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Abstract The goal of this paper is to consider the prospects for developing a consis-
tent variant of the Theory of Constructions originally proposed by Georg Kreisel and
Nicolas Goodman in light of two developments which have been traditionally associ-
ated with the theory—i.e. Kreisel’s second clause interpretation of the intuitionistic
connectives, and an antinomy about constructive provability sometimes referred to as
the Kreisel-Goodman paradox. After discussing the formulation of the theory itself,
we then discuss how it can be used to formalize the BHK interpretation in light of
concerns about the impredicativity of intuitionistic implication and Kreisel’s pro-
posed amendments to overcome this. We next reconstruct Goodman’s presentation
of a paradox pertaining to a “naive” variant of the theory and discuss the influence
this had on its subsequent reception. We conclude by considering various means of
responding to this result. Contrary to the received view that the second clause inter-
pretation itself contributes to the paradox, we argue that the inconsistency arises in
virtue of an interaction between reflection and internalization principles similar to
those employed in Artemov’s Logic of Proofs.

Keywords BHK interpretation · Intuitionistic logic · Theory of Constructions · the
Kreisel-Goodman paradox · Logic of Proofs

1 Introduction

The Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic is
traditionally characterized as a means of associating with each formula A of first-
order logic a so-called proof condition which specifies what is required for an object
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to serve as a constructive proof of A in terms of its structure. An interpretation of this
form was originally proposed by Heyting [19–21] and Kolmogorov [24], leading to
the now familiar formulation reported in [46]:

(P∧) A proof of A ∧ B consists of a proof of A and a proof of B.
(P∨) A proof of A ∨ B consists of a proof of A or a proof of B.

(P→) A proof of A → B consists of a construction which transforms any proof of
A into a proof of B.

(P¬) A proof of ¬A consists of a construction which transforms any hypothetical
proof of A into a proof of ⊥ (a contradiction).

(P∀) A proof of∀x A consists of a construction which transforms all c in the intended
range of quantification into a proof of A(c).

(P∃) A proof of ∃x A consists of an object c in the intended range of quantification
together with a proof of A(c).

Alongside such a formulation it is conventional to add the caveat that the notions
of proof and construction alluded to in these clauses should be understood as primi-
tives, and thus cannot be taken to correspond to derivations in any particular formal
system. Rather than providing a formal semantics for intuitionistic first-order logic
in a manner parallel to that provided by Tarski’s definitions of truth and satisfac-
tion for classical logic, the BHK interpretation is now often described as providing
a so-called meaning explanation of the intuitionistic logical connectives [39]—i.e.
“an account of what one knows when one understands and correctly uses the logical
connectives” [47].

Despite the fact that it itself is not intended as a mathematical interpretation in
the technical sense, the BHK interpretation has been a substantial source of work in
proof theory and related disciplines which can be understood as attempting to provide
a formal semantics for intuitionistic logic. Among such developments are Kleene
realizability, Gödel’s Dialectica interpretation, and Martin-Löf’s Intuitionistic Type
Theory [ITT]. The class of systems which we will investigate in this paper—i.e. the
so-called Theory of Constructions which was originally developed by Georg Kreisel
[25, 26], and Nicolas Goodman [16–18] in the 1960s and 1970s1—was also put forth
in much the same spirit. For instance Kreisel originally explained the aims of the
theory as follows:

Our main purpose here is to enlarge the stock of formal rules of proof which follow directly
from the meaning of the basic intuitionistic notions but not from the principles of classical
mathematics so far formulated. The specific problem which we have chosen to lead us to
these rules is also of independent interest: to set up a formal system, called ‘abstract theory
of constructions’ for the basic notions mentioned above, in terms of which formal rules of
Heyting’s predicate calculus can be interpreted.

1As we will see below, the theories which are presented in these papers as “theories of constructions”
vary in some crucial respects. Although it is thus inaccurate to speak of a unique formal system as
corresponding to “the” Theory of Constructions, we will retain the definite article in speaking of
the family of theories in question when no confusion will result.
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In other words, we give a formal semantic foundation for intuitionistic formal systems in
terms of the abstract theory of constructions. This is analogous to the semantic foundation
for classical systems [42] in terms of abstract set theory [25, pp. 198–199] (emphasis in the
original).

The Theory of Constructions was thus unabashedly put forth as an attempt to
mathematically formalize the BHK interpretation. But as we will see, there are at
least two reasons to view the theory as providing a more direct analysis of the
individual BHK clauses than the approaches mentioned above. First, (unlike, e.g.,
Dialectica or ITT) it treats constructive proofs explicitly as abstract objects whose
properties we can reason about directly. This allows us to construct expressions
which can be understood as direct translations of the BHK clauses into a language
with variables which are intended to range over such proofs. Second, Goodman
describes his formulation of the system as “a type- and logic-free theory directly
about the rules and proofs which underlie constructive mathematics” [17, p. 101].
At least in the eyes of its originators, the Theory of Constructions thus represents
an attempt to provide an account of intuitionistic validity in terms of elementary
notions which (unlike, e.g., Beth or Kripke models or Kleene realizability) do not
presuppose classical logic or mathematics.

But despite these far ranging ambitions, the Theory of Constructions has largely
been neglected in surveys of the semantics of intuitionistic logic (e.g. [7, 46]) from
the early 1980s onward. Two reasons for this appear to be as follows: (1) a “naive”
form of the theory was shown by Goodman [16, 17] to be inconsistent in virtue of
a “self-referential” antinomy involving constructive provability (we will see below
that this is similar in form to what is now known as Montague’s paradox); (2) it
was in the context of presenting the Theory of Constructions in which Kreisel first
presented a modification to the clauses (P→), (P¬) and (P∀) (which has come to be
known as the second clause) which proved to be controversial and has subsequently
been excised from modern expositions of the BHK interpretation.

The broad goal of the current paper will be to take some initial steps towards reeval-
uating the Theory of Constructions with respect to its original foundational goals.
We will do so by first focusing on how the aspects of the theory just mentioned—
i.e. Kreisel’s second clause and the Kreisel-Goodman paradox—influenced both the
original formulation of the theory as well as its subsequent reception. In Sect. 2, we
will consider the features of the original formulation of the BHK interpretation which
appear to have motivated Kreisel to introduce the second clause—i.e. the decidability
of what we will refer to as the proof relation and the putative impredicativity of the
clauses (P→), (P¬) and (P∀). In Sect. 3 we will then provide a concise account of the
various formal systems considered by Kreisel and Goodman, their use in formaliz-
ing the BHK interpretation (inclusive of the second clause), and their relationship
to the Kreisel-Goodman paradox. In Sect. 4 we will consider the reaction of various
theorists to the Theory of Constructions and the second clause, as well as evaluating
Weinstein’s [49] claim that the second clause is itself to blame for the paradox. After
concluding that this contention is unjustified, in Sect. 5 we will consider other poten-
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tial diagnoses of the paradox, as well as discussing the prospects for formulating
a version of the Theory of Constructions which addresses Kreisel and Goodman’s
original foundational goals.

2 Predicativity, Decidability, and the BHK Interpretation

One of Kreisel’s goals in proposing the Theory of Constructions was to respond to a
potential objection to the BHK interpretation which had been raised by Gödel. This
problem can be understood to arise in two stages. First note that the BHK clauses
initially appear to provide a characterization of the relation “p is a proof of A” in
terms of the logical form of A, an observation which might in turn be taken to provide
an implicit definition of the class of constructive proofs to which the interpretation
refers. But on the other hand, note that the BHK clauses themselves cannot be taken
as constituting a proper inductive definition of such a class in virtue of the fact that
the clauses (P→), (P¬), and (P∀) contain quantifiers which are intended to range over
the class of all constructive proofs, potentially inclusive of those which figure in the
proof conditions of yet more complex formulas.

We will refer to this prima facie objection to the BHK interpretation as the problem
of impredicativity. Gödel remarked on this aspect of the interpretation already in
the following passage from a 1933 lecture in which he is attempting to compare
the relative merits of Hilbert’s finitism (as codified by the system he calls A) and
intuitionism as foundational frameworks for formulating mathematical consistency
proofs:

So Heyting’s axioms concerning absurdity and similar notions differ from the system A only
by the fact that the substrate on which the consequences are carried out are proofs instead
of numbers or other enumerable sets of mathematical objects. But by this very fact they
do violate the principle, which I stated before, that the word “any” can be applied only to
those totalities for which we have a finite procedure for generating all their elements. For the
totality of all possible proofs certainly does not possess this character, and nevertheless the
word “any” is applied to this totality in Heyting’s axioms, as you can see from the example
which I mentioned before, which reads: “Given any proof for a proposition p, you can
construct a reductio ad absurdum for the proposition ¬p”. Totalities whose elements cannot
be generated by a well-defined procedure are in some sense vague and indefinite as to their
borders. And this objection applied particularly to the totality of intuitionistic proofs because
of the vagueness of the notion of constructivity [13, p. 53].

Gödel can be understood as flagging three points which have played a substantial
role in guiding the subsequent understanding of the BHK interpretation: (1) a crucial
difference between finitism and intuitionism is that, unlike finitists, intuitionists do
not reject the meaningfulness of unrestricted quantification over a potentially infinite
domain; (2) the class of constructive proofs form such a totality; but (3) this class
should not be regarded as inductively generated in virtue of the occurrence of the
universal quantifier over proofs in (e.g.) the clause (P¬).
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The first point is stressed by Weinstein [49] in the course of suggesting how the
Theory of Constructions might play a role in how an intuitionist ought to reply to
Benacerraf’s [4] dilemma in philosophy of mathematics. One horn of the dilemma
alleges that a “combinatorial” theorist (i.e. one who attempts to identify truth and
provability in the characteristic manner of both intuitionism and formalism) will be
unable to provide a semantical account of mathematical language which is continu-
ous with the standard referential semantics which we may wish to give for natural
language as a whole. But in addition to this, Benacerraf also argues that Hilbert’s
development of finitism has the added disadvantage of needing to provide distinct
accounts of finitary (i.e. “real”) and infinitary (i.e. “ideal”) mathematics.

It is in this regard that Weinstein suggests that intuitionism may have an advantage
over finitism in the sense that the BHK clauses can be understood as providing a
uniform semantic account applicable to both real and ideal mathematical statements.
As he stresses in the following passage, however, this advantage can only be claimed
if it is ensured that the proof relation is decidable:

Proofs, for the intuitionist, are not to be equated with formal proofs, that is with some kind
of finite quasi-perceptual objects, and, more to the point, decidable properties of proofs
may involve considerations about the intuitive content of these mathematical constructions.
Hence, it is precisely by admitting as meaningful the notion of a decidable property hold-
ing for arbitrary mathematical constructions that intuitionists achieve an interpretation of
those sentences which are from Hilbert’s point of view devoid of intuitive content. And, for
intuitionists, to admit this notion as meaningful is to claim that statements asserting that
decidable properties of mathematical constructions hold universally have tolerably clear
proof conditions. Thus, by enlarging the contentual portion of mathematics to include uni-
versal decidable statements which are not finitary the intuitionists achieve an interpretation
of mathematical statements of arbitrary logical complexity [49, p. 268].

Weinstein goes on to explain the connection between the decidability of the proof
relation and the attribution of content to mathematical statements as follows:

[I]ntuitionists identify the truth of a mathematical statement, A, with our possession of a
construction, c, which is a proof of the statement A. This latter statement, that the construction
c is a proof of A, involves no logical operations and is moreover the application [of] a
decidable property to a given mathematical construction. Hence, this statement does not
itself require a non-standard semantical interpretation and, it is hoped, can be understood
along the lines of statements like “The liberty bell is made out of brass” [. . . ] The idea is just
that the intended intuitionistic interpretation of a mathematical language reduces the truth
of any sentence of that language to the truth of an atomic sentence which is the application
of a decidable predicate to a term and this latter sentence can be understood as having an
ordinary referential interpretation [49, pp. 268–269].

Although we will see below that the decidability of the proof relation has occasion-
ally been disputed, these passages make clear why it has traditionally been thought to
play a crucial role in ensuring that the BHK clauses are compatible with the general
goal of explaining how truth can be understood in terms of constructive provability.
To see how this is related to Gödel’s second and third points about how the class of
constructive proofs may be characterized, note that if we assume that the proof rela-
tion itself is decidable, then the clauses (P→), (P¬), and (P∀) are all analogous in form
to Π0

1 statements in the language of arithmetic—i.e. they begin with an unrestricted
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universal quantifier over proofs applied to a decidable matrix.2 As such statements
are not in general decidable in the technical sense of computability theory, it seems
that there is reason to worry that they do not satisfy Weinstein’s criteria of having
“tolerably clear proof conditions” even when understood informally.

It is now only a small step which must be taken to justify the use of the term
“impredicativity” to label the problem which was described by Gödel. For as Kreisel
later observed

[I]t is one of the peculiarities of constructive logic that, for some A, a natural formal proof
of A goes via proofs of A → B and (A → B) → A: such a proof of A actually contains a
proof of A → B [27, p. 58].

Although Kreisel formulates this point for formal proofs, there seems to be no a priori
reason to suspect that the same comment should not apply to the pre-theoretical notion
of constructive proof which the BHK interpretation seeks to characterize. And if this
is indeed the case—i.e. that there exist formulas A which are demonstrable by proofs
which may contain sub-demonstrations of formulas which contain A itself—then it
seems that the quantifier over constructive proofs occurring in (e.g.) (P→) must be
understood as ranging over a totality to which it itself belongs.

A variety of other commentators have also used terms like “circular” or “impred-
icative” to describe either the BHK clauses or the status of implication in intuitionistic
logic more generally.3 As we will see below, it appears that Kreisel added the second
clause to the formulations of (P→), (P¬), and (P∀) precisely to avoid such charges and
thereby also to provide a characterization of the proof relation which could plausibly
be regarded as decidable. What remains to be seen is whether his attempt should be
regarded as successful and also whether the various latter day critiques which have
been directed towards the second clause also undermine the rationale for adopting
the Theory of Constructions itself.

3 The Theory of Constructions and the Second Clause

Without further ado, we now present Kreisel’s proposed modification of (P→):

(P2→) A proof of A → B consists of a construction that transforms any proof of
A into a proof of B together with a proof that this construction satisfies the
desired property.

The italicized material represents what is customarily referred to as the “second-
clause”—i.e. the requirement that a constructive proof q of a conditional A → B is

2It might also be objected that the explanation of implication given by (P→) is circular because it
employs the conditional “if p is a proof of A, then f (p) is a proof of B” on its righthand side.
Note, however, that if it can be maintained that the proof relation is decidable, then it can also be
maintained that it is permissible to interpret this conditional truth functionally.
3E.g. Gentzen [11, p. 167], Goodman [16, p. 7], Troelstra [45, p. 210], Dummett [7, Sect. 7.2],
Fletcher [10, p. 81], and Tait [41, p. 221].
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not just a construction transforming arbitrary proofs of A into proofs of B in the sense
of the original clause (P→) but rather a pair 〈p, q〉 consisting of such a construction
together with another proof p which demonstrates that q has this property. The
second-clause variants are formed by adding similar clauses to (P¬) and (P∀).

Such a reformulation of BHK—which we henceforth refer to as the BHK2 inter-
pretation—was stated for the first time by Kreisel [25, p. 205] and again in [26,
p. 128]. In both instances, Kreisel used the formal language of the Theory of Con-
structions to formulate (P2→). But although both of these treatments appear to have
been informed by Heyting’s [21] mature exposition of the original interpretation, in
neither instance does Kreisel motivate the second clause directly nor does he flag
that he is intending to either refine or depart from Heyting’s original intentions.

These observations notwithstanding, the initial reception of the second clause
appears to have been positive—e.g. second clauses are included in both Troelstra
[43, p. 5] and van Dalen’s [48, p. 24] surveys of intuitionistic logic (again without
additional historical comment). But as we will discuss further below, by the early
to mid-1980s the consensus appears to have shifted to the view that not only should
the second clause not be included in the canonical formulation of BHK, but also that
its very formulation rested on dubious assumptions about the nature of constructive
proof.4

One of our goals below will be to better understand what underlies this shift in
opinion about the second clause. Although subsequent commentators have typically
followed Troelstra and van Dalen in formulating (P2→) informally, we will suggest
below that its status is bound up not only with the issues of impredicativity and
decidability discussed in the prior section, but also with certain details about how
(P2→) should be formalized within the Theory of Constructions itself. Before turning
to such considerations, it will thus be useful to consider both the formulation of the
theory and how it may be used to formalize the BHK2 interpretation.

3.1 An Overview of the Theory of Constructions

Versions of the Theory of Constructions were presented by Kreisel [25, 26], and
Goodman [16–18]. The details of the notation and formal systems formulated in
these papers differ in several respects. Our goal here will thus not be to present a
systematic exposition of the different formalisms proposed by Kreisel and Goodman,
nor even to provide a complete formulation of any one of them. Rather we shall simply
attempt to set down some of the common characteristics of these systems with the
dual goals of explaining how Kreisel and Goodman proposed to use the language
of the Theory of Constructions to formalize Kreisel’s reformulation of the BHK

4This shift in opinions is illustrated by the fact that while when Troelstra [44] originally coined the
acronym “BHK”, the “K” was taken to stand for Kreisel, this convention is modified by Troelstra
and van Dalen [46] who take the “K” to stand for Kolmogorov.
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clauses and also to be able to reconstruct as closely as possible the reasoning of the
Kreisel-Goodman paradox.

In so doing, we will adhere as closely as possible to the notation and terminology
of the unstratified (or “naive”) theory (which we will henceforth refer to as T )
which is sketched by Goodman [17] in the course of expositing the paradox. (This
system should be understood in contradistinction to the stratified theory T ω which
Goodman officially adopts.5) Before offering a formal description of T , however, it
will be useful for orientation to record several of its features which are remarked on
by Sundholm [39]:

(I) The system T treats proofs as constructions s, t, u, . . ., which themselves are
understood as mathematical objects whose properties the theory attempts to
axiomatize.

(II) Using the theory it is possible to define a decidable predicate Π(A, s) with the
intended interpretation “construction s proves proposition A”.

(III) Statements of the latter form are themselves treated by the theory as proposi-
tions which may themselves admit to proof. In particular, it is possible within
the theory to formulate statements such as Π(Π(A, s), t) (i.e. “construction t
proves that construction s is a proof of A”).

It would appear that the ability to iterate the application of the predicate Π(A, s)
is necessary if we are to formalize clauses such as (P2→). But note that if this is
allowed, it must also be acknowledged that the constructions must play a dual role
in T —e.g. if 〈p, q〉 is a pair satisfying the proof conditions of A → B per (P2→),
then q is understood as a process (i.e. a method for transforming proofs of A into
proofs of B), while q is regarded as an object (i.e. a completed proof that q has
the required property). Sundholm [39, pp. 164–167] suggests that these two notions
must be carefully distinguished if we are to develop a theory of constructions which
is faithful to Heyting’s original interpretation of the connectives. He also suggests
(at least implicitly) that Kreisel may have conflated them in his own formulations of
T . But although this concern might be taken to call for reconsideration of the theory
on historical grounds, the perspective which we will adopt here is that the specific
proposals of Kreisel and Goodman are of interest in their own right.

3.1.1 The Language of T

Described in general terms,T is an equational term calculus with pairing, projection,
and lambda abstraction operators, application, as well as various other primitive terms

5Goodman’s dissertation [16] provides the most comprehensive exposition of T ω, inclusive of the
interpretation of intuitionistic first-order logic, Heyting arithmetic, and accompanying consistency
and faithfulness proofs. But whereas in [16] the Kreisel-Goodman paradox is presented informally,
[17] contains a more detailed derivation in theory (similar or identical to what we will call T +)
which is similar to the “starred” variant originally described by Kreisel [25]. We will discuss these
systems in greater detail in the context of evaluating Goodman and Kreisel’s response to the paradox
in Sect. 5.
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and predicates (which are formalized as boolean-valued terms). The terms of the the-
ory are intended to denote “constructions” which can be understood simultaneously
as either proofs or operations on proofs—i.e. what the theory seeks to axiomatize
is a notion of “self-applicable” proof. The distinctive feature of all versions of the
Theory of Constructions is the inclusion of a proof operator π whose intended role
can be most readily described as that of axiomatically mimicking certain properties
of a traditional proof predicate ProofT(x, y) for an arithmetical theory T (such as
Peano or Heyting arithmetic).

More formally, the class of terms of T is defined by the grammar

t : : = x | 
 | ⊥ | 〈D(t t)〉 | 〈D1(t)〉 | 〈D2(t)〉 | 〈λx .t〉 | 〈t t〉 | 〈π t t〉

where x, y, z, . . . are variables, 
 and ⊥ are intended to denote the truth values true
and false, D(st) is intended to denote the pair 〈s, t〉, Di (t) is intended to denote the
first (i = 1) or second (i = 2) member of t if t is a pair and is undefined otherwise,
and λx .t (i.e. abstraction) and st (i.e. application) are defined as usual in the untyped
lambda calculus. The formulas of T are equations of the form s ≡ t . Note, however,
that implicit in Goodman’s [17] (and previously Kreisel’s [25]) decision to base the
Theory of Constructions on the untyped lambda calculus is that terms of the theory
may be undefined. The relation ≡ is thus intended to denote a notion of intensional
identity between terms—i.e. s ≡ t is intended to hold just in case s and t are both
defined and reduce to the same normal form under β-conversion.

3.1.2 The Axiomatization of T

Goodman’s axiomatization of T is based on a single conclusion sequent calculus
relative to which Δ �T s ≡ t is assigned the intended interpretation “if all the
equations in Δ hold, then s ≡ t”. The structural rules of the system include weakening
and cut. Additionally, equality axioms for ≡ (e.g. �T s ≡ s) as well as axioms
governing the pairing operators (e.g. �T Di (Ds1s2) ≡ si ) are adopted. We will
assume that lambda terms are axiomatized by the formal theory λβ of [22, p. 70].6

The most significant axioms of T are those pertaining to the binary operator π .
Goodman [17, p. 107] describes the intended interpretation of this symbol as follows:

πst ≡ 
if and only if t is a proof that for all x, sx ≡ 


6The systems of [16, 17] do not officially have the abstraction operator in their language, but rather
the traditional combinators S and K which may be used to mimic lambda abstracti on—e.g. in the
manner described in [22, Sect. 2.2]. But as Goodman makes free use of λ-notation throughout both of
his expositions (apparently via such an abbreviation), it will be here simpler to assume that the system
includes λβ instead of the rules which Goodman takes to axiomatize the combinators. Until Sect. 5,
we will also suppress discussion of a number of other primitive notions and their corresponding
axioms pertaining to the treatment of so-called “grasped domains” which are introduced in the
formulation of T ω.
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Thus an equation of the form of the πst ≡ 
 is intended to express that t is a
construction which serves as a proof of the fact that for all x the term sx reduces to
the value 
.7 One of the rules which is assumed to hold of π is intended to express
that the proof relation described in Sect. 2 is decidable. This is achieved as follows:

(Dec)
Δ,πuv ≡ ⊥ �T s ≡ t Δ,πuv ≡ 
 �T s ≡ t

Δ �T s ≡ t

The other principle which is assumed to hold of π is a form of reflection principle
stating that if the proof relation holds between s and t then sx is true:

(ExpRfn) πst ≡ 
 �T sx ≡ 
.

As both Dec and ExpRfn play a role in the derivation of the Kreisel-Goodman
paradox, it will be useful to say something additional both about their motivation and
also their formulation in the Theory of Constructions. As we have observed in Sect. 2,
the decidability of the proof relation appears to have a strong pre-theoretical basis
in the intuitionists’ desire to view the BHK clauses as providing a decidable proof
condition for formulas of arbitrary logical complexity. Although T does not contain
any primitive relation symbols itself, a term α can be understood as expressing a
binary relation just in case for all pairs of terms s, t , if αst is defined, then αst ≡ 

or αst ≡ ⊥ may be derived in the theory. The decidability of such a relation α may
then be expressed by stating that αst is defined for all pairs of terms s, t—i.e. that
α is bivalent.8 This is what is formulated proof theoretically by the rule Dec in the
case of the term π—i.e. in order to exclude the “third” case that πuv is undefined,
we stipulate that it is sufficient to conclude s ≡ t from Δ if this equation is derivable
from both the hypotheses Δ,πuv ≡ 
 and also Δ,πuv ≡ ⊥.

ExpRfn is a form of what we will call an explicit reflection principle (cf. [1])—
i.e. an expression of the fact that if the proof relation holds between a constructive
proof p and a formula A, then we can conclude that A is true. Kreisel [25, p. 204]
remarks of such a principle that it is “obvious on the intended interpretation” of π . In
the arithmetical case, we would typically express this using a conditional statement
of the form ProofT(n, �φ�) → φ, all of whose instances are both valid in the
standard model and provable in even weak arithmetical systems T.9 But since the
Theory of Constructions does not contain a sign for implication in its object language,
this is expressed in T by the rule ExpRfn which allows us to conclude sx ≡ 


7Relative to this interpretation, πst can be understood as expressing the characteristic function of
the assertion that s is a proof of the universal closure of the logical formula which s interprets. In
the sequel, however, s will most often be closed. And thus it will often be possible to understand
πst as simply expressing that t is a proof of the formula interpreted by s.
8Note that by analogy with the arithmetical case, we will typically have T � ProofT(n, �φ�) ∨
¬ProofT(n, �φ�) in virtue of the fact that ProofT(x, y) is standardly defined to be a Δ0

1 arith-
metical formula. This observation about the derivable properties of ProofT(x, y) appears to have
been an important part of Kreisel’s motivation for insisting upon the decidability of π in the Theory
of Constructions—a feature which he famously justified by observing that “we recognize a proof
of an assertion when we see one” [26, p. 124]. (See [39] for additional discussion of this point.).
9We will return in Sect. 5.4 to compare ExpRfn to the better known “implicit” reflection principle
∃xProofT(x, �φ�) → φ.
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for all x from the premise πst ≡ 
. As Goodman [17, p. 106] observes, in this
sense the derivability relation �T should itself be interpreted as expressing a form
of intuitionistic implication.

3.1.3 Formalizing the BHK Interpretation in T

Recall that Kreisel’s original goal in introducing the Theory of Constructions was to
formulate a formal system which could play a role analogous to Tarski’s definition
of truth for Heyting Predicate Calculus (HPC). In order to see how this might be
achieved, it is useful to note that at least at an informal level, the BHK clauses can be
understood as serving a role analogous to the clauses in Tarski’s definition of truth in
a model—i.e. that of providing a characterization of “constructive validity” relative
to which it might be hoped that a logical system such as HPC could be shown to
be sound and complete in the same sense that the Classical Predicate Calculus CPC
is sound and complete with respect to classical validity (i.e. truth in all Tarskian
models).

But before investigating how Kreisel and Goodman proposed to interpret the
BHK2 clauses in the language of T , it is useful to first remark upon one important
sense in which these clauses differ from those of Tarski. For note that on the one hand
what occurs on the righthand side of one of the Tarski clauses is a proposition stating
in the language of set theory what must be true in order for a formula A(

−→x ) to be true
in a model A relative to an assignment v of values to variables −→x . But what occurs
on the righthand side of the BHK (and BHK2) clauses are not propositions but rather
conditions stating the circumstances under which a certain object is to be regarded
as a proof of A(

−→x ) (relative to an assignment of vales to the free variables −→x ).
Thus whereas the formalization of the Tarskian satisfaction relation A |=v A(

−→x )

yields a sentence which can be formalized in the language of set theory, we should
expect the formalization of the BHK clauses to yield a predicate—which Kreisel
[25] symbolizes as Π(A(

−→x ), s)—which is intended to hold of a proof s just in case
it is a proof of a formula A(

−→x ).
Kreisel and Goodman’s formalizations of the BHK clauses thus can be understood

as attempting to provide a definition of Π(A(
−→x ), s) which were intended to serve

the role of providing a formalization of the proof relation as defined above. In order
to understand the general form which their definitions took, note first that as with
the analogous Tarski clauses, the BHK clauses (as well as their BHK2 counterparts)
employ logical connectives on their righthand sides—e.g. the clause (P→) states that
p is a proof of A → B just in case for all proofs x , if x is a proof of A, then
p(x) (i.e. the result of applying p to x) is a proof of B. In addition to the problem
of impredicativity discussed in Sect. 2, there is also another apparent obstacle in
rendering the conditional if . . . then appearing in this clause as a term in the “logic
free” language of T .

Kreisel and Goodman proposed to circumvent this problem by taking advantage
of the following observations: (1) it is intuitionistically admissible to apply classical
propositional logic to decidable statements; (2) if the truth values 
 and ⊥ are taken
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as abbreviating particular λ-terms, it is possible to define bivalent λ-terms ∩k,∪k ,
and ⊃k which mimic the classical truth functional connectives ∧, ∨, and → applied
to binary terms with k free variables10; (3) the application of these terms to terms of
the form Π(A(

−→x ), s) will always yield a term which is defined as long as it can be
ensured that Π(A(

−→x ), s) is itself defined so that it is bivalent.
Taking these observations into account, we can now formulate Kreisel’s [25]

definition of Π(A, s) (where we assume that the free variables of A and B are
contained in −→x of arity k) in the language of T as follows11:

(K∧) Π(A ∧ B, s) := λ
−→x .(Π(A, D1s) ∩k Π(B, D2s))

(K∨) Π(A ∨ B, s) := λ
−→x .(Π(A, D1s) ∪k Π(B, D2s))

(K→) Π(A → B, s) := λ
−→x .π(λy.(Π(A, y) ⊃k Π(B, (D2s)y)), D1s)

(K¬) Π(¬A, s) := λ
−→x .π(λy.(Π(A, y) ⊃k Π(⊥, (D2s)y)), D1s)

(K∀) Π(∀z A(z), s) := λ
−→x .π(λy.Π(A[y/z], (D2s)y), D1s)

(K∃) Π(∃z A(z), s) := λ
−→x .Π(A[(D1s)/z], D2s)

Note that these clauses provide a straightforward expression of the clauses of the
BHK2 interpretation—e.g. (P2→) is formalized by requiring that Π(A → B, s) holds
just in case s is a pair such that D1s is a proof that D2s has the property of being
such that if Π(A, y), then Π(B, (D2s)y)). But since (K→), (K¬), and (K∀) are all
of the form πst , Kreisel’s clauses can be understood as defining Π(A, s) in terms of
πxy in such a way that the decidability of the primitive proof relation is transferred
inductively to the complex proof relation.

3.1.4 Soundness, Completeness, and Internalization

The foregoing clauses can thus be understood as providing a means of interpreting the
language of HPC into the language of T so as to provide an analysis of Π(A, s) as
characterized informally by the BHK2 clauses. The next question we must consider
is how this interpretation comports with the intuitionists’ desire to identify truth and
constructive provability. But needless to say, this question is complicated at least to
the extent that it is traditionally maintained that “constructive provability” must be
distinguished from “provable in a given formal system”.

10For instance if we take 
 =df λxy.x and ⊥ =df λxy.y (cf. [2]), then we may define ⊃1 to be
λxyz.xzy(λw.
)z.
11Goodman [16, 17] provides a related interpretation of the BHK clauses in the language of the
stratified theory T ω. However, relative to his interpretation, the variable y in (K→), (K¬), and
(K∀) is asserted to range over proofs of a lower “level” than that of the proof D1s (see Sect. 5.2).
Kreisel and Goodman also handle the case of atomic formulas differently. On the one hand, Kreisel
introduced primitive terms into the language to serve as constructions which act as the characteristic
functions of non-logical predicates, which are then individually asserted to be decidable. On the
other hand, Goodman considers only the language of primitive recursive arithmetic, wherein all
atomic statements are equations of the form f1(

−→x ) = f2(
−→x ). True equations of this form are

asserted to fall under the decidable equality predicate Q which he introduces as another primitive
to the language of T ω.
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One might think that this entails that the related notion of “constructive validity”
which we might hope to characterize using a system in which the BHK clauses can
be interpreted must be distinguished from “valid with respect to a particular form
of formal semantics”.12 Nonetheless, Kreisel and Goodman both appear to have
viewed the Theory of Constructions as providing an “informally rigorous” analysis
of constructive validity. In particular, both present versions of the following result for
the systems described in [25, 26], and [17] (wherein T ∗ is the relevant formulation
of the Theory of Constructions):

(Val) For all formulas A in the language of HPC, �HPC A if and only if there
exists a term s such that �T ∗ Π(A, s) ≡ 
.

The left-to-right direction of Val can be taken to express a form of soundness
for Kreisel’s interpretation of HPC into T ∗—i.e. if A is derivable from what are
normally regarded as intuitionistically valid principles of reasoning, then A is indeed
“constructively valid” in the sense that there is some construction which witnesses
its derivability. Conversely, the right-to-left direction of Val can be taken to express
a form of completeness (also known as faithfulness) of the interpretation—i.e. if A is
“constructively valid” in the sense that Π(A, s) holds for some construction s, then
A is in fact derivable from intuitionistically valid principles.13

Although both Kreisel and Goodman announced versions of these results, the
situation surrounding their claims is complicated by several factors which we will
not consider in detail here.14 For what is more germane to our immediate concerns
is not whether any particular variant of the Theory of Constructions satisfies Val,
but rather whether such systems satisfy what can be understood as a generalized
form of soundness which we will refer to as internalization. Note that if we are able
to demonstrate the left-to-right direction of Val (say by induction on the length of
proofs in HPC), then it also seems reasonable to suppose that we ought to be able
to do this for all derivations carried out in T itself.15 This would suggest that the
Theory of Constructions ought to satisfy a principle of the following form:

(Int) If �T + s ≡ 
, then there exists a term c such that �T + πsc ≡ 
.

Here c might either be taken as a new constant or as a complex term which is built
up according to the structure of the derivation of s ≡ 
. (Although we will return to
discuss this issue in Sect. 5.5, for the moment we will assume the former interpretation

12For discussion of the intuitive notion of constructive validity and its relationship to various formal
semantics for intuitionistic logic, see (e.g.) Scott [37], Dummett [7, chap. 5], and McCarty [32].
13Compare Scott [37, p. 256]: “The reason that A is intuitionistically (constructively, if you prefer)
valid is that there is a specific term τ […] such that the assertion � τ ∈ A is provable in the theory
of constructions.”.
14For instance, although Kreisel states versions of the completeness and faithfulness results ([25,
p. 205] and [26, Sect. 2.311]), in neither case are proofs given. And although Goodman [16] contains
complete proofs of both directions, the interpreting theory in his case is notT , but rather the stratified
theory T ω.
15In fact, this is exactly how the soundness proof for HPC given by Goodman [16, Sect. 11–15] for
T ω proceeds.
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so as to maintain conformity with the way in which Kreisel and Goodman handle
internalization.)

3.2 The Kreisel-Goodman Paradox

Although Kreisel [25] sketched a means by which one version of the Theory of
Constructions could be shown to be consistent relative to Heyting arithmetic, he also
observed that a carelessly formulated version of the theory (e.g. the “starred” theory
of [25]) might turn out to be inconsistent. Although he does not explicitly describe
what form such an inconsistency might take, in retrospect it is not difficult to see that
the intended interpretation of π makes the issue of consistency of a system such as
T or T + a significant cause for concern.

To better appreciate why this is so, it is useful to begin by considering the following
paradox pertaining to the notion of informal (or “absolute”) provability. Suppose
that we elect to express this notion by a predicate P(x) of sentences. Additionally
suppose that T is a mathematical theory which we have adopted for reasoning about
the properties of P(x) and that �·� is a device which allows us to name sentences
in LT (such as Gödel numbering). In order to support such a mechanism, it seems
reasonable to assume that T will contain Robinson arithmetic Q (either directly or
by interpretation). And from this it will follow that T will also be able to prove the
existence of self-referential statements about the predicate P(x) via the appropriate
analog of Gödel’s Diagonal Lemma.

Now consider the following two intuitively correct principles pertaining to infor-
mal provability:

(RfnP) If A is informally provable, then it is true—i.e. P(�A�) → A.

(IntP) If we can derive A, then A is informally provable—i.e. � A ∴ � P(�A�).

It is now easy to see that the theory T+ obtained by adjoining all instances of RfnP to
T and closing under the rule IntP is inconsistent. For by the Diagonal Lemma, let D be
a sentence such that (1) T+ � D ↔ ¬P(�D�). Now since (2) T+ � P(�D�) → D
byRfnP, we have by (1) that (3) T+ � ¬P(�D�). But again by (1), we then also have
(4) T+ � D. It thus follows by IntP that (5) T+ � P(�D�), yielding a contradiction
with (3).

The observation that an arithmetical theory which extends Q, derives all instances
of RfnP, and is closed under IntP is inconsistent has come to be known as Mon-
tague’s paradox.16 Weinstein [49] subsequently suggested that the Kreisel-Goodman
paradox can be understood as a translation of this result into the language of the The-
ory of Constructions. Goodman offers two expositions of the paradox—an informal

16The inconsistency of such a system appears to have first been observed by Myhill [34] in the
context of an axiomatic investigation of the notion of informal provability. It was then rediscovered
by Montague [33], who presents it as a simplification of the so-called Paradox of the Knower as
originally formulated in [23]. For more on the history of these results see [5, 6].
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one in [16], and a semi-formal one in a system similar to the theory T + which is
described in the introductory sections of [17]. We quote the former in full:

The most natural formalization of the conception [of constructive proof] we have outlined
so far is inconsistent. It suffices to construct, using π , a function f such that f (x) = 0 if
and only if x(x) is a proof that no y proves that f (x) = 0. Now suppose that y proves that
f (x) = 0. Then f (x) = 0, and so no y proves that f (x) = 0. This contradiction, together
with the decidability of the proof predicate, shows that no y can prove that f (x) = 0.
Therefore there must be a function g such that, for any x , g(x) proves that no y proves that
f (x) = 0. In particular, g(g) proves that no y proves that f (g) = 0. That is, f (g) = 0.
Hence there is a proof that f (g) = 0, which is absurd [16, p. 5].

The foregoing passage provides the most complete informal description of the
antinomy which subsequent authors have repeatedly associated with the Theory of
Constructions. It should be borne in mind, however, that Goodman discusses the
paradox before providing his “official” formulation of the theory T ω (which he then
proceeds to show consistent in a manner we will discuss further in Sect. 5.2). The
Kreisel-Goodman paradox thus should not be understood to correspond to a formal
contradiction derivable within any of the variants of the Theory of Constructions
which were adopted by Kreisel or Goodman themselves. Nonetheless, it will be useful
for our current purposes to consider how the reasoning which Goodman describes
can be mimicked in the theory T + of Sect. 3.1.

As an initial step, we reconstruct the reasoning described in the prior passage in
first-order logic by taking the binary predicate R(A, p) to express the proof relation
(i.e. “p is a proof of A”), which we will assume satisfies appropriate analogs of Dec,
ExpRfn, and Int.17 Goodman suggests that it is possible to define a function f (x)

(which itself should be thought of as a construction) satisfying the equation

(1′) � f (x) = 0 ↔ R(∀y¬R( f (x) = 0, y), x(x))

Thus the proposition expressed by f (x) = 0 can be understood to express something
akin to what is expressed by the sentence D constructed in step (1) of the derivation
of Montague’s paradox—i.e. that f (x) = 0 is true just in case x(x) is a proof that this
statement itself is not provable. Next suppose that we have the following instance of
the explicit reflection principle ExpRfn for R(A, p)

(2′) R( f (x) = 0, y) � f (x) = 0

But then note that by (1′) and modus ponens we also have

(2′′) R( f (x) = 0, y) � R(∀y¬R( f (x) = 0, y), x(x))

Thus by ExpRfn again and universal instantiation we have

(2′′′) R( f (x) = 0, y) � ¬R( f (x) = 0, y)

17To simplify notation we will treat R(A, p) as a two-sorted relation which holds between sentences
in a first-order language and a class of terms which are understood to denote proofs. It is, nonetheless,
straightforward to see that the derivation (1′)–(5′) can be further formalized by treating R(x, y) as
a primitive formula which is adjoined to an arithmetical theory such as Q for which an appropriate
Gödel numbering of sentences and proofs is available. In this case, the existence of a formula defining
the function f (x) in Eq. (1′) is guaranteed by an appropriate generalization of the Diagonal Lemma.
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If we now assume that R(A, p) is a decidable relation, then by an analog of the rule
Dec we may conclude

(3′) � ¬R( f (x) = 0, y)

from (2′′′). This in turn can be understood to correspond to the intermediate conclu-
sion (3) ¬P(�D�) in the derivation of Montague’s paradox.

But now note that since y was arbitrary in the foregoing reasoning, we should
additionally be able to conclude by universal generalization that

(3′′) � ∀y¬R( f (x) = 0, y)

Noting that the foregoing reasoning is also uniform in the variable x , we also ought
to be able to internalize it in a manner analogous to Int. Doing so yields the existence
of a function g(x) such that

(3′′′) � R(∀y¬R( f (x) = 0, y), g(x))

By substituting g for x in (3′′′) we obtain � R(∀y¬R( f (g) = 0, y), g(g)). But then
again taking x = g in (1′) and applying modus ponens yields

(4′) � f (g) = 0

which can be seen as analogous to step (4) in the derivation of Montague’s paradox.
Internalizing this reasoning again leads to the existence of another construction h
such that

(5′) � R( f (g) = 0, h)

But now instantiating y by h in (3′′) finally yields � ¬R( f (g) = 0, h), and thus a
contradiction with (5′).

Although we have not precisely specified the system in which the foregoing deriva-
tion is carried out, it is evident that it must satisfy a number of features. First, it must be
capable of demonstrating the existence of an appropriate “self-referential” construc-
tion f (x) as appears in (1′). Second, it must treat constructions as “self-applicable” in
the sense that it makes sense to apply a construction like f (x) to another construction
g(x). Third, the proof relation R(A, p) must be understood to satisfy the analogs of
ExpRfn and Dec18 which are employed at steps (2′), (2′′), and (3′). Fourth, it must
support the sort of first-order reasoning which stands behind the use of universal
generalization and instantiation employed at steps (3′′), (4′), and (5′). And fifth, it
must also support the use of an appropriate analog to Int applicable to reasoning
mediated by all of the prior forms of reasoning about the proof relation.

Although the system T which we sketched in Sect. 3.1 is designed so as to satisfy
the second and third of these conditions, it is not clear whether it satisfies the first,
fourth, or fifth. This complicates the task of interpreting the more formal derivation
of the paradox described by Goodman [17, Sect. 9] which appears to be an attempt

18The rule in question applied at step (3′) takes the form R(A, p) � ¬R(A, p) ∴ � ¬R(A, p).
Note, however, that this does not represent an additional assumption in the current setting as long
as we assume that the system in which we are reasoning contains intuitionistic propositional logic.
For in this case, the appeal to Dec can be replaced by the derivability of (B → ¬B) → ¬B.
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to regiment the prior reasoning in a formal system similar to T . Note, however, that
although this system itself does not directly contain the Diagonal Lemma, it is still
sufficient for demonstrating the existence of self-referential statements by another
means.

For recall that we have defined T so that it includes the untyped lambda calculus
in the form of the equational theory λβ (see note 6). Over this theory it is possible
to define so-called fixed-point combinators—i.e. lambda-terms Z such that for any
term x , �λβ Z x ≡ x(Z x). A well known example of such a term is the so-called
Curry combinator Y =df λ f.(λx . f (xx))(λx . f (xx)). Goodman [17] observed that
it is possible to use a similar fixed-point combinator in conjunction with the term π

so as to obtain a term t (x) which can be understood to express that x is not a proof of
this term itself. He then proceeds to describe a derivation which can be understood as
a “free-variable” variant of (1′)–(5′), in which it is again assumed that an appropriate
internalization principle is available. What we present here is a simplication of this
derivation which employs the combinator Y itself.

First note that although we would naturally formulate the proposition expressed
by “x does not prove y” in the language of T as the equation πyx ≡ ⊥, it can
also be expressed as a term h(y, x) =df λy.λx .(πyx ⊃1 ⊥). If we now apply
the Y combinator to h(y, x) we get a term Y (h(y, x)) with only x free such that
�T Y (h(y, x)) ≡ h(Y (h(y, x)), x). We may now reason in T as follows19:

(i) �T Y (h(y, x)) ≡ h(Y (h(y, x)), x) defn. of Y
(ii) π(Y (h(y, x)))x ≡ 
�T Y (h(y, x)) ≡ 
 ExpRef
(iii) π(Y (h(y, x)))x ≡ 
�T h(Y (h(y, x)), x) ≡ 
 (i), transitivity of ≡
(iv) π(Y (h(y, x)))x ≡ 
�T (π(Y (h(y, x)))x ⊃1 ⊥) ≡ 
 defn. of h(y, x)

(v) π(Y (h(y, x)))x ≡ 
�T ⊥ ≡ 
 defn. ⊃1

(vi) �T π(Y (h(y, x)))x ≡ ⊥ Dec
(vii) �T (π(Y (h(y, x)))x ⊃1 ⊥) ≡ 
 defn. ⊃1

(viii) �T h(Y (h(y, x)), x) ≡ 
 defn. h(y, x)

(ix) �T Y (h(y, x)) ≡ 
 (i), transitivity of ≡
This derivation—which up to this point may be carried out in the system T as

presented above—can again be roughly aligned with steps (1)–(4) in the derivation
of Montague’s paradox—e.g. the use of ExpRfn at step (ii) in the former aligns with
the use of RefP at step (2) in the latter, step (vi) of the former corresponds to step
(3) in the latter, etc. In order to continue the derivation, however, we need to assume
that we are working over a system T + which satisfies the principle Int. We may
now continue the derivation as follows20:

19At step (v) we use the rule Δ,πuv ≡ 
 �T ⊥ ≡ 
 ∴ Δ �T πuv ≡ ⊥ which can be derived
from Dec and the cut rule in T .
20The step analogous to (xi) in Goodman’s own presentation of the paradox is (5) on p. 108 of [17].
At this point he simply writes that the relevant internalizing term “must exist” without providing
any further explanation. Note also that his system includes a substitution rule of the form Δ � u ≡
v ∴ s ≡ s,Δ[s/x] � u[s/x] ≡ v[s/x] where the extra premise s ≡ s serves to ensure the term s
is defined. Hence to bring step xi) into better conformity with Goodman’s system, we should also
include axioms c ≡ c for the new “internalizing constants”.
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(x) �T + π(Y (h(y, x)))c ≡ 
 Int for some new constant c
(xi) �T + π(Y (h(y, x)))c ≡ ⊥ substituting c for x in vi)
(xii) �T + 
 ≡ ⊥ (x), (xi), transitivity of ≡

Finally, we observe that it follows that the derivability of 
 ≡ ⊥ from no premises
in T + entails that all equations are derivable from no premises in this system. But
this is precisely how inconsistency is traditionally defined for systems based on the
lambda calculus.

4 The Reception of the Theory of Constructions
and the Second Clause

The foregoing derivation is carried out in the system T +. As we have noted, this
system does not coincide with any of the variants of the Theory of Constructions
explicitly adopted by Kreisel or Goodman. Nonetheless the derivation bears sufficient
resemblance to that sketched by Goodman [17, pp. 107–109] so as to be a reason-
able candidate for what we might call the formalized Kreisel-Goodman paradox.
And although Goodman went on to develop T ω specifically to avoid the paradox,
this initial observation about the “naive” theory we have been discussing played a
substantial role in shaping subsequent opinion about the Theory of Constructions
itself.

Before considering the various ways in which one might react to the paradox
directly in Sect. 5, our goals in this section will be twofold. First, we will briefly
describe the manner in which the conventional wisdom about the significance of the
Theory of Constructions shifted during the 1970s and 1980s. Second, we will argue
that several of the criticisms which have been directed against the theory appear to
be based on misapprehensions about its relationship to the second clause and to the
Kreisel-Goodman paradox.

4.1 Shifting Opinions

The shift in the consensus about the status of the Theory of Constructions can be
readily appreciated by comparing the following passages taken respectively from
the prefaces of the first (1977) and second (2000) edition of Dummett’s Elements of
Intuitionism:

The mathematical theory of constructions is of the greatest importance for the foundations
of intuitionistic logic, and it was with greatest regret that I omitted all but a mention of its
existence; but it is as yet in an imperfect state, and its formulation is far too complicated to
permit of a brief summary [7, p. viii].
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In the original Preface I mentioned with enthusiasm the theory of constructions inaugurated
by Kreisel, aimed at supplying a canonical semantics for intuitionistic logic; unfortunately,
it did not prove fruitful [7, p. iv].

Although Dummett provides no further explanation for this change of heart, his
reaction echoes that of other theorists who, in the intervening years, had come to
conclude that the Theory of Constructions not only did not live up to Kreisel’s
promise of providing a “semantical foundation” for intuitionistic logic, but was also
ill-motivated because of its association with the second clause. As we are now in
a good position to appreciate, however, the formulation of a theory such as T is
independent of how (or even if) we elect to attempt to use its object language to
formalize the BHK clauses. And as such, it seems that criticisms of the Theory of
Constructions which are grounded in objections to the propriety of adopting the
second clause are likely to be off base.

Putting this observation to the side for the moment, it is also possible to identify
two broad classes of criticisms which have been targeted at the second clause itself.
The first of these is that the transition from (e.g.) (P→) to (P2→) either adds nothing
to the original BHK interpretation or does not serve to resolve the problems which
appear to have motivated Kreisel to introduce it. For instance, Girard [12] says the
following:

Since the → and ∀ cases were problematic (from [the . . .] foundational point of view), it
has been proposed to add to (P→) [. . . ] the codicil “together with a proof that f has this
property”. Of course that settles nothing, and the Byzantine discussions about the meaning
which would have to be given to this codicil—discussions without the least mathematical
content—only serve to discredit an idea which, we repeat, is one of the cornerstones in Logic
[12, p. 7].

Although Girard does not comment further on the claim that the second clause is
“without mathematical content”, several subsequent commentators appear to expand
on his point that it leads to a substantial complication in how we should understand
the meaning of implication. For instance Prawitz writes

One may ask whether [what is known in understanding an implication] should not consist
of a description of the procedure together with a proof that this procedure has the property
required, as suggested originally by Kreisel [25]. But this would lead to an infinite regress
and would defeat the whole project of a theory of meaning as discussed here [35, p. 27]

Such passages suggest that far from overcoming the apparent deficiency in the origi-
nal BHK account of intuitionistic implication—i.e. that it requires that we understand
what it means to quantify over all constructive proofs—the second clause in fact
makes matters worse in the sense of introducing another kind of infinitary condition
as part of its meaning.

Prawitz also does not expand on what he means by speaking of an “infinite
regress”. But one interpretation is that he too is making the point that in order to
formulate the second clause, we must allow for the fact that it makes sense to think
of the proof relation as holding between a proof p and a sentence A which may
itself make reference to this relation (and thus to other proofs and formulas). If it
is acknowledged that this is legitimate, then there seems to be nothing to prohibit
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arbitrary iterations of the proof relation. For instance, if we continue to use R(x, y) to
denote this relation, then an example of the sort of “regress” Prawitz appears to have
in mind might correspond to the existence of a statement A and proofs p1, p2, p3, . . .

such that R(A, p1), R(p2, R(A, p2)), R(p3, R(p2, R(A, p2))), . . . It is evident that
the syntax of the Theory of Constructions allows us to express the existence of such
a sequence in the sense that π ts1 ≡ 
, π(π ts1)s2 ≡ 
, π(π(π ts1)s2)s3 ≡ 
, . . .

are all well-formed formulas.
One might reasonably wonder on this basis if grasping the second clause interpre-

tation of a formula ever requires that we grasp such an infinite sequence of conditions.
Beeson discusses a related point:

Is it necessary to include [the second] clause? What does it really mean? At one extreme is
the view that one should simply delete this clause: a constructive proof should contain the
information a computer needs to verify the computational facts […] At the other extreme is
the view that the “supplementary data” is a proof itself: a proof that q does indeed transform
any proof of A into a proof of B. The difficulties with this view seem to be that (i) it makes
the explanation of proof highly impredicative, destroying any hope of explaining proofs of
complicated propositions in terms of proofs of simpler ones; and (ii) it seems to assume
that “p is a proof of A” is a mathematical proposition “on the same level as” A itself, in
particular, capable of being proved mathematically.” [3, p. 402]

We will come back to discuss the second concern described by Beeson—i.e.
that it assumes that p is a proof of A expresses a mathematical proposition “on
the same level” as expressed by A itself—in the course of comparing the Theory
of Constructions to systems like ITT (wherein p is a proof of A is regarded as a
judgement as opposed to a proposition). But with regard to the first issue he raises,
note that while Kreisel appears to have introduced the second clause precisely so as to
avoid the form of impredicativity discussed in Sect. 2, Beeson suggests that it is this
step itself which introduces impredicativity into the interpretation of intuitionistic
implication.

Although Beeson also fails to expand upon the precise form this impredicativity
takes, it again seems likely that what he also has in mind has something to do with the
self-applicability of the proof relation. For note that not only does the formulation of
the second clause require that we countenance the existence of proofs p which stand
in the proof relation to statements A which may themselves refer to other particular
proofs q (e.g. for A of the form R(B, q)), but also the case where A may contain a
quantifier over all proofs (e.g. for A of the form ∀x R(B(x), x)), presumably inclusive
of p itself.

A potentially related point about the existence of proofs with this property is made
by Weinstein in the following remark about the second clause:

If […] we suppose that universal quantifications over the universe of constructions applied to
decidable properties have decidable proof conditions then we may view [(P2→)] as providing
an assignment of decidable proof conditions to each formula of the language of arithmetic
[…¶…] This means of securing the decidability of the proof conditions for formulas of arith-
metic is not without cost. The alternative statement of the proof conditions for conditionals
is self reflexive in a way that the original explanation was not. Both Kreisel and Goodman
noticed that this self reflexivity leads to paradox in a theory of constructions which includes a



Kreisel’s Theory of Constructions, the Kreisel-Goodman Paradox … 47

reflection principle for the primitive which constructs the proof conditions for quantification
over the universe of constructions applied to decidable properties [49, p. 264].

Rather than simply suggesting that the second clause is ill-motivated in virtue of
leading to the sort of infinitary or impredicative proof condition mentioned by Prawitz
or Beeson, Weinstein goes beyond this and suggests that it leads to a form of “self-
reflexivity” which in turn is responsible for the Kreisel-Goodman paradox. It is this
claim which we will focus on in the next section.

4.2 Guilt by Association?

The passages collected in the prior section make clear that not only have most com-
mentators reacted negatively to Kreisel’s proposed modifications to the clauses (P→),
(P¬), and (P∀), but also that this reaction has contributed to their assessment of the
Theory of Constructions itself. Against this backdrop, we now wish to frame two
observations: (1) the second clause interpretations of the intuitionistic connectives
play no role in the formulation of the Theory of Constructions itself—rather the theory
merely provides a formal language in which these interpretations can be expressed;
(2) the Kreisel-Goodman paradox also does not arise in virtue of assigning the con-
nectives appearing in its premises their second clause interpretations.

The first point may be appreciated by simply recalling that variants of the Theory
of Constructions like T are indeed “logic free” in the sense that they do not contain
logical connectives such as →,¬ or ∀ amongst their primitive symbols. Rather
such systems contain other primitives—e.g. the abstraction operator λ and the proof
operator π—which Kreisel and Goodman hoped to show are sufficient for analyzing
the meaning of the intuitionistic connectives. As we have seen, these analyses take
the form of providing a definition of a predicate Π(A, s) which they suggest can be
understood as formalizing the second clause variants of the traditional BHK clauses.

Only once such a definition has been undertaken may we ask whether the defined
proof relation Π(A, s) has certain properties such as decidability. But as we are now
in a good position to appreciate, such features apply to the “internal logic” of a theory
which is being interpreted in a system like T and not to the formal properties of the
Theory of Constructions itself.21 But from this it also follows that since the second
clause variants of (P→), (P¬), and (P∀) are conditions which we attempt to interpret
in T , they are no more an intrinsic feature of such a system than is the decision to
interpret the natural numbers as finite von Neumann ordinals an intrinsic feature of
ZF set theory.

21Among subsequent commentators on the Theory of Constructions, Troelstra [43] presents a ver-
sion of the theory in which Π(A, s) is itself treated as a primitive notion, whereas Sundholm [39,
40] (while clearly aware of the technical distinction between πst and Π(A, s)) continues to speak
of properties like decidability as features which might be stipulated (rather than proven) to hold for
Π(A, s).
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It is also evident that the second clause plays no direct role itself in the formulation
of the Kreisel-Goodman paradox as discussed in Sect. 3.2. One indication of this is
that although our proposed regimentation of Goodman’s informal description of the
paradox is conducted in first-order logic, no special treatment is accorded to the
connectives →,¬ or ∀. Similarly, when we attempt to mimic this reasoning in T +,
it is evident that the derivation of a contradiction does not require that we interpret
the occurrences of the logical connectives occuring in the semi-formal version in
accordance with the second clause interpretations (K→), (K¬), or (K∀).

From this it would appear to follow that Weinstein is unjustified in at least his
contention that the Kreisel-Goodman paradox is directly engendered by reasoning
with the intuitionistic connectives relative to their second clause interpretations. What
remains to be seen, however, is whether it is possible to sustain what appears to be
his more general point—i.e. that the paradox reveals that any attempt to formalize
the clauses (P2→), (P2¬), and (P2∀) will result in a system which is inconsistent in virtue
of being “self-reflexive”.

In evaluating this claim, it seems possible to interpret the relevant notion of “self-
reflexivity” in one of three ways which we will respectively label “self-applicability”,
“self-dependency”, and “self-referentiality”. We have already considered a sense in
which the Theory of Constructions formalizes a notion of “self-applicable” proof
in the sense that it allows for iterations of the proof operation in expressions such
as π(πst1)t2 ≡ 
. But on its own, this property does not seem to lead obviously
to any sort of antinomy about the proof relation R(x, y). Some evidence of this
is provided by the fact that it is not only consistent with familiar systems T of
formal arithmetic that there exist statements A and pairs of numbers n, m such that
ProofT(n, �ProofT(m, �A�)�), but instances of such statements will typically be
provable in T itself.22

The foregoing example pertains only to self-applicability in the general sense that
the proof relation R(x, y) is allowed to hold of a sentence A and a proof s in the
case where A itself contains R(B, t) for some sentence B and proof t . But although
it would seem that this is all that is needed for the formulation of the second clause,
it might also be thought that the Kreisel-Goodman paradox turns on the existence of
proofs which are “self-dependent” in the sense that their definitions rely on the fact
that they must be understood to already exist. An example would be witnessed by
the existence of a statement D and a proof u such that R(R(D, u), u), whose truth
would appear to entail that u is self-dependent in the sense that the statement proven
by u refers to u itself.

22For instance in the case where T � A, the existence of n and m such that T �
ProofT(n, �ProofT(m, �A�)�) is a straightforward consequence of the first and third Hilbert-
Bernays derivability conditions for ProofT(x, y).
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In his second exposition, Goodman appears to attribute the paradox to the exis-
tence of proofs with this property:

There is an essential impredicativity in our definition of implication. For [Π(A → B, y)]
involves quantification over all proofs of A, including proofs which may themselves have
been built up in some way from y. Unless something is done to moderate this impredicativity,
it actually leads to paradox [17, p. 107].

Goodman says this after defining Π(A → B, y)—i.e. the proof condition for the
implication A → B—in the same manner as Kreisel’s second clause variant (K→). It
is notable, however, that in our reconstruction of Goodman’s formulation of the para-
dox the derivation of an inconsistency depends on our ability to construct inT a term
Y (h(y, x)) which functions in a manner analogous to the formula D in the deriva-
tion of Montague’s paradox. But although this statement is indeed self-referential in
the traditional sense of being provably equivalent to its own unprovability, it does
not depend on the existence of a proof which is self-dependent in the sense just
described.23

Note finally that we have already seen in Sect. 2 that the concerns which Goodman
raises about the impredicativity of implication appear to already arise for the original
BHK clause (P→). As we suggested there, this may indeed highlight an important
conceptual problem about how the notion of constructive proof should be understood.
It seems, however, that the sort of “self reflexivity” which engenders the Kreisel-
Goodman paradox is more closely related to traditional forms of self-reference which
figure in classical inconsistency results like Montague’s paradox. And this in turn
suggests that not only is the paradox not engendered by the second clause in the direct
sense of requiring that we interpret the logical notions which figure in its derivation
in accordance with (P2→), (P2¬), and (P2∀), but also that it is not engendered indirectly
by introducing an impredicative element into the concept of constructive proof which
was not already present.

5 Diagnosing the Paradox

Our aim in the prior section was to argue that the ultimate evaluation of both the
second clause and the Theory of Constructions should be separated from the task
of diagnosing and responding to the Kreisel-Goodman paradox. For not only does
the adoption of the Theory of Constructions not necessitate that we interpret the
intuitionistic connectives using the second clause, but also the inconsistency of the

23The same is also true of Goodman’s own derivation of the paradox in [17] in the following
exact sense. First note that Goodman’s proof is based on applying a fixed-point combinator to the
term h′(y, x) = λy.λx .π(πyx ⊃1 ⊥)(xx). As this term does contain an iterated application of
π , a plausible interpretation is that it is derived from attempting to express “x is not a proof of
y” within the language of T relative to its second-clause interpretation. However, the fixed-point
which Goodman employs in his derivation is still obtained for the variable y and not x—i.e. it
too can be understood as formalizing the existence of a self-referential formula as opposed to a
self-dependent proof.
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“naive” variant T + turns on assumptions which are independent of the suitability
of its language for expressing the second clause.

Once these points are acknowledged, a number of other questions naturally arise:
(1) having eliminated the second clause as the direct source of the Kreisel-Goodman
paradox, what other principles might be to blame? (2) was Goodman correct to
conclude the most appropriate response to the paradox was to conceive of the uni-
verse of constructive proofs as stratified in the manner described by his theory T ω?
(3) what is the status of his [16] proofs of consistency, soundness, faithfulness, and
the interpretatibility of Heyting arithmetic for T ω? (4) are such results available for
unstratified variants ofT ω? and (5) might such systems be of independent conceptual
or technical interest?

A truly systematic exploration of these issues is beyond the scope of the current
paper. What we hope to achieve here is the more modest goal of laying out the various
principles on which the paradox appears to depend and assessing them relative to
the goal of providing an “informally rigorous” account of the BHK interpretation of
the sort envisioned by Kreisel and Goodman.

5.1 Self-Reference and Typing

As we have seen in Sect. 3.2, one of the principles on which the Kreisel-Goodman
paradox relies is the existence of terms t containing the operator π satisfying fixed-
point equations of the form Y (t) ≡ t (Y (t)). As we have suggested in Sect. 4.2, such
terms can be understood to play a role analogous to that of self-referential sentences
in traditional formulations of the semantic (or “intensional”) paradoxes such as the
Liar and Montague’s paradox. In particular, the term Y (h(y, x)) can be understood
to express that x is not a proof of Y (h(y, x)) itself.

Whereas the existence of sentences with similar intended interpretations is guar-
anteed in the classical setting via the arithmetization of syntax and the Diagonal
Lemma, the existence of Y (h(y, x)) is a consequence of the existence of fixed-point
combinators like Y for the system λβ. But although these phenomena may them-
selves be understood to share a common basis (cf., e.g., [2, Sect. 6.7]), the question
also naturally arises why we ought to base a formulation of the Theory of Construc-
tions on a form of the lambda calculus for which such combinators may be shown
to exist.

Part of the answer to this may be understood to follow from the goal of using
the language of the Theory of Constructions to formalize the clauses of the BHK (or
BHK2) interpretation. For note that it is now a familiar observation that the notions of
function abstraction and application which form the basis of the lambda calculus also
appear to be implicit in the BHK clauses. This point is often illustrated by pointing
out that if the formulas appearing in the rules of a traditional natural deduction system
for first-order intuitionistic logic are labeled with terms understood to represent their
proofs, then the implication introduction rule can be understood to correspond to a
form of function abstraction on proofs similar to the one which is implicit in (P→).
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Similarly, the implication elimination rule can be understood to correspond to a form
of function application on proofs.24

Such observations provide a strong basis for including the lambda calculus as
part of the primitive machinery in terms of which we might attempt to formalize the
BHK interpretation. It would seem, however, that the interpretation itself does not
nominate a unique form of the calculus to serve in this capacity. For as Sørensen &
Urzyczyn note:

[N]ot every lambda-term can be used as a proof notation. For instance, the self-application
xx does not represent any propositional proof, no matter what the assumption annotated by
x is. So before exploring the analogy between proofs and terms . . . we must look for the
appropriate subsystem of the lambda-calculus [38, p. 56].

Such observations are often cited as the basis of the Curry-Howard isomorphism
which relates logical systems with various typed lambda calculi (such as the simply
typed Church-style system λβ→ of [22]). This in turn provides the basis for the
interpretation of intuitionistic logic which is provided by systems such as Martin-
Löf’s ITT.25

However λβ→ can also be distinguished from the system λβ on which we have
taken T to be based in virtue of the fact that the latter allows not only for self-
application of terms (e.g. xx), but also for the definition of fixed-point combinators
like Y . The potential significance of this point with respect to the status of the Kreisel-
Goodman paradox should now be clear—i.e. although it seems reasonable to base a
formal theory in which we might seek to interpret the BHK clauses on some form of
lambda calculus, not only does the informal presentation of the clauses fail to pick out
a unique system, but there is also reason to suspect that λβ allows for the definition
of terms which are not needed for the interpretation of proofs in intuitionistic logic.

Unlike Goodman, Kreisel does not explicitly formulate a paradox as an obstacle
to formulating a “naive” variant of the Theory of Constructions. It seems likely,

24For instance, by adapting the example of [38, pp. 55–56] to the notation of the semi-formal system
of Sect. 3.2, we can see that the “labeled” versions of the rules →-Intro and →-Elim take the forms

[R(A, x)]....
R(B, s1(x))

R(A → B, s2)

R(A → B, t1) R(A, t2)

R(B, t3)

where s2 is naturally understood as having the form λx .s2(x) and t3 is naturally understood as
having the form t1t2.
25Martin-Löf [30] cites the Theory of Constructions as one of several earlier systems which antici-
pated his development of ITT. It is indeed clear that there is an affinity between the manner in which
the two systems define embeddings of intuitionistic logic into variants of the lambda calculus whose
constituent clauses are intended to resemble those of the BHK interpretation. (Another historical
affinity derives from the fact that Martin-Löf [29] presents ITT as a “predicative” reformulation of
the system of [28] which was found to be inconsistent in virtue of Girard’s paradox.) An important
difference, however, is that constructive proofs are only represented indirectly in ITT as typed. But
as typing judgements may not be iterated in ITT in the manner of the π operator, there is no evident
manner in which the language of Martin-Löf’s system can be used to express the second clause
interpretations of →,¬, and ∀.
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however, that he was aware of the foregoing observations. For in his first formulation
of the theory [25, p. 203] Kreisel explicitly restricts lambda abstraction to the class
of terms which are asserted by the axioms of the theory to be bivalent in the sense
described above. His second formulation [26, pp. 128–129] of the theory is based
on a form of typed lambda calculus similar to λβ→. Both approaches thus have the
effect of prohibiting Y (h(y, x)) from being a well-formed term of the system in
question. As such, Kreisel’s apparent reaction to the threat of a paradox pertaining
to the notion of construction can be compared both with Russell’s [36] reaction to
the set theoretic paradoxes and Tarski’s [42] reaction to the semantic paradoxes—i.e.
the existence of the offending self-referential entities (i.e. sets, formulas, or terms)
are excluded on the basis of being improperly formed.

5.2 Stratification

Goodman’s reaction to the paradox was guided by his view that an adequate foun-
dation for intuitionistic logic must presuppose neither logic nor a doctrine of types.
He thus proposed to retain the untyped lambda calculus as the basis of the Theory
of Constructions and at the same time conceive of constructions as stratified into
“levels” which he likens to set theoretic ranks.26 Thus while we have just seen that
Kreisel’s reaction to the “self-referential” paradox about provability was at least
superficially similar to Russell’s resolution to the set theoretic paradoxes, Goodman
explicitly suggests that his proposed resolution can be understood as analogous to
that of Zermelo [50]:

The set-theoretic paradoxes are resolved by observing that sets must be sets of objects already
at hand. Similarly we suggest that proofs must be about objects already constructed. Just
as in Zermelo set theory there is an implicit cumulative theory of types, so we propose to
formulate a theory of constructions involving a cumulative theory of levels. At the bottom
level we will have constructive rules operating on each other . . . Given any level L , we
suppose that we can extend L to a new level containing all the objects of L , all proofs about
objects of L , and certain additional constructions to be described below . . . We emphasize
that this is not a stratification by logical type, but rather a stratification according to the
subject matter of proofs [17, p. 109].

In outline, Goodman proposes to implement this proposal by defining a “stratified”
version of the Theory of Constructions T ω with the following features: (1) the
untyped lambda calculus λβ is retained, as well as the possibility that terms may

26Goodman’s other apparent reason for employing the untyped lambda calculus in formulation of
T ω pertains to his desire to use the system for interpreting Heyting arithmetic. In particular, in order
to define the natural numbers in the language of T ω, he first uses the pairing functions to define
0 = λx .λy.x , and n + 1 = Dn0. He then shows that it is possible to use a fixed point combinator
similar to Y in order to define a decidable natural number predicate. Goodman’s foundational goals
are thus somewhat more ambitious than those of (e.g.) Martin-Löf [29] in the sense that he hoped
to reduce not only intuitionistic logic, but also intuitionistic arithmetic to a primitive theory of
constructions which does not itself contain a basic natural number type.
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be undefined, identity is to be understood intensionally, etc.; (2) the notion of a
so-called grasped domain of constructions is introduced to play the role of a level
in the stratified hierarchy of constructions as just described27; (3) such levels are
understood as proceeding from a basic level B =df L0 and forming a hierarchy
L0 ⊆ L1 ⊆ L2 ⊆ . . . over which the variables of T ω are intended to range;
(4) various primitive terms are introduced into the language of T ω to formalize
this conception (e.g. Bx iff x is a basic level construction, Gx iff x is a grasped
domain, Exy iff y is the grasped domain corresponding to the level extending x ,
etc.) together with axioms which ensure that they have various intended properties
such as decidability; (5) the binary proof operator of πxy of the systemT is replaced
with a ternary proof operator π3xyz with the intended interpretation “x is a grasped
domain containing y, and z is a proof that yw ≡ 
 for all w in x”.

Goodman’s proposed resolution to the paradox [16, pp. 111–112] may be under-
stood as turning on the following observations: (a) for each level Ln it is possible to
formulate a term tn akin to Y (h(y, x)) which may be interpreted as expressing its
own unprovability by all constructions at level n; (b) although it is still possible to
reach a conclusion analogous to (ix) in the original demonstration expressing that
such a term is true (i.e. T � tn ≡ 
), proving this statement involves reasoning with
a free variable over Ln ; (c) if we let cn denote this derivation, Goodman’s rules for
grasped domains only allow us to show that cn is in Ln+1, but not Ln ; (d) as such,
no contradiction arises since cn is not in the range of the implicit universal quantifier
over proofs which are asserted by tn ≡ 
 to not be proofs of tn .

Needless to say, the fact that we cannot derive a formal contradiction inT ω in this
manner does not itself constitute a proof that the system is consistent. For this reason,
much of [16] is taken up with providing a formal consistency proof forT ω. However,
the details of Goodman’s proof of this are complex. And thus rather than commenting
further on this feature of T ω, we offer the following general observations about the
role he took this theory to have in resolving the paradox.

First, note that it is evident that the transition from T to T ω is purchased at
the cost of a substantial complication not only of the class of primitive operations
and relations on constructive proofs which must be adopted (of which we have
mentioned only a few), but also with respect to the axiomatic principles which must
be assumed to hold of them to correctly describe the relationship between the levels
in the stratified hierarchy of constructions which is the intended model of Goodman’s
theory. It would seem, however, that if we wish to provide an “informally rigorous”
account of why T ω is indeed the appropriate formal system with which to achieve
Kreisel and Goodman’s goal of providing a semantic foundation for intuitionistic
logic, then each of these principles must be individually justified in terms of the
network of pre-theoretical notions which figure in the BHK interpretation itself.
However, it is unclear whether it is possible to do so in all of the relevant cases.28

27Goodman [17, pp. 109–110] describes such a domain as the class of constructions which has
been “grasped as a totality” and which is maximal in the sense of “including everything which is
understood when its elements are understood”.
28Especially problematic in this regard is the inclusion in T ω of a so-called reducibility operator F .
Roughly speaking, F is supposed to achieve the role of reducing a “noncanonical” proof of an
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Second, one might reasonably question the basis of Goodman’s claim that the
stratification of the universe of constructions is a matter of “the subject matter of
proofs” as opposed to one of “logical type”. For on the one hand, while the basis
of Goodman’s original contention that a foundation for intuitionistic logic must
itself be type-free presumably derives from the observation that the notion of type
does not explicitly figure in the original expositions of the BHK interpretation, it is
equally evident that these expositions also do not contain any explicit reference to a
stratification of constructive proofs into levels resembling set theoretic ranks.29 And
on the other hand, one consequence of Goodman’s introduction of the ternary proof
operator is to allow us to conclude that π3stu ≡ ⊥ whenever it may be shown that the
proof u is not in Es (i.e. the grasped domain formed by extending s). Thus although
statements of the exhibited sort are still treated as syntactically well-formed, they are
simply stipulated to be false whenever an appropriate containment relation fails to
hold between levels and proofs. And thus although T ω does not contain the formal
machinery of type judgements, the effect of typing seems to be implicitly enforced
by other means.

5.3 Decidability

Although the strategies of Kreisel and Goodman may be sufficient for obtaining a
consistent version of the Theory of Constructions, their approaches are not clearly
grounded in considerations which follow directly from the BHK interpretation itself.
As such, it seems reasonable to consider the status of the other principles which
figure in the Kreisel-Goodman paradox. We will begin by considering the role of the
decidability of the proof relation.

As we have seen, this is formalized within the system T by the rule Dec, which
may in turn be understood to ensure that terms of the πst are always defined.30 We

assertion to the objects pertaining to some level Ln in the hierarchy of constructions (i.e. one which
might make reference to proofs of yet higher level) to a proof which is present at level Ln+1. Such
an assumption plays an important instrumental role in Goodman’s formulation of the clause (P2→) in
T ω as it allows him to replace the quantifier over all constructive proofs with one which only ranges
over the level one higher than that of the term interpreting A → B. To justify this he writes “It
seems to us essential to the intuitionistic position that given a fixed assertion A about a well-defined
domain, there is an a priori upper bound to the complexity of possible proofs of A” [17, p. 111].
But as Weinstein [49] observes, it is not at all clear whether there is anything implicit in the BHK
interpretation itself which justifies this assumption.
29This is at least true of the formulations given by Heyting [20, pp. 13–15] and Kolmogorov [24,
pp. 329–330]. Martin-Löf [30, p. 128] claims that typing is already implicit in clause (P→) if
we additionally accept that every function must have a type as its domain. But it is unclear what
necessitates that we adopt such an assumption.
30For reasons discussed in footnote 18 the same effect is also formally achieved by either reasoning
about the proof relation in intuitionistic first-order logic or by adopting Kreisel’s [26] proposal to
base the Theory of Constructions on the calculus λβ→ (wherein all terms always reduce to normal
form).
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have also seen that the informal motivation for including such a principle derives
from the desire to ensure that the relation between constructive proofs and theorems
is decidable so as to in turn make available the sort of epistemic account of truth
described in Sect. 2. But finally, we have seen that Kreisel introduced the second
clause interpretations precisely so as to ensure that the defined proof relation Π(A, s)
introduced in Sect. 3.1 is decidable (provided that appropriate assumptions are made
about the atomic case, this does indeed follow from the decidability of πst by a
straightforward induction on its definition).

These considerations notwithstanding, Beeson [3, pp. 404–410] has argued
against the propriety of including a rule like Dec in a version of the theory of
constructions as follows: (1) he first formulates a formal inconsistency result for a
system similar to T +; (2) he then argues that this result can be understood as a
reductio of Dec. But since he also advocates for the inclusion of second clauses on
the interpretation of →,¬, and ∀, his overall motivation for rejecting decidability
appears somewhat incongruous.31 As such, we will henceforth assume that giving
up the rule Dec does not correspond to a well motivated response to the paradox.

5.4 Reflection

The explicit reflection principle ExpRfn formalizes the principle that if p is a con-
struction proving A, then A is true. Like decidability, such a principle may plausibly
be regarded as part of the intended interpretation of the proof relation. To the best
of our knowledge, no one has ever argued explicitly that ExpRfn should be given
up in the face of the Kreisel-Goodman paradox.32 But although we do not wish to
challenge this consensus, we will now adduce several considerations which suggest
that finding an appropriate formulation of reflection in the Theory of Constructions
may not be as straightforward as it might appear.

The central difficulty is most readily appreciated by again invoking the analogy
between the proof relation R(A, p) and the arithmetical proof predicate ProofT
(x, y). If we continue to assume that the system in terms of which we reason about
the former contains intuitionistic first-order logic, than one might at first think that
the relevant analogs of ExpRfn would take the forms

(ExpRfnR) R(A, p) → A

(ExpRfnPrT) ProofT(n, �φ�) → φ

31A similar reaction is voiced by Sundholm [40, p. 16]: “Since [the second clauses] had been
introduced by Kreisel solely to guarantee that decidability, I found Beeson’s theory lacking proper
motivation as well as wanting in simplicity”.
32A partial exception to this is Kreisel who, after observing that ExpRfn is “obvious on the intended
interpretation” excludes this principle from his official “unstarred” theory. Although he does so on
the basis of his other observation that ExpRfn is “troublesome for the consistency proof” [25,
p. 204], he does not offer further non-instrumental justification for this.
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Here n should be understood as abbreviating a numeral of the form sn(0) for some
fixed n ∈ N, which may in turn be understood as the Gödel number of a proof in T.
And on this model, it seems reasonable to think of p in A as abbreviating some
(possibly complex) closed term in the language of T (or a similar theory) which is
intended to denote a particular constructive proof.

Note, however, that the principle ExpRfn which is used in the derivation of the
Kreisel-Goodman paradox differs from ExpRfnR and ExpRfnPr not only in that it
is formulated in terms of the derivability relation �T of the Theory of Constructions,
but also in that it may be used in the case where t is a variable of the theory.33 But
note that the free variable instances in ExpRfnR and ExpRfnPr—i.e. R(A, x) → A
and ProofT(x, �φ�) → φ (where we assume x /∈ FV(A) and x /∈ FV(φ))—are
equivalent over intuitionistic first-order logic to the following “implicit” reflection
principles:

(RfnR) ∃x R(A, x) → A

(RfnPrT) ∃xProofT(x, �φ�) → φ

The contrast between ExpRfnPrT and RfnPr is likely to be familiar: (i) all
instances of ExpRfnPr are both true in the standard model of arithmetic and prov-
able in T ⊇ Q; (ii) but while all instances of RfnPrT are true in the standard
model, in light of Löb’s theorem for T, the only instances of RfnPrT which will
be provable in T (provided it is consistent) are those for which T � φ. More-
over, although arithmetical theories T ⊇ Q will satisfy an analog of the rule
Int—i.e. if T � φ, then T � ∃xProofT(x, �φ�)—the result of closing a the-
ory T′ which already proves all instances of RfnPrT′ will be inconsistent in light
of Montague’s paradox. A related observation is that not only will instances of
∃y(ProofT(y, �∃xProofT(x, �φ�) → φ�) be unprovable in T when T � φ, they
will in fact be false in the standard model in light of the formalized version of Löb’s
theorem.

As the foregoing observations pertain to formal provability in the arithmetical
theory T, it is not immediately clear what (if any morals) can be read off about the
status of ExpRfn or RfnR on their intended interpretations.34 What they do suggest,
however, is that when the term t in ExpRfn is allowed to contain free variables, the
effect of including this principle in a theory such as T may be closer to the effect
of adding RfnR rather than ExpRfnR. For as is exemplified by the derivation of the
Kreisel-Goodman paradox, the free variables of T (in conjunction with the relevant
form of substitution principle) function very much like universally bound variables
in first-order logic. And thus although the Theory of Constructions contains neither
quantifiers nor implication in its object language, the instance of ExpRfn with t = x
can be understood as expressing for all proofs x , if x is a proof of s, then s is true.

33Moreover, inspection of the proof reveals that this is essential. For if x were not understood as
free on the lefthand side of step ii), then it would be not admissible to substitute c for x at step (xi).
34For discussion of a related point see [31, pp. 137–138].
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5.5 Internalization

The feature of the Theory of Constructions which we have yet to examine is the
principle of internalization we have labeled Int. This principle has evident affini-
ties with both the first Hilbert-Bernays condition for the arithmetical proof predicate
ProofT(x, y) (i.e. if T � φ, then T � ∃xProofT(x, �φ�)) and with the Necessi-
tation rule of normal modal logics (i.e. if � φ, then � �A). But such proof theoretic
analogies aside, Kreisel and Goodman’s motivations for including such a principle
in the Theory of Constructions are at least somewhat obscure.

For instance, when rendered in the notation of the theory T , Kreisel’s original
presentation of Int is as follows:

For any sequence p of sequents, cp is a term (if p is a formal derivation in our system of
s ≡ 
 then cp presents an—intuitive—proof of s ≡ t) [. . . ¶. . .] If p is a formal derivation
of s ≡ 
, then πscp ≡ 
 is an axiom [25, pp. 203–204].

Kreisel says nothing about how cp is defined relative to the derivation p, nor does
he further elaborate on the distinction between “intuitive” proofs and formal deriva-
tions. Moreover, he does not provide any examples to justify the inclusion of an
internalization principle in his system. And while Goodman provides a somewhat
more straightforward presentation of internalization as a formal rule of proof, his
intuitive explanation of this principle is similarly opaque.35

Rather than attempting to provide a direct reconstruction of Kreisel or Goodman’s
treatment of internalization in the Theory of Constructions, what we will now do is
to present a partial reconstruction of the reasoning underlying the Kreisel-Goodman
paradox using yet another system—Fitting’s [9] Quantified Logic of Proofs [QLP]—
for which a precise account of internalization is known to be available. QLP is an
extension with first-order quantifiers over proofs of Artemov’s [1] Logic of Proofs
[LP], which itself may be understood as an “explicit” variant of the traditional modal
logic S4 wherein instances of the operator � are labeled with expressions similar in
form to the terms of the Theory of Constructions.36 We will present only the features
of the system which are necessary to reconstruct the relevant portion of the derivation
of the paradox here and refer the reader to [1, 9] for additional details.

35Goodman’s formulation of the analogous rule in T ω [17, p. 118] is

Δ, ax ≡ 
 �T ω bx ≡ 

Δ, Ga ≡ 
 �T ω π3ab(pab) ≡ 


where x is stipulated to not occur free in Δ, a or b and pab is explained as being an “infinite
canonical proof of ab . . . which depends only on a and b and not on the structure of the formal
proof [of bx ≡ 
 from Δ, ax ≡ 
]” [17, p. 111]. Despite Goodman’s disavowal of the relationship
between pab and the relevant formal derivation in T , we will see that it is precisely this dependency
which is made explicit in the system QLP described below.
36Although there are many affinities between the Theory of Constructions and LP, the original inspi-
ration for the latter is more closely related to Gödel’s [15] embedding of intuitionistic propositional
calculus into S4 and the “explicit” refinement thereof which he sketches in [14].



58 W. Dean and H. Kurokawa

Like T , the language of QLP contains expressions known as proof terms
s, t, u, . . . which are intended to denote constructive proofs. These are given by
the grammar

t := x, y, z, . . . | ai (
−→x ) | 〈!t〉 | 〈t · t〉 | 〈t + t〉 | 〈(t (x)∀x)〉

x, y, z, . . . are known as proof variables, and a1(x), a2(x), . . . as axiom terms, !, ·,
+ and (t (x)∀x) denote proof operations respectively called proof checker (unary),
application (binary), sum (binary), and uniform verifier (binary). Also like T , the
language of QLP contains a primitive expression intended to denote the proof relation
R(A, t)—in particular t is a proof of A is expressed as t : A. However, unlikeT (but
like the semi-formal system of Sect. 3.2) the language of QLP contains the standard
first-order connectives and quantifiers.

The axioms of QLP correspond to those of a standard Hilbert system for first-order
logic (where for simplicity we regard all classical tautologies as axioms) together
with the following axioms about the proof relation:

(LP1) t : (A → B) → (s : A → t · s : B)

(LP2) t : A → A
(LP3) t : A →!t : t : A

Among the rules of QLP are modus ponens and the standard formulation of the
first-order universal generalization rule UG (i.e. if Δ �QLP A(x), then Δ �QLP
(∀x)A(x) if x /∈ FV(Δ)). As it is a form of modal logic, QLP also possesses a form
of the traditional Necessitation rule:

(AxNec) If B is an axiom of QLP, then �QLP aB : B for some unstructured proof
term aB with the same free variables as B.

Note that the rule AxNec is not only similar in form to the principle Int, but can
be given a justification similar to that which Kreisel gestures at above—i.e. if B is
an axiom of the system, then we ought to be able to introduce a constant symbol
aB which is stipulated to bear the proof relation to B to record the thought that we
regard this formula as an axiom of the system.

One of the characteristic features of both LP and QLP is that while such an
internalization principle is asserted to hold for their axioms, it is possible to establish
a parallel result for their theorems as a metatheorem about the system as opposed to
a basic principle. In particular, we have the following:

(Lift) If s1 : A1, . . . , sn : An �QLP B, then for some proof term t , s1 : A1, . . . , sn :
An �QLP t (s1, . . . , sn) : B.

This result (which is traditionally called the Lifting Lemma—cf. [1, 9]) can be
established by a straightforward induction on derivations. For instance, in the case
of LP (which can be regarded as the quantifier-free fragment of QLP), the case
where B is an axiom is handled by AxNec, and the case where B is derived from
A → B and A by modus ponens is handled by LP1 as follows: if we assume (as
induction hypotheses) that u(

−→x ) : A → B is derivable from −→s (
−→x ) : Δ =df

s1(
−→x ) : A1(

−→x ), . . . , sn(
−→x ) : An(

−→x ) and v(−→x ) : A is also derivable from
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the same premises, then it follows by LP1 that u · v(−→x ) : B is also derivable
from −→s (

−→x ) : Δ. However, in order to extend this result to QLP, we also need
to handle the case where s1 : A1, . . . , sn : An �QLP (∀x)B(x) is derived from
s1 : A1, . . . , sn : An �QLP B(x) by UG (and the appropriate free variable condition
is met). This requires the adoption of an additional rule—called explicit universal
generalization –governing the introduction of the universal verifier symbol (·∀·):
(Eug) If s1 : A1, . . . , sn : An � t (x) : B(x), then s1 : A1, . . . , sn : An � (t∀x) :

(∀x)B(x), where x /∈ FV(si : Ai ) for 1 ≤ i ≤ n.

With this machinery in place, we can now begin to record several additional obser-
vations about the role of the principle Int in the derivation of the Kreisel-Goodman
paradox. Note first that whereas the terms c which are introduced by applications of
Int are treated as constants in the language of T +, we have just seen that the terms
t (s1, . . . , sn) which are introduced by Lift will typically be complex functional
expressions whose compositional structure represents the derivation of formula B
from the premises s1 : A1, . . . , sn : An . In particular, although the derivation (i)–(xii)
given in Sect. 3.2 of the Kreisel-Goodman paradox can be reconstructed (essentially)
line by line in QLP, in the context of such a reconstruction, the proof term corre-
sponding to the constant c which is introduced at step (x) will be a complex term
which encodes the structure of the preceding steps (i)–(ix).

This is significant because while we have seen above that in T +, free variables
are treated as universally bound in the derivation of Sect. 3.2), the same effect is
achieved in QLP by the use of the traditional first-order quantifiers. Thus while it is
the fact that variable x occurs free in the equation Y (h(y, x)) ≡ 
 which allows this
expression to be interpreted as expressing the unprovability of the term Y (h(y, x)),
the fact that a formula D has the analogous property would be expressed in QLP as
D ↔ (∀x)¬x : D.37

In order to reach a contradiction analogous to the clash between steps (x) and
(xi) in the Kreisel-Goodman paradox, an internalizing term d(z) must be found
such that �QLP d(z) : D and also that �QLP ¬d(z) : D (where it is assumed that
z : (D ↔ (∀x)¬x : D) in parallel to the assumption at step (i) of the original
derivation).38 However in order to construct d(z) we must rely on the analog of
RfnR for QLP—i.e.

(RfnQ) (∃x)x : A → A

Like T +, however, QLP also does not contain among its axioms an “implicit”
reflection principle of this sort, but rather its “explicit” counterpart LP2. But like

37For as observed above, in Goodman’s derivation of the paradox it is essential that we are allowed to
substitute the term c for the variable x in the equation π(Y (h(y, x))x ≡ ⊥ to yield π(Y (h(y, x))c ≡
⊥ (i.e. “c is a proof of the falsity of Y (h(y, x))”). Thus althoughT + does not contain object language
quantifiers, part of the effect of quantified reasoning is achieved by the presence of free variables
and substitution in the system.
38Since QLP includes neither arithmetic nor the untyped lambda calculus, there is no evident means
of actually proving the existence of such a z formally in the system. The relevant reconstruction of
the Kreisel-Goodman paradox is hence carried out by reasoning from the assumption that z : (D ↔
¬(∃x)x : D). See [5] for details.
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ExpRfn, LP2 admits the case where t corresponds to a free variable x . And it is thus
straightforward to show that RfnQ is derivable in QLP by intuitionistically valid
first-order reasoning about proofs.

This, however, is not sufficient to construct the term d(z) we have described above.
In addition, we must show that the derivation of RfnQ we have just described can
itself be internalized within QLP. This is accomplished by the following derivation:

(i) � x : A → A LP2
(ii) � r(x) : (x : A → A) AxNec
(iii) � (r(x)∀x) : (∀x)(x : A → A) Eug, (ii)
(iv) � q : (∀x)(x : A → A) → ((∃x)x : A → A) AxNec
(v) � q · (r(x)∀x) : ((∃x)x : A → A) LP1, (iii), (iv)

In this derivation r(x) is an axiom term internalizing the instance x : A → A of
LP2, and q is an axiom term internalizing the first-order Hilbert axiom ∀x(A(x) →
B) → (∃x A(x) → B) where x /∈ FV(B). The complex proof term q · (r(y)∀y)

then serves to internalize the relevant instance of RfnQ, which in turn must serve as
a constituent in the construction of the yet more complex term d(z) which figures in
the derivation of the paradox.

While the existence of the internalizing constant c required in the original deriva-
tion of the Kreisel-Goodman paradox is obtained directly from the rule Int, we can
now see that the term d(z) required to reconstruct the reasoning of the paradox in
QLP is obtained as a consequence of Lift. As we have just seen, the construction
of this term depends not only on the fact that RfnQ can be derived in QLP from
LP2, but also that this proof can be internalized in the system itself. In particular,
since Lift differs from Int in virtue of being a metatheorem rather than a basic rule,
it is also possible to inquire into the status of each of the elementary principles on
which its derivability depends. And as we have observed, this requires a means of
internalizing each of the basic deductive rules of QLP. If this theory is axiomatized
via a Hilbert system as described here, then these correspond to the case of citing an
axiom, modus ponens, and universal generalization. These principles are respectively
internalized by AxNec, LP1, and Eug.

Upon inquiring further into the status of these principles, it is evident that LP1 can
be justified on the basis of the analogy between implication elimination and function
application which we have suggested is implicit in the BHK for implication. But
finally taking a step towards a conceptually motivated resolution to the paradox, note
that it is less clear what to say about either AxNec and (to an even greater extent)
Eug. For although in the context of the Theory of Constructions it might at first seem
unobjectionable to introduce a primitive constant c to record the fact that we regard
a statement as a “self-evident” truth about constructive proofs (e.g. �T 
 ≡ 
), it
is already less clear what to say about the interpretation of such a term in the case
where the axiomatic principle in question contains a free variable (e.g. an instance
of ExpRfn such as π⊥x �T ⊥ ≡ 
).

When we move to a system like QLP wherein the sort of quantification over
constructive proofs which is implicit in the use of free variables in the Theory of
Constructions is made explicit, it is even less clear what to say about the justification
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of the ruleEug. For it would seem that in order to be intuitively justified in concluding
that a particular term (t (x)∀x) is a proof of a universally quantified statement about
constructive proofs (∀x)A(x), there must be constructive justification for the fact
that a proof which is uniform in x is sufficient to demonstrate that A(x) holds of
all constructive proofs simultaneously. When understood relative to the original
formulation of the clause (P∀), this would appear to presuppose that we possess a
means of describing the intended range of the quantifiers of a system such as QLP (or
analogously for the interpretations of free variables in the Theory of Constructions).39

And although both systems may be understood as attempting to provide a description
of such a domain, what we appear to lack is an independent criterion for deciding
whether they have succeeded in adequately doing so.

6 Conclusions and Further Work

In this paper we have argued for two central claims: (1) that the apparent consensus
that the Kreisel-Goodman paradox is engendered by the adoption of Kreisel’s second
clause interpretations of →,¬ and ∀ is mistaken; and (2) that the ability of a formal
system to internalize reasoning about its own proofs plays a larger role in the paradox
than is customarily acknowledged. Taken in conjunction, these observations point
towards the possibility of responding to the paradox by developing a system which
retains as many of the features of the unstratified theoryT + as possible while seeking
a conceptually motivated means of limiting the scope of the internalization principle
Int.

The evident question is what form such a delimitation might take. Taken together
with the observations we have recorded about the role of free variables and reflection
principles in the paradox, one obvious proposal would be to consider subsystems of
formalisms similar to QLP in which the scope of Lift is limited by the exclusion
of quantifier or substitution rules akin to Eug. Although such a proposal may be
justifiable in terms of Kreisel and Goodman’s original foundational goals, a variety
of questions remain open: (i) is a consistency proof similar to that described by
Goodman [16] available for an appropriate subsystem of T +? (ii) is it possible to
prove the soundness and completeness of HPC in the sense ofVal for such a system?
(iii) are the second clause interpretations of the intuitionistic connectives required for
such a result? (iv) is it possible to formulate a version of Goodman’s interpretation of
Heyting arithmetic relative to the relevant system? Needless to say, these questions
will have to wait for another occasion.

39A case in point of this was already noted by Gödel [14, p. 101] who observes that if we take A ≡ ⊥
in the axiom LP2, then a term analogous to (r(y)∀y) in the derivation constructed above—i.e. such
�QLP (r(y)∀y) : (x : ⊥ → ⊥)—would correspond to a consistency proof for the theory. But not
only does such a proof seem too easy, it is for this reason that Eug is invalid when statements of
the form t : A are interpreted arithmetically as ProofT(�t�, �A�) (see [5] for details).
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