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Abstract

In this manuscript, we prove some quadruple coincidence and common fixed point
theorems for F : X4 ® X and g : X ® X satisfying generalized contractions in partially
ordered metric spaces. Our results unify, generalize and complement various known
results from the current literature. Also, an application to matrix equations is given.
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1 Introduction and preliminaries
Existence of fixed points in partially ordered metric spaces was first investigated by

Turinici [1], where he extended the Banach contraction principle in partially ordered

sets. In 2004, Ran and Reurings [2] presented some applications of Turinici’s theorem

to matrix equations. Following these initial articles, some remarkable results were

reported see, e.g., [3-13].

Gnana Bhashkar and Lakshmikantham in [14] introduced the concept of a coupled

fixed point of a mapping F : X × X ® X and investigated some coupled fixed point

theorems in partially ordered complete metric spaces. Later, Lakshmikantham and

Ćirić [15] proved coupled coincidence and coupled common fixed point theorems for

nonlinear mappings F : X × X ® X and g : X ® X in partially ordered complete metric

spaces. Various results on coupled fixed point have been obtained, since then see, e.g.,

[6,9,16-33]. Recently, Berinde and Borcut [34] introduced the concept of tripled fixed

point in ordered sets.

For simplicity, we denote
X × X · · ·X × X︸ ︷︷ ︸

k times
by Xk where k Î N. Let us recall some

basic definitions.

Definition 1.1 (See [34]) Let (X, ≤) be a partially ordered set and F: X3 ® X. The

mapping F is said to has the mixed monotone property if for any x, y, z Î X

x1, x2 ∈ X, x1 ≤ x2 ⇒ F(x1, y, z) ≤ F(x2, y, z),

y1, y2 ∈ X, y1 ≤ y2 ⇒ F(x, y1, z) ≥ F(x, y2, z),

z1, z2 ∈ X, z1 ≤ z2 ⇒ F(x, y, z1) ≤ F(x, y, z2).

Definition 1.2 Let F : X3 ® X. An element (x, y, z) is called a tripled fixed point of F

if
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F(x, y, z) = x, F(y, x, y) = y and F(z, y, x) = z.

Also, Berinde and Borcut [34] proved the following theorem:

Theorem 1.1 Let (X,≤, d) be a partially ordered set and suppose there is a metric d

on X such that (X, d) is a complete metric space. Let F : X3 ® X having the mixed

monotone property. Suppose there exist j, r, l ≥ 0 with j + r + l <1 such that

d(F(x, y, z), F(u, v,w)) ≤ jd(x, u) + rd(y, v) + ld(z,w), (1)

for any x, y, z Î X for which × ≤ u, v ≤ y and z ≤ w. Suppose either F is continuous

or X has the following properties:

1. if a non-decreasing sequence xn ® x, then xn ≤ x for all n,

2. if a non-increasing sequence yn ® y, then y ≤ yn for all n.

If there exist x0, y0, z0 Î X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, z0) and z0 ≤ F

(z0, y0, x0), then there exist x, y, z Î X such that

F(x, y, z) = x, F(y, x, y) = y and F(z, y, x) = z,

that is, F has a tripled fixed point.

Recently, Aydi et al. [35] introduced the following concepts.

Definition 1.3 Let (X, ≤) be a partially ordered set. Let F : X3 ® X and g : X ® X.

The mapping F is said to has the mixed g-monotone property if for any x, y, z Î X

x1, x2 ∈ X, gx1 ≤ gx2 ⇒ F(x1, y, z) ≤ F(x2, y, z),

y1, y2 ∈ X, gy1 ≤ gy2 ⇒ F(x, y1, z) ≥ F(x, y2, z),

z1, z2 ∈ X, gz1 ≤ gz2 ⇒ F(x, y, z1) ≤ F(x, y, z2).

Definition 1.4 Let F : X3 ® X and g : X ® X. An element (x, y, z) is called a tripled

coincidence point of F and g if

F(x, y, z) = gx, F(y, x, y) = gy, and F(z, y, x) = gz.

(gx, gy, gz) is said a tripled point of coincidence of F and g.

Definition 1.5 Let F : X3 ® X and g : X ® X. An element (x, y, z) is called a tripled

common fixed point of F and g if

F(x, y, z) = gx = x, F(y, x, y) = gy = y, and F(z, y, x) = gz = z.

Definition 1.6 Let X be a non-empty set. Then we say that the mappings F : X3 ® X

and

g : X ® X are commutative if for all x, y, z Î X

g(F(x, y, z)) = F(gx, gy, gz).

The notion of fixed point of order N ≥ 3 was first introduced by Samet and Vetro

[36]. Very recently, Karapinar used the concept of quadruple fixed point and proved

some fixed point theorems on the topic [37]. Following this study, quadruple fixed

point is developed and some related fixed point theorems are obtained in [38-41].

Definition 1.7 [38]Let X be a nonempty set and F : X4 ® X be a given mapping. An

element (x, y, z, w) Î X × X × X × X is called a quadruple fixed point of F if

F(x, y, z,w) = x, F(y, z,w, x) = y, F(z,w, x, y) = z, and F(w, x, y, z) = w.
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Let (X, d) be a metric space. The mapping d̄ : X4 → X, given by

d̄((x, y, z,w), (u, v, h, l)) = d(x, y) + d(y, v) + d(z, h) + d(w, l),

defines a metric on X4, which will be denoted for convenience by d.

Definition 1.8 [38]Let (X, ≤) be a partially ordered set and F : X4 ® X be a map-

ping. We say that F has the mixed monotone property if F (x, y, z, w) is monotone non-

decreasing in x and z and is monotone non-increasing in y and w; that is, for any x, y,

z, w Î X,

x1, x2 ∈ X, x1 ≤ x2 implies F(x1, y, z,w) ≤ F(x2, y, z,w),

y1, y2 ∈ X, y1 ≤ y2 implies F(x, y2, z,w) ≤ F(x, y1, z,w),

z1, z2 ∈ X, z1 ≤ z2 implies F(x, y, z1,w) ≤ F(x, y, z2,w),

and

w1,w2 ∈ X, w1 ≤ w2 implies F(x, y, z,w2) ≤ F(x, y, z,w1).

In this article, we establish some quadruple coincidence and common fixed point

theorems for F : X4 ® X and g : X ® X satisfying nonlinear contractions in partially

ordered metric spaces. Also, some interesting corollaries are derived and an application

to matrix equations is given.

2 Main results
We start this section with the following definitions.

Definition 2.1 Let (X, ≤) be a partially ordered set. Let F : X4 ® X and g : X ® X.

The mapping F is said to has the mixed g-monotone property if for any x, y, z, w Î X

x1, x2 ∈ X, gx1 ≤ gx2 ⇒ F(x1, y, z,w) ≤ F(x2, y, z,w),

y1, y2 ∈ X, gy1 ≤ gy2 ⇒ F(x, y1, z,w) ≥ F(x, y2, z,w),

z1, z2 ∈ X, gz1 ≤ gz2 ⇒ F(x, y, z1,w) ≤ F(x, y, z2,w) and

w1, w2 ∈ X, gw1 ≤ gw2 ⇒ F(x, y, z,w1) ≥ F(x, y, z,w2).

Definition 2.2 Let F : X4 ® X and g : X ® X. An element (x, y, z, w) is called a

quadruple coincidence point of F and g if

F(x, y, z,w) = gx, F(y, z,w, x) = gy, F(z,w, x, y) = gz, and F(w, x, y, z) = gw.

(gx, gy, gz, gw) is said a quadruple point of coincidence of F and g.

Definition 2.3 Let F : X4 ® X and g : X ® X. An element (x, y, z, w) is called a

quadruple common fixed point of F and g if

F(x, y, z,w) = gx = x, F(y, z,w, x) = gy = y,

F(z,w, x, y) = gz = z, and F(w, x, y, z) = gw = w.

Definition 2.4 Let X be a non-empty set. Then we say that the mappings F : X4 ® X

and g : X ® × are commutative if for all x, y, z, w Î X

g(F(x, y, z,w)) = F(gx, gy, gz, gw).

Let F be the set of all functions j : [0, ∞) ® [0, ∞) such that:

1. j(t) < t for all t Î (0,+∞).
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2. limr→t+
φ(r) < t for all t Î (0,+∞).

For simplicity, we define the following.

M(x, y, z,w, u, v, h, l) = min
{
d(F(x, y, z,w), gx), d(F(x, y, z,w), gu),

d(F(u, v, h, l), gu)

}
. (2)

Now, we state the first main result of this article.

Theorem 2.1 Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d) is a complete metric space. Suppose F : X4 ® X and g : X ® X are

such that F is continuous and has the mixed g-monotone property. Assume also that

there exist j Î F and L ≥ 0 such that

d(F(x, y, z,w), F(u, v, , h, l)) ≤ φ(max{d(gx, gu), d(gy, gv), d(gz, gh), d(gw, gl)})
+LM(x, y, z,w, u, v, h, l)

(3)

for any x, y, z, w, u, v, h, l Î X for which gx ≤ gu, gv ≤ gy, gz ≤ gh and gl ≤ gw. Sup-

pose F (X4) ⊂ g(X), g is continuous and commutes with F. If there exist x0, y0, z0, w0 Î
X such that

gx0 ≤ F(x0, y0, z0,w0), gy0 ≥ F(y0, z0,w0, x0),

gz0 ≤ F(z0,w0, x0, y0), and gw0 ≥ F(w0, x0, y0, z0),

then there exist x, y, z, w Î X such that

F(x, y, z,w) = gx, F(y, z,w, x) = gy, F(z,w, x, y) = gz and F(w, x, y, z) = gw

that is, F and g have a quadruple coincidence point.

Proof. Let x0, y0, z0, w0 Î X such that

gx0 ≤ F(x0, y0, z0,w0), gy0 ≥ F(y0, z0,w0, x0),

gz0 ≤ F(z0,w0, x0, y0) and gw0 ≥ F(w0, x0, y0, z0).

Since F (X4) ⊂ g(X), then we can choose x1, y1, z1, w1 Î X such that

gx1 = F(x0, y0, z0,w0), gy1 = F(y0, z0,w0, x0),

gz1 = F(z0,w0, x0, y0) and gw1 = F(w0, x0, y0, z0).
(4)

Taking into account F (X4) ⊂ g(X), by continuing this process, we can construct

sequences {xn}, {yn}, {zn}, and {wn} in X such that

gxn+1 = F(xn, yn, zn,wn), gyn+1 = F(yn, zn,wn, xn),

gzn+1 = F(zn,wn, xn, yn), and gwn+1 = F(wn, xn, yn, zn).
(5)

We shall show that

gxn ≤ gxn+1, gyn+1 ≤ gyn, gzn ≤ gzn+1, and gwn+1 ≤ gwn for n = 0, 1, 2, . . . (6)

For this purpose, we use the mathematical induction. Since, gx0 ≤ F (x0, y0, z0, w0),

gy0 ≥ F (y0, z0, w0, x0), gz0 ≤ F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then by (4),

we get

gx0 ≤ gx1, gy1 ≤ gy0, gz0 ≤ gz1, and gw1 ≤ gw0
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that is, (6) holds for n = 0.

We presume that (6) holds for some n >0. As F has the mixed g-monotone property

and gxn ≤ gxn+1, gyn+1 ≤ gyn, gzn ≤ gzn+1 and gwn+1 ≤ gwn, we obtain

gxn+1 = F(xn, yn, zn,wn) ≤ F(xn+1, yn, zn,wn)

≤ F(xn+1, yn, zn+1,wn) ≤ F(xn+1, yn+1, zn+1,wn)

≤ F(xn+1, yn+1, zn+1,wn+1) = gxn+2,

gyn+2 = F(yn+1, zn+1,wn+1, xn+1) ≤ F(yn+1, zn, xn+1,wn+1)

≤ F(yn, zn, xn+1,wn+1) ≤ F(yn, zn, xn,wn+1)

≤ F(yn, zn, xn,wn) = gyn+1,

gzn+1 = F(zn, yn, xn,wn) ≤ F(zn+1, yn, xn,wn)

≤ F(zn+1, yn+1, xn,wn) ≤ F(zn+1, yn+1, xn+1,wn)

≤ F(zn+1, yn+1, xn+1,wn+1) = gzn+2,

and

gwn+2 = F(wn+1, xn+1, yn+1, zn+1) ≤ F(wn+1, xn, yn+1, zn+1)

≤ F(wn, xn, yn+1, zn+1) ≤ F(wn, xn, yn, zn+1)

≤ F(wn, xn, yn, zn) = gwn+1.

Thus, (6) holds for any n Î N. Assume for some n Î N,

gxn = gxn+1, gyn = gyn+1, gzn = gzn+1, and gwn = gwn+1

then, by (5), (xn, yn, zn, wn) is a quadruple coincidence point of F and g. From now

on, assume for any n Î N that at least

gxn �= gxn+1 or gyn �= gyn+1 or gzn �= gzn+1 or gwn �= gwn+1. (7)

By (2) and (5), it is easy that

M(xn−1, yn−1, zn−1,wn−1, xn, yn, zn,wn) = M(yn, zn,wn, xn, yn−1, zn−1,wn−1, xn−1)

= M(zn−1, yn−1, xn−1, zn, yn, xn)

= M(wn, xn, yn, zn,wn−1, xn−1, yn−1, zn−1) = 0 for all n ≥ 1.

(8)

Due to (3) and (8), we have

d(gxn, gxn+1) = d(F(xn−1, yn−1, zn−1,wn−1), F(xn, yn, zn,wn))

≤ φ(max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn), d(gwn−1, gwn)})
+LM(xn−1, yn−1, zn−1,wn−1, xn, yn, zn,wn)

= φ(max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn), d(gwn−1, gwn)}),

(9)

d(gyn, gyn+1) = d(F(yn, zn,wn, xn), yn−1, F(yn−1, zn−1,wn−1, xn−1))

≤ φ(max{d(gyn−1, gyn), d(gxn−1, gxn), d(gzn−1, gzn), d(gwn−1, gwn)}),
+LM(yn, zn,wn,wn, yn−1, zn−1,wn−1, xn−1)

= φ(max{d(gyn−1, gyn), d(gxn−1, gxn), d(gzn−1, gzn), d(gwn−1, gwn)}),

(10)
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d(gzn, gzn+1) = d(F(zn−1,wn−1, xn−1, yn−1), F(zn,wn, xn, yn))

≤ φ(max{, d(gzn−1, gzn), d(gwn−1, gwn), d(gxn−1, gxn), d(gyn−1, gyn)})
+LM(zn−1,wn−1, xn−1, yn−1, zn,wn, xn, yn)

= φ(max{d(gzn−1, gzn), d(gwn−1, gwn), d(gxn−1, gxn), d(gyn−1, gyn)})

(11)

and

d(gwn, gwn+1) = d(F(wn, xn, yn, zn), F(wn−1, xn−1, yn−1, zn−1))

≤ φ(max{d(gwn−1, gwn), d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)}),
+LM(wn, xn, yn, zn,wn−1, xn−1, yn−1, zn−1)

= φ(max{d(gwn−1, gwn), d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)}).

(12)

Having in mind that j (t) <t for all t > 0, so from (9)-(12) we obtain that

0 < max{d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1), d(gwn, gwn+1)}
≤ φ(max{d(gzn−1, gzn), d(gyn−1, gyn), d(gxn−1, gxn), d(gwn−1, gwn)})
< max{d(gzn−1, gzn), d(gyn−1, gyn), d(gxn−1, gxn), d(gwn−1, gwn)}.

(13)

It follows that

max
{

d(gxn, gxn+1), d(gyn, gyn+1,
d(gzn, gzn+1), d(gwn, gwn+1)

}
< max

{
d(gzn−1, gzn), d(gyn−1, gyn),
d(gxn−1, gxn), d(gwn−1, gwn)

}
. (14)

Thus, {max{d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1), d(gwn, gwn+1)}} is a positive

decreasing sequence. Hence, there exists r ≥ 0 such that

lim
n→+∞max{d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1), d(gwn, gwn+1)} = r.

Suppose that r >0. Letting n ® +∞ in (13), we obtain that

0 < r ≤ lim
n→+∞ φ

(
max

{
d(gzn−1, gzn), d(gyn−1, gyn),
d(gxn−1, gxn), d(gwn−1, gwn)

})
= lim

t→r+
φ(t) < r. (15)

It is a contradiction. We deduce that

lim
n→+∞max{d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1), d(gwn, gwn+1)} = 0. (16)

We shall show that {gxn}, {gyn}, {gzn}, and {gwn} are Cauchy sequences in the metric

space (X, d). Assume the contrary, that is, one of the sequence {gxn}, {gyn}, {gzn} or

{gwn} is not a Cauchy, that is,

lim
n,m→+∞ d(gxm, gxn) �= 0 or lim

n,m→+∞ d(gym, gyn) �= 0

or

lim
n,m→+∞ d(gzm, gzn) �= 0 or lim

n,m→+∞ d(gwm, gwn) �= 0.

This means that there exists ε >0, for which we can find subsequences of integers

(mk) and (nk) with nk > mk > k such that

max{d(gxmk , gxnk), d(gymk , gynk), d(gzmk , gznk), d(gwmk , gwnk)} ≥ ε. (17)
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Further, corresponding to mk we can choose nk in such a way that it is the smallest

integer with nk >mk and satisfying (17). Then

max{d(gxmk , gxnk−1), d(gymk , gynk−1), d(gzmk , gznk−1), d(gwmk , gwnk−1)} < ε. (18)

By triangular inequality and (18), we have

d(gxmk , gxnk) ≤ d(gxmk , gxnk−1) + d(gxnk−1, gxnk)

< ε + d(gxnk−1, gxnk).

Thus, by (16) we obtain

lim
k→+∞

d(gxmk , gxnk) ≤ lim
k→+∞

d(gxmk , gxnk−1) ≤ ε. (19)

Similarly, we have

lim
k→+∞

d(gymk , gynk) ≤ lim
k→+∞

d(gymk , gynk−1) ≤ ε, (20)

lim
k→+∞

d(gzmk , gznk) ≤ lim
k→+∞

d(gzmk , gznk−1) ≤ ε, (21)

and

lim
k→+∞

d(gwmk , gwnk) ≤ lim
k→+∞

d(gwmk , gwnk−1) ≤ ε. (22)

Again by (18), we have

d(gxmk , gxnk) ≤ d(gxmk , gxmk−1) + d(gxmk−1, gxnk−1) + d(gxnk−1, gxnk)

≤ d(gxmk , gxmk−1) + d(gxmk−1, gxmk)

+ d(gxmk , gxnk−1) + d(gxnk−1, gxnk)

< d(gxmk , gxmk−1) + d(gxmk−1, gxmk) + ε + d(gxnk−1, gxnk).

Letting k ® + ∞ and using (16), we get

lim
k→+∞

d(gxmk , gxnk) ≤ lim
k→+∞

d(gxmk−1, gxnk−1) ≤ ε, (23)

lim
k→+∞

d(gymk , gynk) ≤ lim
k→+∞

d(gymk−1, gynk−1) ≤ ε, (24)

lim
k→+∞

d(gzmk , gznk) ≤ lim
k→+∞

d(gzmk−1, gznk−1) ≤ ε (25)

and

lim
k→+∞

d(gwmk , gwnk) ≤ lim
k→+∞

d(gwmk−1, gwnk−1) ≤ ε. (26)

Using (17) and (23)-(26), we have

lim
k→+∞

max{d(gxmk , gxnk), d(gymk , gynk), d(gzmk , gznk), d(gwmk , gwnk)}
= lim

k→+∞
max{d(gxmk−1, gxnk−1), d(gymk−1, gynk−1), d(gzmk−1, gznk−1), d(gwmk−1, gwnk−1)}

= ε.

(27)
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By (16), it is easy to see that

lim
k→+∞

M(xmk−1, ymk−1, zmk−1,wmk−1, xnk−1, ynk−1, znk−1,wnk−1)

= lim
k→+∞

M(ynk−1, znk−1,wnk−1, xnk−1, ymk−1, zmk−1,wmk−1, xmk−1)

= lim
k→+∞

M(zmk−1,wmk−1, xmk−1, ymk−1, znk−1,wnk−1, xnk−1, ymk−1)

= lim
k→+∞

M(wnk−1, xnk−1, ymk−1, znk−1,wmk−1, xmk−1, ymk−1, zmk−1) = 0.

(28)

Now, using inequality (3), we obtain

d(gxmk , gxnk) = d(F(xmk−1, ymk−1, zmk−1,wmk−1), F(xnk−1, ynk−1, znk−1,wnk−1))

≤ φ(max{d(xmk−1, xnk−1), d(ymk−1, ynk−1), d(zmk−1, znk−1), d(wmk−1,wnk−1)})
+LM(xmk−1, ymk−1, zmk−1,wmk−1, xnk−1, ynk−1, znk−1,wnk−1),

(29)

d(gynk , gymk) = d(F(ynk−1, znk−1,wnk−1, xnk−1), F(ymk−1, zmk−1,wmk−1, xmk−1))

≤ φ(max{d(ymk−1, ynk−1), d(zmk−1, znk−1), d(wmk−1,wnk−1, d(xmk−1, xnk−1)})
+LM(ynk−1, znk−1,wnk−1, xnk−1, ymk−1, zmk−1,wmk−1, xmk−1),

(30)

d(gzmk , gznk) = d(F(zmk−1,wmk−1, xmk−1, ymk−1), F(znk−1,wnk−1, xnk−1, ynk−1))

≤ φ(max{d(zmk−1, znk−1), d(wmk−1,wnk−1, d(xmk−1, xnk−1), d(ymk−1, ynk−1)})
+LM(zmk−1,wmk−1, xmk−1, ymk−1, znk−1,wnk−1, xnk−1, ymk−1)

(31)

and

d(gwnk , gwmk) = d(F(wnk−1, xnk−1, ynk−1, znk−1), F(wmk−1, xmk−1, ymk−1, zmk−1))

≤ φ(max{d(wmk−1,wnk−1, d(xmk−1, xnk−1), d(ymk−1, ynk−1), d(zmk−1, znk−1)})
+LM(wnk−1, xnk−1, ynk−1, znk−1,wmk−1, xmk−1, ymk−1, zmk−1).

(32)

From (29)-(32), we deduce that

max{d(gxmk , gxnk), d(gymk , gynk), d(gzmk , gznk), d(gwmk , gwnk)}
≤ φ(max{d(xmk−1, xnk−1), d(ymk−1, ynk−1), d(zmk−1, znk−1), d(gwmk , gwnk)})
+LM(xmk−1, ymk−1, zmk−1,wmk−1, xnk−1, ynk−1, znk−1,wnk−1)

+LM(ynk−1, znk−1,wnk−1, xnk−1, ymk−1, zmk−1,wmk−1, xmk−1)

+LM(zmk−1,wmk−1, xmk−1, ymk−1, znk−1,wnk−1, xnk−1, ymk−1)

+LM(wnk−1, xnk−1, ynk−1, znk−1,wmk−1, xmk−1, ymk−1, zmk−1).

(33)

Letting k ® +∞ in (33) and having in mind (27) and (28), we get that

0 < ε ≤ lim
t→ε+

φ(t) < ε,

it is a contradiction. Thus, {gxn}, {gyn}, {gzn}, and {gwn} are Cauchy sequences in (X,

d).

Since (X, d) is complete, there exist x, y, z, w Î X such that

lim
n→+∞ gxn = x, lim

n→+∞ gyn = y, lim
n→+∞ gyn = y, and lim

n→+∞ gwn = w. (34)

From (34) and the continuity of g, we have

lim
n→+∞ g(gxn) = gx, lim

n→+∞ g(gyn) = gy, lim
n→+∞ g(gzn) = gz, and lim

n→+∞ g(gwn) = gw. (35)
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From (5) and the commutativity of F and g, we have

g(gxn+1) = g(F(xn, yn, zn,wn)) = F(gxn, gyn, gzn, gwn), (36)

g(gyn+1) = g(F(yn, zn,wn, xn)) = F(gyn, gzn, gwn, gxn), (37)

g(gzn+1) = g(F(zn,wn, xn, yn)) = F(gzn, gwn, gxn, yn), (38)

and

g(gwn+1) = g(F(wn, xn, yn, zn)) = F(gwn, gxn, yn, gzn). (39)

Now we shall show that gx = F (x, y, z, w), gy = F (y, z, w, x), gz = F (z, w, x, y), and

gw = F (w, x, y, z).

By letting n ® +∞ in (36) - (39), by (34), (35) and the continuity of F , we obtain

gx = lim
n→+∞ g(gxn+1) = lim

n→+∞ F(gxn, gyn, gzn, gwn)

= F( lim
n→+∞ gxn, lim

n→+∞ gyn, lim
n→+∞ gzn, lim

n→+∞ gwn)

= F(x, y, z,w),

(40)

gy = lim
n→+∞ g(gyn+1) = lim

n→+∞ F(gyn, gzn, gwn, gxn)

= F( lim
n→+∞ gyn, lim

n→+∞ gzn, lim
n→+∞ gwn, lim

n→+∞ gwn)

= F(y, z,w, x),

(41)

gz = lim
n→+∞ g(gzn+1) = lim

n→+∞ F(gzn, gwn, gxn, gyn)

= F( lim
n→+∞ gzn, lim

n→+∞ gwn, lim
n→+∞ gxn, lim

n→+∞ gyn)

= F(z,w, x, y),

(42)

and

gw = lim
n→+∞ g(gwn+1) = lim

n→+∞ F(gwn, gxn, gyn, gzn)

= F( lim
n→+∞ gwn, lim

n→+∞ gxn, lim
n→+∞ gyn, lim

n→+∞ gzn)

= F(w, x, y, z).

(43)

We have proved that F and g have a quadruple coincidence point. This completes

the proof of Theorem 2.1.

In the following theorem, we omit the continuity hypothesis of F. We need the fol-

lowing definition.

Definition 2.5 Let (X, ≤) be a partially ordered metric set and d be a metric on X.

We say that (X, d, ≤) is regular if the following conditions hold:

(i) if non-decreasing sequence an ® a, then an ≤ a for all n,

(ii) if non-increasing sequence bn ® b, then b ≤ bn for all n.

Theorem 2.2 Let (X, ≤) be a partially ordered set and d be a metric on X such that

(X, d, ≤) is regular. Suppose F : X4 ® X and g : X ® X are such that F has the mixed

g-monotone property. Assume that there exist j Î F and L ≥ 0 such that
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d(F(x, y, z,w), F(u, v, , h, l)) ≤ φ(max{d(gx, gu), d(gy, gv), d(gz, gh), d(gw, gl)})
+LM(x, y, z,w, u, v, h, l)

for any x, y, z, w, u, v, h, l Î X for which gx ≤ gu, gv ≤ gy, gz ≤ gh, and gl ≤ gw. Also,

suppose F (X4) ⊂ g(X) and (g(X), d) is a complete metric space. If there exist x0, y0, z0,

w0 Î X such that gx0 ≤ F (x0, y0, z0, w0), gy0 ≥ F (y0, z0, w0, x0), gz0 ≤ F (z0, w0, x0, y0)

and gw0 ≥ F (w0, x0, y0, z0), then there exist x, y, z, w Î X such that

F(x, y, z,w) = gx, F(y, z,w, x) = gy, F(z,w, x, y) = gz and F(w, x, y, z) = gw

that is, F and g have a quadruple coincidence point.

Proof. Proceeding exactly as in Theorem 2.1, we have that {gxn}, {gyn}, {gzn}, and

{gwn} are Cauchy sequences in the complete metric space (g(X), d). Then, there exist x,

y, z, w Î X such that

gxn → gx, gyn → gy, gzn → gz, and gwn → gw. (44)

Since {gxn}, {gzn} are non-decreasing and {gyn}, {gwn} are non-increasing, then since

(X, d, ≤) is regular we have

gxn ≤ gx, gyn ≥ gy, gzn ≤ gz, gwn ≥ gw

for all n. If gxn = gx, gyn = gy, gzn = gz, and gwn = gw for some n ≥ 0, then gx = gxn ≤

gxn+1 ≤ gx = gxn, gy ≤ gyn+1 ≤ gyn = gy, gz = gzn ≤ gzn+1 ≤ gz = gzn, and gw ≤ gwn+1 ≤

gwn = gw, which implies that

gxn = gxn+1 = F(xn, yn, zn,wn), gyn = gyn+1 = F(yn, zn,wn, xn),

and

gzn = gzn+1 = F(zn,wn, xn, yn), gwn = gwn+1 = F(wn,wn, yn, zn),

that is, (xn, yn, zn, wn) is a quadruple coincidence point of F and g. Then, we suppose

that (gxn, gyn, gzn, gwn) ≠ (gx, gy, gz, gw) for all n ≥ 0. By (3), consider now

d(gx, F(x, y, z,w)) ≤ d(gx, gxn+1) + d(gxn+1, F(x, y, z,w))

= d(gx, gxn+1) + d(F(xn, yn, zn,wn), F(x, y, z,w))

≤ d(gx, gxn+1) + φ

(
max

{
d(gxn, gx), d(gyn, gy),

d(gzn, gz), d(gwn, gw)

})
+ LM(xn, yn, zn,wn, x, y, z,w)

< d(gx, gxn+1) + max{d(gxn, gx), d(gyn, gy), d(gzn, gz), d(gwn, gw)} + LM(xn, yn, zn,wn, x, y, z,w).

(45)

Taking n ® ∞ and using (44), the quantity M(xn, yn, zn, wn, x, y, z, w) tends to 0 and

so the right-hand side of (45) tends to 0, hence we get that d(gx, F (x, y, z, w)) = 0.

Thus, gx = F (x, y, z, w). Analogously, one finds

F(x, y, z,w) = gy, F(z,w, x, y) = gz, and F(w, x, y, z) = gw.

Thus, we proved that F and g have a quartet coincidence point. This completes the

proof of Theorem 2.2.

Corollary 2.1 Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d) is a complete metric space. Suppose F : X4 ® X and g : X ® X are

such that F is continuous and has the mixed g-monotone property. Assume also that

there exist j Î F a non-decreasing function and L ≥ 0 such that
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d(F(x, y, z,w), F(u, v, h, l)) ≤ φ

(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl

4

)
+ LM(x, y, z,w, u, v, h, l),

for any x, y, z, w, u, v, h, l,Î X for which gx ≤ gu, gv ≤ gy, gz ≤ gw, and gl ≤ gw. Sup-

pose F (X4) ⊂ g(X), g is continuous and commutes with F .

If there exist x0, y0, z0, w0 Î X such that gx0 ≤ F (x0, y0, z0, w0), gy0 ≥ F (y0, z0, w0,

x0), gz0 ≤ F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then there exist x, y, z, w Î X

such that

F(x, y, z,w) = gx, F(y, z,w, x) = gy, F(z,w, x, y) = gz, and F(w, x, y, z) = gw.

Proof. It suffices to remark that

d(gx, gu) + d(gy, gv) + d(gz, ph), d(gw, gl)
4

≤ max

{
d(gx, gu), d(gu, gv),

d(gz, gh), d(gw, gl)

}
.

Then, we apply Theorem 2.1, since j is assumed to be non-decreasing.

Similarly, as an easy consequence of Theorem 2.2 we have the following corollary.

Corollary 2.2 Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d, ≤) is regular. Suppose F : X4 ® X and g : X ® X are such that F

has the mixed g-monotone property. Assume also that there exist j Î F a non-decreas-

ing function and L ≥ 0 such that

d(F(x, y, z,w), F(u, v, h, l)) ≤ φ

(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

4

)
+ LM(x, y, z,w, u, v, h, l),

for any x, y, z, w, u, v, h, l Î X for which gx ≤ gu, gv ≤ gy, gz ≤ gw, and gl ≤ gw. Also,

suppose F (X4) ⊂ g(X) and (g(X), d) is a complete metric space.

If there exist x0, y0, z0, w0 Î X such that gx0 ≤ F (x0, y0, z0, w0), gy0 ≥ F (y0, z0, w0,

x0), gz0 ≤ F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then there exist x, y, z, w Î X

such that

F(x, y, z,w) = gx, F(y, z,w, x) = gy, F(z,w, x, y) = gz, and F(w, x, y, z) = gw.

Corollary 2.3 Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d) is a complete metric space. Suppose F : X4 ® X and g : X ® X are

such that F is continuous and has the mixed g-monotone property. Assume that there

exist k Î [0, 1) and L ≥ 0 such that

d(F(x, y, z,w), F(u, v, , h, l)) ≤ kmax

{
d(gx, gu), d(gy, gv),

d(gz, gh), d(gw, gl)

}
+ LM(x,y,z,w,u,v,h,l),

for any x, y, z, w, u, v, h, l Î X for which:gx ≤ gu, gv ≤ gy, gz ≤ gw, and gl ≤ gw. Sup-

pose F (X4) ⊂ g(X), g is continuous and commutes with F.

If there exist x0, y0, z0, w0 Î X such that gx0 ≤ F (x0, y0, z0, w0), gy0 ≥ F (y0, z0, w0,

x0), gz0 ≤ F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then there exist x, y, z, w Î X

such that
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F(x, y, z,w) = gx, f (y, z,w, x) = gy, f (z,w, x, y) = gz, and F(w, x, y, z) = gw.

Proof. It suffices to take j (t) = kt in Theorem 2.1.

Corollary 2.4 Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d, ≤) is regular. Suppose F : X4 ® X and g : X ® X are such that F

has the mixed g-monotone property. Assume that there exist k Î [0, 1) and L ≥ 0 such

that

d(F(x, y, z,w), F(u, v, , h, l)) ≤ kmax

{
d(gx, gu), d(gy, gv),

d(gz, gh), d(gw, gl)

}
+ LM(x,y,z,w,u,v,h,l),

for any x, y, z, w, u, v, h, l Î X for which gx ≤ gu, gv ≤ gy, gz ≤ gw, and gl ≤ gw. Sup-

pose F (X4) ⊂ g(X) and (g(X), d) is a complete metric space.

If there exist x0, y0, z0, w0 Î X such that gx0 ≤ F (x0, y0, z0, w0), gy0 ≥ F (y0, z0, w0, x0),

gz0 ≤ F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then there exist x, y, z, w Î X such

that

F(x, y, z,w) = gx, F(y, z,w, x) = gy, F(z,w, x, y) = gz, and F(w, x, y, z) = gw.

Proof. It suffices to take j (t) = kt in Theorem 2.2.

Corollary 2.5 Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d) is a complete metric space. Suppose F : X4 ® X and g : X ® X are

such that F is continuous and has the mixed g-monotone property. Assume that there

exist k Î [0, 1) and L ≥ 0 such that

d(F(x, y, z,w), F(u, v, h, l)) ≤ k
4

{
d(gx, gu) + d(gy, gv)+

d(gz, gh) + d(gw, gl)

}
+ LM(x, y, z,w, u, v, h, l),

for any x, y, z, w, Î X for which :gx ≤ gu, gv ≤ gy, gz ≤ gw, and gl ≤ gw. Also, suppose

F (X4) ⊂ g(X) and (g(X), g is continuous and commutes with F.

If there exist x0, y0, z0, w0 Î X such that gx0 ≤ F (x0, y0, z0, w0), gy0 ≥ F (y0, z0, w0, x0),

gz0 ≤ F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then there exist x, y, z, w Î X such

that

F
(
x, y, z, w

)
= gx, F

(
y, z, w, x

)
= gy, F

(
z, w, x, y

)
= gz, and F

(
w, x, y, z

)
= gw.

Proof. It suffices to take j (t) = kt in Corollary 2.1.

Corollary 2.6 Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d, ≤) is regular. Suppose F : X4 ® X and g : X ® X are such that F

has the mixed g-monotone property. Assume that there exist k Î [0, 1) and L ≥ 0 such

that

d(F(x, y, z,w), F(u, v, h, l)) ≤ k
4

{
d(gx, gu) + d(gy, gv)+

d(gz, gh) + d(gw, gl)

}
+ LM(x, y, z,w, u, v, h, l),

for any x, y, z, w, Î X for which gx ≤ gu, gv ≤ gy, gz ≤ gw, and gl ≤ gw. Suppose F (X4)

⊂ g(X) and (g(X), d) is a complete metric space.

If there exist x0, y0, z0, w0 Î X such that gx0 ≤ F (x0, y0, z0, w0), gy0 ≥ F (y0, z0, w0, x0),

gz0 ≤ F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then there exist x, y, z, w Î X such

that
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F(x, y, z,w) = gx, F(y, z,w, r) = gy, F(z,w, x, y) = gz, and F(w, x, y, z = gw).

Proof. It suffices to take j (t) = kt in Corollary 2.2.

Remark 1 • Corollary 2.4 of Karapinar [39]is a particular case of Corollary 2.5 by

taking L = 0 and g = IX the identity on X.

• Corollary 2.4 of Karapinar [39]is a particular case of Corollary 2.6 by taking L =

0 and g = IX .

• Theorem 2.6 of Berinde and Karapinar [40]is a particular case of Corollary 2.1 by

taking L = 0.

• Theorem 2.6 of Berinde and Karapinar [40]is a particular case of Corollary 2.1 by

taking L = 0.

Now, we shall prove the existence and uniqueness of quadruple common fixed point.

For a product X4 of a partial ordered set (X, ≤), we define a partial ordering in the fol-

lowing way: For all (x, y, z, w), (u, v, r, h) Î X4

(x, y, z,w) ≤ (u, v, r, h) ⇔ x ≤ u, y ≥ v, z ≤ r and w ≥ l (46)

We say that (x, y, z, w) and (u, v, r, l) are comparable if

(x, y, z,w) ≤ (u, v, r, l) or (u, v, r, l) ≤ (x, y, z,w).

Also, we say that (x, y, z, w) is equal to (u, v, r, l) if and only if x = u, y = v, z = r and

w = l.

Theorem 2.3 In addition to hypotheses of Theorem 2.1, suppose that for all (x, y, z,

w), (u, v, r, l) Î X4, there exists(a, b, c, d) Î X4 such that

(F(a, b, c, d), F(b, c, d, a), F(c, d, a, b), F(d, a, b, c))

is comparable to

(F(x, y, z,w), F(y, z,w, x), F(z,w, x, y), F(w, x, y, z)) and

(F(u, v, r, l), F(v, r, l, u), F(r, l, u, v), F(l, u, v, r)).

Then, F and g have a unique quadruple common fixed point (x, y, z, w) such that

x = gx = F(x, y, z,w), y = gy = F(y, z,w, x),

z = gz = F(z,w, x, y), and w = gw = F(w, x, y, z).

Proof. The set of quadruple coincidence points of F and g is not empty due to Theo-

rem 2.1. Assume, now, (x, y, z, w) and (u, v, r, l) are two quadruple coincidence points

of F and g, that is,

F(x, y, z,w) = gx, F(u, v, r, l) = gu,

F(y, z,w, x) = gy, F(v, r, l, u) = gv,

F(z,w, x, y) = gz, F(r, l, u, v) = gr,

F(w, x, y, z) = gw, F(l, u, v, r) = gl.

(47)

We shall show that (gx, gy, gz, gw) and (gu, gv, gr, gl) are equal. By assumption, there

exists (a, b, c, d) Î X4 such that (F (a, b, c, d), F (b, c, d, a), F (c, d, a, b), F (d, a, b, c))
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is comparable to (F (x, y, z, w), F (y, z, w, x), F (z, w, x, y), F (w, x, y, z)) and (F (u, v, r,

l), F (v, r, l, u), F (r, l, u, v), F (l, u, v, r)).

Define sequences {gan}, {gbn}, {gcn}, and {gdn} such that

a0 = a, b0 = b, c0 = c, d0 = d and for any n ≥ 1

gan = F(an−1, bn−1,cn−1,dn−1),

gbn = F(bn−1,cn−1,dn−1,an−1),

gcn = F(cn−1,dn−1,an−1,bn−1),

gdn = F(dn−1, an−1, bn−1, cn−1),

(48)

for all n. Further, set x0 = x, y0 = y, z0 = z, w0 = w and u0 = u, v0 = v, r0 = r, l0 = l

and on the same way define the sequences {gxn}, {gyn}, {gzn}, {gwn} and {gun}, {gvn},

{grn}, {gln}. Then, it is easy that

gxn = F(x, y, z,w), gun = F(u, v, r, l),

gyn = F(y, z,w, x), gvn = F(v, r, l, u),

gzn = F(z,w, x, y), grn = F(r, l, u, v),

gwn = F(w, x, y, z), gln = F(l, u, v,r)

(49)

for all n ≥ 1. Since

(F(x,y,z,w), F(y,z,w,x), F(z,w,x,y), F(w,x,y,z)) = (gx1,gy1,gz1,gw1)

= (gx,gy,gz,gw)

is comparable to

(F(a, b, c, d), F(b, c, d, a), F(c, d, a, b), F(d, a, b, c)) = (ga1, gb1, gc1, gd1),

then it is easy to show (gx, gy, gz, gw) ≥ (ga1, gb1, gc1, gd1). Recursively, we get that

(gan, gbn, gcn, gdn) ≤ (gx, gy, gz, gw) for all n. (50)

From (2) and (47), it is obvious that

M(an,bn,cn,dn,x,y,z,w) = M(y,z,w,x, bn,cn,dn,an))

= M(cn,dn,an,bn,z,w,x,y) = M(w,x,y,z,dn,an,bn,cn) = 0.
(51)

By (50), (51), and (3), we have

d(gan+1, gx) = d(F(an, bn, cn, dn), F(x, y, z,w))

≤ φ(max{d(gx, gan), d(gy, gbn), d(gz, gcn), d(gw, gdn)}),
+ LM(an, bn, cn, dn, x, y, z,w)

= φ(max{d(gx, gan), d(gy, gbn), d(gz, gcn), d(gw, gdn)}),

(52)

d(gy, gbn+1) = d(F(y, z,w, x), F(bn , cn, dn, an))

≤ φ(max{d(gan, gx), d(gbn , gy), d(gcn, gz), d(gdn , gw)})
+ LM(y, z,w, x, bn , cn, dn, an)

= φ(max{d(gan, gx), d(gbn , gy), d(gcn, gz), d(gdn, gw)}),

(53)
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d(gcn+1, gz) = d(F(cn, dn, an, bn), F(z,w, x, y))

≤ φ(max{d(gan, gx), d(gbn, gy), d(gcn , gz), d(gdn, gw)})
+ LM(cn, dn, an, bn, z,w, x, y)

= φ(max{d(gan, gx), d(gbn, gy), d(gcn, gz), d(gdn , gw)})

(54)

and

d(gw, gdn+1) = d(F(w, x, y, z), F(dn , an, bn, cn))

≤ φ(max{d(gan, gx), d(gbn, gy), d(gcn , gz), d(gdn, gw)})
+ LM(w, x, y, z, dn, an, bn, cn)

= φ(max{d(gdn, gw), d(gan, gx), d(gbn , gy), d(gcn, gz)}).

(55)

From (52)-(55), it follows that

max
{
d(gz, gcn+1), d(gy, gbn+1),
d(gx, gan+1), d(gw, gdn+1)

}
≤ φ

(
max

{
d(gz, gcn), d(gy, gbn),
d(gx, gan), d(gw, gdn)

})
. (56)

Therefore, for each n ≥ 1,

max

{
d(gz, gcn), d(gy, gbn),

d(gx, gan), d(gw, gdn)

}
≤ φn

(
max

{
d(gz, gc0), d(gy, gb0),

d(gx, ga0), d(gw, gd0)

})
. (57)

It is known that j(t) < t and lim
r→t+

φ(r) < t imply lim
n→∞ φn(t) = 0 for each t > 0. Thus,

from (57)

lim
n→∞max{d(gz, gcn), d(gy, gbn), d(gx, gan), d(gw, gdn)} = 0.

This yields that

lim
n→∞ d(gx, gan) = 0, lim

n→∞ d(gy, gbn) = 0, lim
n→∞ d(gz, gcn) = 0 and lim

n→∞ d(gw, gdn) = 0. (58)

Analogously, we may show that

lim
n→∞ d(gu, gan) = 0, lim

n→∞ d(gv, gbn) = 0, lim
n→∞ d(gr, gcn) = 0 and lim

n→∞ d(gl, gdn) = 0. (59)

Combining (58) and (59) yields that (gx, gy, gz, gw) and (gu, gv, gr, gl) are equal.

Since gx = F(x, y, z, w), gy = F(y, z, w, x), gz = F(z, w, x. y), and gz = F(z, w, x, y), by

commutativity of F and g we have

gx′ = g(gx) = g(F(x, y, z,w)) = F(gx, gy, gz, gw),

gy′ = g(gy) = g(F(y, z,w, x)) = F(gy, gz, gw, gx),

gz′ = g(gz) = g(F(z,w, x, y)) = F(gz, gw, gx, gy)

and

gw′ = g(gw) = g(F(w, x, y, z)) = F(gw, gx, gy, gz)

where gx = x’, gy = y’, gz = z’, and gw = w’. Thus, (x’, y’, z’, w’) is a quadruple coinci-

dence point of F and g. Consequently, (gx’, gy’, gz’, gz’) and (gx, gy, gz, gw) are equal.

We deduce

gx′ = gx = x′, gy′ = gy = y′ and gz′ = gz = z′, gw′ = gw = w′.
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Therefore, (x’, y’, z’, w’) is a quadruple common fixed of F and g. Its uniqueness fol-

lows easily from (3).

Example 2.1 Let X = ℝ be endowed with the usual ordering and the usual metric,

which is complete.

Let g: X ® X and F: X4®X be defined by

g(x) =
3
4
x, F

(
x, y, z,w

)
=
x − y + z − w

8
, for all x, y, z,w ∈ X

Take j : [0, ∞) ® [0, ∞) be given by φ(t) = 2
3 t for all t Î [0, ∞).

We will check that the contraction (3) is satisfied for all x, y, z, w, u, v, h, l Î X satis-

fying gx ≤ gu, gv ≤ gy, gz ≤ gh, and gl ≤ gw. In this case, we have

d(F(x, y, z,w), F(u, v, h, l)) =
u − x
8

+
y − v
8

+
h − z
8

+
w − l
8

≤ 1
2
[max{(u − x), (y − v), (h − z), (w − l)}]

=
2
3
max{d(gx, gu), d(gy, gv), d(gz, gh), d(gw, gl)}

≤ φ(max{d(gx, gu), d(gy, gv), d(gz, gh), d(gw, gl)})
+ LM(x, y, z,w, u, v, h, l),

for arbitrary L ≥ 0.

It is obvious that the other hypotheses of Theorem 2.3 are satisfied. We deduce that

(0, 0, 0, 0) is the unique quadruple common fixed point of F and g.

3 Application to matrix equations
In this section, we study the existence and uniqueness of solutions (X, Y, Z, T) to the

system of matrix equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X = Q + A∗

1X A1 − B∗
1Y B1 + A∗

2ZA2 − B∗
2TB2

Y = Q + A∗
1Y A1 − B∗

1ZB1 + A∗
2T A2 − B∗

2XB2

Z = Q + A∗
1ZA1 − B∗

1T B1 + A∗
2X A2 − B∗

2YB2

T = Q + A∗
1T A1 − B∗

1X B1 + A∗
2Y A2 − B∗

2ZB2,

(60)

where A1,A2,B1,B2 ∈ M(n) : the set of all n × n matrices, Q ∈ P(n) : the set of all

n × n positive definite matrices, and H(n) is the set of all n × n Hermitian matrices.

We endow H(n) with the partial order ≼ given by

M,N ∈ H(n), M � N ⇔ N − M ∈ P(n).

For a fixed P ∈ P(n) , we consider

||H||1,P = tr(P
1
2HP

1
2 ).

for all H ∈ H(n) , where tr is the trace operator. The space H(n) equipped with the

metric induced by ||.||1,P is a complete metric space for any positive definite matrix P

(see [42]).

The following lemma will be useful for our application.
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Lemma 3.1 Let A ≽ 0 and B ≽ 0 be n × n matrices. Then, we have

0 ≤ tr(AB) = tr(BA) ≤ ||A||tr(B),

where ||.|| is the spectral norm.

Theorem 3.1 Suppose that there exists P ∈ P(n) such that

k = 4max{||P−1
2A∗

1PA1P
−1
2 ||, ||P− 1

2A∗
2PA2P

−1
2 ||, ||P− 1

2 B∗
1PB1P

−1
2 ||, ||P− 1

2 B∗
2PB2P

−1
2 ||} < 1. (61)

Suppose also that

0 �
2∑
i=1

A∗
i QAi andQ �

2∑
i=1

B∗
i QBi. (62)

Then, the system (60) has one and only one solution (X1,X2,X3,X4) ∈ (H(n))4 .

Proof. Consider the mappings F : (H(n))4 → H(n) and g : H(n) → H(n) defined

by

F(X1,X2,X3,X4) = Q + A∗
1X1A1 − B∗

1X2B1 + A∗
2X3A2 − B∗

2X4B2 and gX = X,

for all X,Xi ∈ H(n) i =1, . . . , 4.

For all Xi,Yi ∈ H(n)i = 1. . . , 4 with gX1 ≼ gY1, gY2 ≼ gX2, gX3 ≼ gY3 and gY4 ≼ gX4,

by using Lemma 3.1, we have

||F(Y1,Y2,Y3,Y4) − F(X1,X2,X3,X4)||1,P
= ||A∗

1(Y1 − X1)A1 − B∗
1(Y2 − X2)B1 + A∗

2(Y3 − X3)A2 − B∗
2(Y4 − X4)B2||1,P

= tr
[
P
1
2

(
A∗
1(Y1 − X1)A1 − B∗

1(Y2 − X2)B1 + A∗
2(Y3 − X3)A2 − B∗

2(Y4 − X4)B2
)
P
1
2

]
= tr[A1PA∗

1(Y1 − X1)] + tr[B1PB∗
1(X2 − Y2)] + tr[A2PA∗

2(Y3 − X3)] + tr[B2PB∗
2(X4 − Y4)]

= tr[A1PA∗
1P

−1
2 P

1
2 (Y1 − X1)P

1
2 P−1

2 ] + tr[B1PB∗
1P

−1
2 P

1
2 (X2 − Y2)P

1
2 P−1

2 ]

+tr[A2PA
∗
2P

−1
2 P

1
2 (Y3 − X3)P

1
2 P−1

2 ] + tr[B2PB
∗
2P

−1
2 P

1
2 (X4 − Y4)P

1
2 P−1

2 ]

≤ ||P−1
2A1PA

∗
1P

−1
2 ||tr(P

1
2 (Y1 − X1)P

1
2 ) + ||P−1

2 B1PB
∗
1P

−1
2 ||tr(P

1
2 (X2 − Y2)P

1
2 )

+||P− 1
2A2PA∗

2P
− 1
2 ||tr(P 1

2 (Y3 − X3)P
1
2 ) + ||P− 1

2B2PB∗
2P

−1
2 ||tr(P 1

2 (X4 − Y4)P
1
2 )

= ||P−1
2A1PA∗

1P
−1
2 || ||Y1 − X1||1,P + ||P−1

2 B1PB∗
1P

−1
2 || ||X2 − Y2||1,P

+||P− 1
2A2PA

∗
2P

− 1
2 || ||Y3 − X3||1,P + ||P−1

2B2PB
∗
2P

− 1
2 || ||X4 − Y4||1,P

≤ k
4

(||gY1 − gX1||1,P + ||gX2 − gY2||1,P + ||gY3 − gX3||1,P + ||gX4 − gY4||1,P
)
.

Thus, we proved that the contractive condition given in Corollary 2.5 is satisfied for

all L ≥ 0. Moreover, from (62), we have letting gQ ≼ F (Q, 0, Q, 0) and g0 ≽ F (0, Q, 0,

Q). Applying Corollary 2.5, F and g have a coupled coincidence point (and so a quad-

rupled fixed point since g is the identity on H(n)). Then, there exist

X1,X2,X3,X4 ∈ H(n) such that

F(X1,X2,X3,X4) = X1, F(X2,X3,X4,X1) = X2,

F(X3,X4,X1,X2) = X3 and F(X4,X1,X2,X4) = X4.

On the other hand, for all X,Y ∈ H(n) there is a greatest lower bound and a least

upper bound, hence it is obvious that the hypotheses of Theorem 2.3 hold, so the
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uniqueness of that quadrupled fixed point of F, which is also the unique solution of

the system (60).
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