n)
z(n + )

,

thus

cv(m – )
cv(m – )

=
c(m – )z(m – )

z(m – )
z(m)

c(m – )z(m – )
, (.)

and hence a simplified expression forW is given by

W =
bv(m – )
cv(m – )

– λ –
z(m)

z(m – )
+

z(m)
z(m–)λ

z(m)
z(m–) –


R�
s,m(λ)

. (.)

http://www.advancesindifferenceequations.com/content/2013/1/311
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Also from (.), with n =m – , we obtain

bv(m – ) =
[
c(m – )z(m – )

c(m)z(m)
+

z(m)
z(m – )

]
c(m – )z(m – )

z(m)
. (.)

Thus the first term on the right-hand side of (.) becomes

bv(m – )
cv(m – )

=
c(m – )z(m – )

c(m)z(m)
+

z(m)
z(m – )

, (.)

and hence

W =
c(m – )z(m – )

c(m)z(m)
– λ +

z(m)
z(m–)λ

z(m)
z(m–) –


R�
s,m(λ)

(.)

as required. �

It is still necessary to show that /W is a negative Nevanlinna function of the correct
form. In the following theorem, we consider the case where a =  and b �=  in (.).

Theorem . Consider y(n) obeying the boundary condition

y(m – ) =

[
b –

s∑
k=

ck
λ – dk

]
y(m), ck < , <


b
<

z(m)
z(m – )

:= R
s,m(λ)y(m), (.)

then y(n) transforms, under (.), to v(n) obeying (.) as follows:
() If z(n) does not obey (.) for λ = , then v(n) obeys

v(m – ) =

W

v(m) =

[
–

s+∑
j=

σj

λ – δj

]
v(m) := T

s+,m(λ)v(m). (.)

() If z(n) does obey (.), then v(n) obeys

v(m – ) =

W

v(m) =

[
–

s∑
j=

σ̃j

λ – δ̃j

]
v(m) := T̃

s,m(λ)v(m), (.)

where σj, σ̃j < .

Proof Recall from Nevanlinna property (A) that if R
s,m(λ) is a negative Nevanlinna func-

tion, then 
Rs,m(λ)

is a positive Nevanlinna function. To show that 
W is a negative Nevan-

linna function, whereW is as given in (.) with � = , we consider the ratio

λ
z(m)

z(m–) –


Rs,m(λ)

(.)

http://www.advancesindifferenceequations.com/content/2013/1/311
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which has expansion

f (λ) –
p∑
t=

rt
λ – qt

, rt > , (.)

where qt ’s correspond to 
Rs,m(λ)

= z(m)
z(m–) , i.e. the singularities of (.). ByNevanlinna prop-

erty (B),


R
s,m(λ)

=

b
–

s∑
j=

σj

λ – δj
, σj > . (.)

Since 
Rs,m(λ)

is a positiveNevanlinna function, it has a graph of the form shown in Figure 

where y(λ) = 
Rs,m(λ)

, K = z(m)
z(m–) , A = , B = 

b such that  < B < K , xi = δi and τi = qi for
i = , , . Note that since A = , τ does not exist.
Clearly, the gradient of 

Rs,m(λ)
at qt is positive for all t, that is,

∂

∂λ


R
s,m(λ)

∣∣∣
qt
> , t = , . . . ,p.

If z(n) does not obey (.), then the zeros of λ
z(m)

z(m–) –


Rs,m(λ)

are the poles of 
Rs,m(λ)

, that is,

δj ’s together with λ = . Since there is the same number of qt ’s as there are δj ’s, it follows
that p = s in (.).
We now examine the form of f (λ) in (.) more closely. Using (.) we may write


R
s,m(λ)

=

b
∏s

j=(λ – δj) –
∑s

i=
∏s

j=,j �=i σj(λ – δj)∏s
j=(λ – δj)

.

Thus it follows that

λ
z(m)

z(m–) –


Rs,m(λ)

=
λ

∏s
j=(λ – δj)

z(m)
z(m–)

∏s
j=(λ – δj) – 

b
∏s

j=(λ – δj) +
∑s

i=
∏s

j=,j �=i σj(λ – δj)

:=
λs+ + asλs + as–λs– + · · · + aλ
( z(m)
z(m–) –


b )λs + bs–λs– + · · · + b

:=


z(m)
z(m–) –


b

λ +C +
cs–λs– + · · · + c

( z(m)
z(m–) –


b )λs + bs–λs– + · · · + b

→ 
z(m)

z(m–) –

b

λ +C

as λ → ±∞, where C, ai, bj and cj are constants for i = , . . . , s and j = , . . . , s– . It should
be noted that the exact formofC is not required at this stage. Therefore, f (λ) = λ

z(m)
z(m–) –


b
+C.

http://www.advancesindifferenceequations.com/content/2013/1/311
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This together with (.), (.) and (.) gives

W =
c(m – )z(m – )

c(m)z(m)
– λ +

z(m)
z(m – )

[
λ

z(m)
z(m–) –


b

+C –
s∑

t=

rt
λ – qt

]

:= �λ +� –
s∑

t=

γ rt
λ – qt

, (.)

where γ = z(m)
z(m–) , � = γ

γ– 
b
–  and � = c(m–)

c(m) γ – +Cγ . Since γ rt > , it follows thatW can
only be a positive Nevanlinna function if � > , which implies that

z(m)
z(m–)

z(m)
z(m–) –


b

–  >  ⇒

b

z(m)
z(m–) –


b

> .

This results in two cases: either 
b <  and z(m)

z(m–) <

b , which is not possible as z(m)

z(m–) > ,
or we must have 

b >  and z(m)
z(m–) >


b . This in turn means that for  < 

b <
z(m)

z(m–) it follows
by Nevanlinna property (C) that 

W is a negative Nevanlinna function of the form (.)
as required.
If z(n) does obey (.) for λ = , then z(m–)

z(m) = R
s,m(), i.e.


Rs,m()

= z(m)
z(m–) . Thus, one of

qt ’s, t = , . . . ,p, is equal to .
Now, since 

Rs,m()
= z(m)

z(m–) , using (.), routine calculations give

λ
z(m)

z(m–) –


Rs,m(λ)

=
∑s

j=
σj

δj(λ–δj)

,

which illustrates that the discontinuity at λ =  is removable. So, the number of non-
removable qt ’s is one less than the number of δj ’s. This means that the number of terms
in (.) is s –  and since we may relabel, if required, we take p = s – . Therefore, in the
same manner as above,

W =
c(m – )z(m – )

c(m)z(m)
– λ +

z(m)
z(m – )

[
λ

z(m)
z(m–) –


b

+C –
s–∑
t=

rt
λ – qt

]

:= �λ +� –
s–∑
t=

γ rt
λ – qt

, (.)

where γ , � and� are as previously defined. Once again, forW to be a positive Nevanlinna
function, we require that  < 

b <
z(m)

z(m–) . Hence, byNevanlinna result (C), 
W may bewritten

as a negative Nevanlinna function of the form (.). �

Theorem . Consider y(n) obeying the boundary condition

y(m – ) =

[
aλ + b –

s∑
k=

ck
λ – dk

]
y(m), a < , ck <  and

z(m – )
z(m)

< b

:= R–
s,m(λ)y(m). (.)

Under mapping (.), y(n) obeying (.) transforms to v(n) obeying the following:

http://www.advancesindifferenceequations.com/content/2013/1/311


Currie and Love Advances in Difference Equations 2013, 2013:311 Page 11 of 22
http://www.advancesindifferenceequations.com/content/2013/1/311

(A) If z(n) does not obey (.) for λ = , then v(n) obeys a boundary condition of the
form

(i)

v(m – ) =

W

v(m) =

[
αλ + β –

s∑
j=

ηj

λ – εj

]
v(m), a =

–c(m)
c(m – )

:= T–
s,m(λ)v(m); (.)

(ii)

v(m – ) =

W

v(m) =

[
β̃ –

s+∑
j=

η̃j

λ – ε̃j

]
v(m), a �= –c(m)

c(m – )

:= T̃
s+,m(λ)v(m). (.)

(B) If z(n) does obey (.) for λ = , then v(n) obeys a boundary condition of the form
(i)

v(m – ) =

W

v(m) =

[
α̂λ + β̂ –

s–∑
j=

η̂j

λ – ε̂j

]
v(m), a =

–c(m)
c(m – )

:= T̂–
s–,m(λ)v(m); (.)

(ii)

v(m – ) =

W

v(m) =

[
β –

s∑
j=

ηj

λ – ε j

]
v(m), a �= –c(m)

c(m – )

:= T
s,m(λ)v(m), (.)

where α, α̂,ηj, η̃j, η̂j,ηj < , i.e. T–
s,m(λ), T̃

s+,m(λ), T̂–
s–,m(λ), T


s,m(λ) are negative

Nevanlinna functions.

Proof Since R–
s,m(λ) is a negative Nevanlinna function, it follows by Nevanlinna property

(A) that 
R–s,m(λ) is a positive Nevanlinna function of the form


R–
s,m(λ)

= –
s+∑
j=

σ̃j

λ – δ̃j
, σ̃j > . (.)

To demonstrate that 
W is a negative Nevanlinna function, we consider the ratio

λ
z(m)

z(m–) –


R–s,m(λ)

(.)

which has expansion

f̃ (λ) =
p∑
t=

r̃t
λ – q̃t

, (.)

http://www.advancesindifferenceequations.com/content/2013/1/311
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where r̃t > . Here q̃t ’s correspond to z(m)
z(m–) =


R–s,m(λ) which are the poles of 

R–s,m(λ) (i.e. δ̃j ’s)
and λ = .
The graph of 

R–s,m(λ) is given by Figure  with y(λ) = 
R–s,m(λ) , K = z(m)

z(m–) , A = B = , xi = δ̃i

and τi = q̃i for i = , , . Note again that since A = , τ does not exist.
Clearly, the gradient of 

R–s,m(λ) at q̃t is positive and the number of q̃t ’s is the same as the
number of δ̃j ’s, thus in (.), p = s + .
As λ → ±∞, it follows that


R–
s,m(λ)

→ 
aλ + b

, (.)

and hence

f̃ (λ) –
s+∑
t=

r̃t
λ – q̃t

=
λ

z(m)
z(m–) –


R–s,m(λ)

→ λ
z(m)

z(m–) –


(aλ+b)

= cλ + c +
– c

az(m)

λ + b
a –

z(m–)
az(m)

,

where c = z(m–)
z(m) , c = z(m–)

az(m) and c = z(m–)
az(m) b – z(m–)

az(m) < . Since a < , it follows that
c

az(m) > .
Thus f̃ (λ) = cλ + c and therefore

W =
c(m – )z(m – )

c(m)z(m)
– λ +

z(m)
z(m – )

[
f̃ (λ) –

s+∑
t=

r̃t
λ – q̃t

]

=
c(m – )z(m – )

c(m)z(m)
+
z(m – )
az(m)

–
s+∑
t=

z(m)
z(m–) r̃t
λ – q̃t

.

If z(m–)
z(m) [

c(m–)
c(m) + 

a ] = , it implies that a = –c(m)
c(m–) , and then

W = –
s+∑
t=

z(m)
z(m–) r̃t
λ – q̃t

, r̃t > ,

which is a positive Nevanlinna function. So, by Nevanlinna property (C),


W

= αλ + β –
s∑
j=

ηj

λ – εj
, α < ,ηj < 

as required by (.).
If a �= –c(m)

c(m–) , then for b > z(m–)
z(m) we have

W =

β̃
–

s+∑
t=

z(m)
z(m–) r̃t
λ – q̃t

, r̃t > ,

where 
β̃
= c(m–)z(m–)

c(m)z(m) + z(m–)
az(m) �= . By Nevanlinna property (B), we obtain


W

= β̃ –
s+∑
j=

η̃j

λ – ε̃j
, η̃j < ,

that is, (.) holds.
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If z(n) does obey (.) for λ = , then z(m–)
z(m) = R–

s,m(), that is,


R–s,m() =
z(m)

z(m–) . This implies
that one of q̃t ’s, t = , . . . ,p, is equal to . Thus, as in Theorem .,

λ
z(m)

z(m–) –


R–s,m(λ)

=
∑s+

j=
σ̃j/δ̃j
λ–δ̃j

.

Therefore, the discontinuity at λ =  is removable giving that the number of non-
removable q̃t ’s is one less than the number of δ̃j ’s. This implies that in (.) the number
of terms in the sum equals s so, relabeling if necessary, we can set p = s.
The remainder of the results are obtained in exactly the same manner as in the case

where z(n) does not obey boundary condition (.) with s being replaced by s – , see
(.) and the subsequent calculations. Thus we obtain the following:
If a = –c(m)

c(m–) , then for b > z(m–)
z(m) we have

W = –
s∑

t=


R–s,m() r̃t
λ – q̃t

, r̃t > ,

and hence, by Nevanlinna property (C),


W

= α̂λ + β̂ –
s–∑
j=

η̂j

λ – ε̂j
, α̂ < , η̂j < ,

which is a negative Nevanlinna function of the correct form, i.e. equation (.).
If a �= –c(m)

c(m–) , then for b > z(m–)
z(m) we have

W =

β
–

s∑
t=


R–s,m() r̃t
λ – q̃t

,

β

�= , r̃t > ,

and hence


W

= β –
s∑
j=

ηj

λ – ε j
, ηj < ,

where 
β
= c(m–)

c(m) R
–
s,m() +

R–s,m()
a . That is, we obtain (.). �

Theorem . Consider the boundary condition

y(m – ) =

[
–

s∑
k=

ck
λ – dk

]
y(m), ck < 

:= R
s,m(λ)y(m). (.)

Under mapping (.), y(n) obeying (.) transforms to v(n) obeying boundary conditions
of the following form:
(A) If z(n) does not obey (.) for λ = , then v(n) obeys a boundary condition of the form

v(m – ) =

[
φ –

s∑
t=

ht
λ – gt

]
v(m – ) :=U

s,m–(λ)v(m – ). (.)
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(B) If z(n) does obey (.) for λ = , then v(n) obeys a boundary condition of the form

v(m – ) =

[
φ –

s–∑
t=

h̃t
λ – g̃t

]
v(m – ) := Ũ

s–,m–(λ)v(m – ), (.)

where ht , h̃t < , i.e. U
s,m–(λ), Ũ

s–,m–(λ) are negative Nevanlinna functions.

Proof Using (.) with n =m –  and n =m –  gives, respectively,

v(m – ) = y(m – ) – y(m – )
z(m – )
z(m – )

(.)

and

v(m – ) = y(m) – y(m – )
z(m)

z(m – )
=

[
 –

z(m)
z(m – )

R
s,m(λ)

]
y(m) (.)

by using (.). Now, (.) evaluated at n =m –  gives

c(m – )y(m) – b(m – )y(m – ) + c(m – )y(m – ) = –λc(m – )y(m – ).

Using (.) and dividing through by c(m – ) yields

y(m – ) =


c(m – )
([
b(m – ) – λc(m – )

]
R
s,m(λ) – c(m – )

)
y(m). (.)

Substitute (.) into (.) and use (.) to obtain

v(m – ) =
{
R
s,m(λ) –

z(m – )
c(m – )z(m – )

× [(
b(m – ) – λc(m – )

)
R
s,m(λ) – c(m – )

]}
y(m). (.)

From equations (.) and (.), we have the condition

v(m – )
v(m – )

=
 – z(m–)

c(m–)z(m–) [b(m – ) – λc(m – ) – c(m – ) 
Rs,m(λ)

]


Rs,m(λ)
– z(m)

z(m–)

. (.)

But z(n) obeys (.) for λ = , so with n =m –  and after division by c(m – )z(m– ), one
gets

 –
b(m – )z(m – )
c(m – )z(m – )

= –
c(m – )z(m)

c(m – )z(m – )
. (.)

The substitution of (.) into (.) results in

v(m – )
v(m – )

=
–c(m–)z(m)
c(m–)z(m–) +

λc(m–)z(m–)
c(m–)z(m–) +

c(m–)z(m–)
c(m–)z(m–)


Rs,m(λ)


Rs,m(λ)

– z(m)
z(m–)

=
c(m – )z(m – )
c(m – )z(m – )

–
λc(m–)z(m–)
c(m–)z(m–)
z(m)

z(m–) –


Rs,m(λ)

.
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Now,

λ
z(m)

z(m–) –


Rs,m(λ)

(.)

has the expansion

f̂ (λ) –
p∑
t=

r̂t
λ – q̂t

, r̂t > , (.)

where q̂t ’s correspond to 
Rs,m(λ)

= z(m)
z(m–) , i.e. the singularities of (.).

Recall from (.) that

R
s,m(λ) = –

s∑
k=

ck
λ – dk

, ck < . (.)

By Nevanlinna property (C) we have that


R
s,m(λ)

= ωλ + ξ –
s–∑
k=

μk

λ – ρk
, ω > ,μk > .

As 
Rs,m(λ)

is a positive Nevanlinna function, it has a graph of the form shown in Figure 

where y(λ) = 
Rs,m(λ)

, K = z(m)
z(m–) , A = ω, B = ξ , xj = ρj for j = , ,  and τi = q̂i for i = , , , .

Observe that the gradient of 
Rs,m(λ)

at q̂t is positive for all t = , . . . ,p.
If z(n) does not obey (.) for λ = , then the zeros of

λ
z(m)

z(m–) –


Rs,m(λ)

are the poles of 
Rs,m(λ)

(i.e. ρk ’s) and λ = . It is evident that the number of q̂t ’s is one more
than the number of ρk ’s, thus in (.), p = s.
Next, if we let λ → ±∞, it follows that 

Rs,m(λ)
→ ωλ + ξ . Examining the behavior of

(.), one sees that

λ
z(m)

z(m–) –


Rs,m(λ)

→ λ
z(m)

z(m–) – (ωλ + ξ )
→ –


ω

= f̂ (λ).

Hence

v(m – )
v(m – )

=
c(m – )z(m – )
c(m – )z(m – )

–

[
f̂ (λ) –

s∑
t=

r̂t
λ – q̂t

]
c(m – )z(m – )
c(m – )z(m – )

, r̂t > 

:= φ –
s∑

t=

ht
λ – gt

,

where φ = c(m–)z(m–)
c(m–)z(m–) ( +


ω
), gt = q̂t and ht = –c(m–)z(m–)

c(m–)z(m–) r̂t <  making the right-hand side
a negative Nevanlinna function, i.e. we obtain (.).

http://www.advancesindifferenceequations.com/content/2013/1/311


Currie and Love Advances in Difference Equations 2013, 2013:311 Page 16 of 22
http://www.advancesindifferenceequations.com/content/2013/1/311

If z(n) does obey (.) for λ = , then z(m–)
z(m) = R

s,m(). Thus, one of q̂t ’s, t = , . . . ,p, is
equal to . As in Theorems . and ., it can be shown that the singularity at λ =  is
removable giving that the number of non-removable q̂t ’s is equal to the number of ρk ’s.
Therefore, in (.) p = s – . So after relabeling, if necessary, (.) becomes

f̂ (λ) –
s–∑
t=

r̂t
λ – q̂t

, r̂t > . (.)

As before, for λ → ±∞, we have that 
Rs,m(λ)

→ ωλ+ ξ , thus again f̂ (λ) = – 
ω
. As a result,

v(m – )
v(m – )

:= φ –
s–∑
t=

h̃t
λ – g̃t

,

where φ is as defined above, g̃t = q̂t and h̃t = –c(m–)z(m–)
c(m–)z(m–) r̂t < , i.e. a negative Nevanlinna

function of the form (.). �

3.2 Boundary condition at the initial end point
For transformation (.), the theorem below could be considered analogous to Theo-
rems . and . given in [] for the reverse transformation.

Theorem . Consider the boundary condition

y(–) =

[
gλ + h –

p∑
k=

uk
λ – ek

]
y(), g ≥ ,uk > 

:= R�
p,–(λ)y() for � =

{
+ if g > ,
 if g = .

(.)

Under mapping (.), y(n) obeying (.) transforms to v(n) obeying boundary conditions
of the following form:
(A) If z(n) does not obey (.) for λ = , then v(n) obeys a boundary condition of the

form
(i)

v(–) =

[
–

p+∑
t=

γt

λ – νt

]
v() := T

p+,–(λ)v(), g = ,h <
z(–)
z()

; (.)

(ii)

v(–) =

[
β̃ –

p+∑
t=

γ̃t

λ – ν̃t

]
v() := T̃

p+,–(λ)v(), g > . (.)

(B) If z(n) does obey (.) for λ = , then v(n) obeys a boundary condition of the form
(i)

v(–) =

[
–

p∑
t=

γ̂t

λ – ν̂t

]
v() := T̂

p,–(λ)v(), g = ,h <
z(–)
z()

; (.)
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(ii)

v(–) =

[
β –

p∑
t=

γ t

λ – νt

]
v() := T

p,–(λ)v(), g > , (.)

where γt , γ̃t , γ̂t , γ t > , i.e. T
p+,–(λ), T̃

p+,–(λ), T̂
p,–(λ), T


p,–(λ) are positive

Nevanlinna functions.

Proof Using (.) with n = – and  together with (.) gives

v(–) = y()
[
 –

z()
z(–)

R�
p,–(λ)

]
(.)

and

v() = y() – y()
z()
z()

. (.)

Solving for y() from equation (.) with n =  and then substituting into (.) gives

v() = y()
{


c()

[
b() – λc() – c(–)R�

p,–(λ)
]
–
z()
z()

}
. (.)

Hence from (.) and (.) it follows that

v(–)
v()

=
 – z()

z(–)R
�
p,–(λ)

b()
c() – λ – c(–)

c() R
�
p,–(λ) –

z()
z()

and after simplification this becomes

v(–)
v()

=
z()
z(–)

[


c(–)
c() –

λ
z(–)
z() –R

�
p,–(λ)

]
. (.)

Now

λ
z(–)
z() – R�

p,–(λ)
(.)

has the expansion

f (λ) –
k∑
t=

rt
λ – qt

, (.)

where qt corresponds to the singularities of (.), that is, where R�
p,–(λ) =

z(–)
z() .

If g =  in (.), then the graph has the form shown in Figure  where y(λ) = R
p,–(λ),

K = z(–)
z() , A = , B = h such that  < B < K , xi = ei and τi = qi for i = , , . Note that since

A = , τ does not exist.
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Clearly, the gradient of R
p,–(λ) at qt is positive for all t, that is,

∂

∂λ
R
p,–(λ)|qt > , t = , . . . ,k.

If z(n) does not obey (.) when g = , then the zeros of λ
z(–)
z() –R


p,–(λ)

are the poles of

R
p,–(λ), that is, ej ’s together with λ = . Since there is the same number of qt ’s as there

are ej ’s, it follows that k = p in (.).
We next examine the form of f (λ) in (.). Now

λ
z(–)
z() – R

p,–(λ)
→ λ

z(–)
z() – h

.

Therefore, f (λ) = λ
z(–)
z() –h

. Hence, using (.), we obtain

v(–)
v()

=
z()
z(–)

[


c(–)
c() – f (λ) +

∑p
t=

rt
λ–qt

]
=


c(–)z(–)
c()z() –

z(–)
z() λ

z(–)
z() –h

–
∑p

t=
– z(–)

z() rt
λ–qt

.

It should be noted that
z(–)
z()

z(–)
z() –h

>  when z(–)
z() > h and – z(–)

z() rt < . Thus

v(–)
v()

=


N–
p,–(λ)

,

where N–
p,–(λ) is a negative Nevanlinna function, and using Nevanlinna property (C) the

right-hand side can be re-written to give

v(–)
v()

= –
p+∑
t=

γt

λ – νt
, γt > ,

which is of the form required by (.).
If g =  and z(n) obeys (.) for λ = , then z(–)

z() = R
p,–(λ). Thus, one of qt ’s, t = , . . . ,k,

is zero, and hence, by (.) with g = ,

λ
z(–)
z() – R

p,–(λ)
=

∑p
k=

uk /ek
λ–ek

so that once again the discontinuity at zero has been removed. Thismeans that the number
of non-removable discontinuities, i.e. qt ’s, is one less than the number of ek ’s, that is, in
(.) put k = p – .
Exactly the same procedure, as used for the case of z(n) not obeying (.) for g = , may

be used with p replaced by p –  to obtain (.), that is,

v(–)
v()

= –
p∑
t=

γ̂t

λ – ν̂t
, γ̂t > .
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If, in equation (.), g > , then the graph of R+
p,–(λ) has the form shown in Figure 

where y(λ) = R+
p,–(λ), K = z(–)

z() , A = g , B = h, xj = ej for j = , ,  and τi = q̄i for i = , , , .
It is evident that the gradient of R+

p,–(λ) is positive at qt ’s.
If z(n) does not obey (.) when g > , then the zeros of λ

z(–)
z() –R

+
p,–(λ)

are the poles of

R+
p,–(λ), that is, ek ’s together with λ = . We see that the number of qt ’s is one more than

the number of ek ’s, so in (.) we have k = p+ . In terms of the behavior as λ → ±∞, we
obtain

λ
z(–)
z() – R+

p,–(λ)
→ λ

z(–)
z() – (gλ + h)

→ –

g
.

Thus from (.), (.) and (.) it follows that

v(–)
v()

=


c(–)z(–)
c()z() + 

g
z(–)
z() –

∑p+
t=

–z(–)
z() rt
λ–qt

.

Now

z(–)
z()

[
c(–)
c()

+

g

]
=  ⇒ c(–)

c()
= –


g
,

which is not possible since g >  and c(–)
c() > . Therefore,

v(–)
v()

=


� –
∑p+

t=
pt

λ–qt

,

where � = z(–)
z() [

c(–)
c() + 

g ] �=  and pt = –z(–)
z() rt < . Hence, by Nevanlinna property (B), we

obtain (.), that is,

v(–)
v()

= β̃ –
p+∑
t=

γ̃t

λ – ν̃t
, γ̃t > ,

where β̃ = 
�

�= .
As usual, if z(n) obeys boundary condition (.) for g > , then one of qt ’s is zero, and

this discontinuity is removable so that the number of qt ’s is equal to the number of ek ’s,
that is, in (.) the number of terms in the sum is p. Using the method outlined above
for the case of z(n) not obeying (.) for g > , with p replaced by p – , gives equation
(.) which is

v(–)
v()

= β –
p∑
t=

γ t

λ – νt
, γ t > . �

4 Conclusion
In conclusion, as a direct consequence of Theorems ., ., . and ., we have Tables 
and  in which we compare the original boundary value problem with the transformed
boundary value problem for various sets of boundary conditions, and the corresponding
number of eigenvalues is given.

http://www.advancesindifferenceequations.com/content/2013/1/311


Currie and Love Advances in Difference Equations 2013, 2013:311 Page 20 of 22
http://www.advancesindifferenceequations.com/content/2013/1/311

Table 1 Boundary condition (3.50) with g = 0

Original BVP: (1.1) with bc’s . . . Trans. BVP: (2.2) with bc’s . . .

1 (3.20) and (3.50) with g = 0 (3.21) and (3.51)
z does not obey (3.20) or (3.50) s + 1 + p + 1 +m – 1 eigenvalues
s + p +m eigenvalues i.e. one extra eigenvalue 0

2 (3.20) and (3.50) with g = 0 (3.22) and (3.51)
z obeys (3.20) but not (3.50) s + p + 1 +m – 1 eigenvalues
s + p +m eigenvalues i.e. same eigenvalues

3 (3.20) and (3.50) with g = 0 (3.21) and (3.53)
z obeys (3.50) but not (3.20) s + 1 + p +m – 1 eigenvalues
s + p +m eigenvalues i.e. same eigenvalues

4 (3.20) and (3.50) with g = 0 (3.22) and (3.53)
z obeys both (3.20) and (3.50) s + p +m – 1 eigenvalues
s + p +m eigenvalues i.e. one less eigenvalue 0

5 (3.28) and (3.50) with g = 0 (3.29) and (3.51)
z does not obey (3.28) or (3.50), a = –c(m)

c(m–1) s + p + 1 +m + 1 eigenvalues
s + p +m + 1 eigenvalues i.e. one extra eigenvalue 0

6 (3.28) and (3.50) with g = 0 (3.31) and (3.51)
z obeys (3.28) but not (3.50), a = –c(m)

c(m–1) s – 1 + p + 1 +m + 1 eigenvalues
s + p +m + 1 eigenvalues i.e. same eigenvalues

7 (3.28) and (3.50) with g = 0 (3.29) and (3.53)
z obeys (3.50) but not (3.28), a = –c(m)

c(m–1) s + p +m + 1 eigenvalues
s + p +m + 1 eigenvalues i.e. same eigenvalues

8 (3.28) and (3.50) with g = 0 (3.31) and (3.53)
z obeys both (3.28) and (3.50), a = –c(m)

c(m–1) s – 1 + p +m + 1 eigenvalues
s + p +m + 1 eigenvalues i.e. one less eigenvalue 0

9 (3.28) and (3.50) with g = 0 (3.30) and (3.51)
z does not obey (3.28) or (3.50), a �= –c(m)

c(m–1) s + 1 + p + 1 +m eigenvalues
s + p +m + 1 eigenvalues i.e. one extra eigenvalue 0

10 (3.28) and (3.50) with g = 0 (3.32) and (3.51)
z obeys (3.28) but not (3.50), a �= –c(m)

c(m–1) s + p + 1 +m eigenvalues
s + p +m + 1 eigenvalues i.e. same eigenvalues

11 (3.28) and (3.50) with g = 0 (3.30) and (3.53)
z obeys (3.50) but not (3.28), a �= –c(m)

c(m–1) s + 1 + p +m eigenvalues
s + p +m + 1 eigenvalues i.e. same eigenvalues

12 (3.28) and (3.50) with g = 0 (3.32) and (3.53)
z obeys both (3.28) and (3.50), a �= –c(m)

c(m–1) s + p +m eigenvalues
s + p +m + 1 eigenvalues i.e. one less eigenvalue 0

13 (3.37) and (3.50) with g = 0 (3.38) and (3.51)
z does not obey (3.37) or (3.50) s + p + 1 +m – 1 eigenvalues
s + p +m – 1 eigenvalues i.e. one extra eigenvalue 0

14 (3.37) and (3.50) with g = 0 (3.39) and (3.51)
z obeys (3.37) but not (3.50) s – 1 + p + 1 +m – 1 eigenvalues
s + p +m – 1 eigenvalues i.e. same eigenvalues

15 (3.37) and (3.50) with g = 0 (3.38) and (3.53)
z obeys (3.50) but not (3.37) s + p +m – 1 eigenvalues
s + p +m – 1 eigenvalues i.e. same eigenvalues

16 (3.37) and (3.50) with g = 0 (3.39) and (3.53)
z obeys both (3.37) and (3.50) s – 1 + p +m – 1 eigenvalues
s + p +m – 1 eigenvalues i.e. one less eigenvalue 0
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Table 2 Boundary condition (3.50) with g > 0

Original BVP: (1.1) with bc’s . . . Trans. BVP: (2.2) with bc’s . . .

1 (3.20) and (3.50) with g > 0 (3.21) and (3.52)
z does not obey (3.20) or (3.50) s + 1 + p + 1 +m – 1 eigenvalues
s + p +m eigenvalues i.e. one extra eigenvalue 0

2 (3.20) and (3.50) with g > 0 (3.22) and (3.52)
z obeys (3.20) but not (3.50) s + p + 1 +m – 1 eigenvalues
s + p +m eigenvalues i.e. same eigenvalues

3 (3.20) and (3.50) with g > 0 (3.21) and (3.54)
z obeys (3.50) but not (3.20) s + 1 + p +m – 1 eigenvalues
s + p +m eigenvalues i.e. same eigenvalues

4 (3.20) and (3.50) with g > 0 (3.22) and (3.54)
z obeys both (3.20) and (3.50) s + p +m – 1 eigenvalues
s + p +m eigenvalues i.e. one less eigenvalue 0

5 (3.28) and (3.50) with g > 0 (3.29) and (3.52)
z does not obey (3.28) or (3.50), a = –c(m)

c(m–1) s + p + 1 +m + 1 eigenvalues
s + p +m + 1 eigenvalues i.e. one extra eigenvalue 0

6 (3.28) and (3.50) with g > 0 (3.31) and (3.52)
z obeys (3.28) but not (3.50), a = –c(m)

c(m–1) s – 1 + p + 1 +m + 1 eigenvalues
s + p +m + 1 eigenvalues i.e. same eigenvalues

7 (3.28) and (3.50) with g > 0 (3.29) and (3.54)
z obeys (3.50) but not (3.28), a = –c(m)

c(m–1) s + p +m + 1 eigenvalues
s + p +m + 1 eigenvalues i.e. same eigenvalues

8 (3.28) and (3.50) with g > 0 (3.31) and (3.54)
z obeys both (3.28) and (3.50), a = –c(m)

c(m–1) s – 1 + p +m + 1 eigenvalues
s + p +m + 1 eigenvalues i.e. one less eigenvalue 0

9 (3.28) and (3.50) with g > 0 (3.30) and (3.52)
z does not obey (3.28) or (3.50), a �= –c(m)

c(m–1) s + 1 + p + 1 +m eigenvalues
s + p +m + 1 eigenvalues i.e. one extra eigenvalue 0

10 (3.28) and (3.50) with g > 0 (3.32) and (3.52)
z obeys (3.28) but not (3.50), a �= –c(m)

c(m–1) s + p + 1 +m eigenvalues
s + p +m + 1 eigenvalues i.e. same eigenvalues

11 (3.28) and (3.50) with g > 0 (3.30) and (3.54)
z obeys (3.50) but not (3.28), a �= –c(m)

c(m–1) s + 1 + p +m eigenvalues
s + p +m + 1 eigenvalues i.e. same eigenvalues

12 (3.28) and (3.50) with g > 0 (3.32) and (3.54)
z obeys both (3.28) and (3.50), a �= –c(m)

c(m–1) s + p +m eigenvalues
s + p +m + 1 eigenvalues i.e. one less eigenvalue 0

13 (3.37) and (3.50) with g > 0 (3.38) and (3.52)
z does not obey (3.37) or (3.50) s + p + 1 +m – 1 eigenvalues
s + p +m – 1 eigenvalues i.e. one extra eigenvalue 0

14 (3.37) and (3.50) with g > 0 (3.39) and (3.52)
z obeys (3.37) but not (3.50) s – 1 + p + 1 +m – 1 eigenvalues
s + p +m – 1 eigenvalues i.e. same eigenvalues

15 (3.37) and (3.50) with g > 0 (3.38) and (3.54)
z obeys (3.50) but not (3.37) s + p +m – 1 eigenvalues
s + p +m – 1 eigenvalues i.e. same eigenvalues

16 (3.37) and (3.50) with g > 0 (3.39) and (3.54)
z obeys both (3.37) and (3.50) s – 1 + p +m – 2 eigenvalues
s + p +m – 1 eigenvalues i.e. one less eigenvalue 0

Remark To summarize, we have the following:
(a) If z(n) obeys the boundary conditions at both ends, then the transformed boundary

value problem loses the eigenvalue  but retains the remaining eigenvalues from the
original boundary value problem;

(b) If z(n) obeys the boundary condition at one end only, then the transformed
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boundary value problem will have exactly the same eigenvalues as the original
boundary value problem;

(c) If z(n) does not obey any of the boundary conditions, then the transformed
boundary value problem gains the eigenvalue , with corresponding eigenfunction


c(n)z(n) , in addition to the eigenvalues of the original boundary value problem.

The above remark is consistent with the results obtained in [, ] and may be proved in
the same way as [, Corollary .], see also [].
We conclude with the following observation. Since the reverse transformation used in

[] was at n and n – , whereas in this paper the forward transformation is at n and n + ,
the roles of the endpoints are in a sense ‘reversed’ which is well illustrated by the results
obtained above.
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