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Abstract

Despite highly effective anti-retroviral therapy, HIV is thought to persist in patients within long-lived cellular
reservoirs in the form of a transcriptionally inactive (latent) integrated provirus. Lentiviral latency has therefore come
to the forefront of the discussion on the possibility of a cure for HIV infection in humans. Animal models of
lentiviral latency provide an essential tool to study mechanisms of latency and therapeutic manipulation. Of the
three animal models that have been described, the feline immunodeficiency virus (FIV)-infected cat is the most
recent and least characterized. However, several aspects of this model make it attractive for latency research, and it
may be complementary to other model systems. This article reviews what is known about FIV latency and chronic
FIV infection and how it compares with that of other lentiviruses. It thereby offers a framework for the usefulness of
this model in future research aimed at lentiviral eradication.
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Introduction
It was estimated that 34 million people worldwide were
living with HIV/AIDS as of 2011, more than 1 million
of whom were living in the United States [1]. While ad-
vancements made in highly active antiretroviral therapy
(HAART) have dramatically increased survival time and
quality of life for those infected with HIV, long term treat-
ment is problematic for several reasons [2]. Among them
are the necessity of life-long adherence to medication regi-
mens, the potential for cumulative side-effects, emergence
of drug-resistant mutants, and the unbearable cost for the
majority of the world’s HIV-infected individuals [3,4]. In
people undergoing HAART, viremia is typically reduced to
less than 50 copies of HIV RNA per milliliter of blood [5].
Unfortunately, drug withdrawal generally results in re-
bound viremia, with subsequent progression to clinical
AIDS [6]. It has been hypothesized that HIV is able to per-
sist through both ongoing, low-level replication and as a
transcriptionally inactive (latent) integrated provirus [7].
Studies demonstrating a lack of viral genetic evolution
support the latter hypothesis, suggesting that cellular la-
tency may be the cause of viral rebound [8], and memory
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CD4+ T cells are thought to be the primary long-lived res-
ervoirs [9].
The concept of lentiviral latency has therefore come to

the forefront of the discussion on the possibility of a cure
for HIV infection in humans. For the purposes of this dis-
cussion, lentiviral cellular latency is defined as the presence
of proviral DNA (integrated or episomal) in the absence of
detectable viral RNA (vRNA) transcripts. Of course, such a
definition is only meaningful in the context of highly sensi-
tive real-time PCR assays as the inability to detect vRNA is
not necessarily the same as a truly negative result. Cellular
latency is distinct from clinical latency in that it describes
the viral activity or inactivity within a single cell, rather
than the collective manifestation of viral replication in the
host as a whole. Latently-infected cells have been found to
naturally occur in all three immunodeficiency-causing
lentivirus infections [HIV, simian immunodeficiency virus
(SIV), and feline immunodeficiency virus (FIV)] within
their respective hosts [7,10-12]. Because latently-infected
cells do not contain detectable viral RNA or protein, they
go largely undetected by the host’s immune system. In
addition, latent provirus is not affected by antiretroviral
therapy (ART), which serves to impede only ongoing
rounds of viral replication by inhibiting various viral
enzymes or cellular entry mechanisms. Thus, the latently-
infected cell population serves as reservoir for the persist-
ence of HIV despite the presence of ongoing ART and
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represents the major barrier to viral eradication (cure) from
the host [11,13,14].
Multiple molecular mechanisms may underlie the estab-

lishment and maintenance of latent cellular reservoirs
including availability of transcription and nuclear export
factors, the viral integration locus, RNA interference
(RNAi), transcriptional interference, and epigenetic modifi-
cations of proviral DNA or histone proteins in the local
chromatin environment [15-22]. It is thought that latently-
infected cells, which are established within the first several
days of infection, are stochastically (randomly) reactivated
to resume viral transcription, translation, and virion assem-
bly [20]. In the ART-treated individual, the likelihood that
virions produced from transcriptionally reactivated cells
will infect new cells is very low due to the constant pres-
ence of ART drugs in circulation. But in most cases upon
removal of ART from an HIV-infected individual, viremia
rapidly rebounds and causes an eventual progression to
AIDS [11,14]. Thus understanding of how viral latency is
established and maintained, and perhaps even more im-
portantly, how it can be manipulated, is of great import-
ance to viral eradication efforts. And if therapy to reverse
viral latency (so-called anti-latency therapy, or ALT) is pos-
sible, it would be prudent to test this therapy in an animal
model of lentiviral latency due to both apparent and in-
apparent risks involved with viral reactivation in an indi-
vidual who is well controlled on ART. Therefore, animal
models of lentiviral latency provide an essential tool to
study mechanisms of latency and therapeutic manipula-
tion. Three in vivo animal models of lentiviral latency exist
today: the SIV-infected macaque, the HIV-infected human-
ized mouse, and most recently, the FIV-infected cat. This
review seeks to describe what is known about FIV latency
and how it compares with that of other lentiviruses, as well
as provide a framework for the usefulness of this model in
research aimed at lentiviral eradication.

Current models of HIV latency
Each model of lentiviral latency has both distinct benefits
and drawbacks [23]. The plethora of in vitro cell-line
models of CD4+ T-cell latency have been instrumental in
both mechanistic studies and in the screening of new clas-
ses of viral eradication drugs [24]. However, it is unclear
how similar these proliferating cells are to the primary
in vivo reservoir of resting/memory cells. In addition, since
these models are often established by a single latently
infected cell (i.e., a clonal population), they may not reflect
the heterogeneity of the latent reservoir in the host. Pri-
mary cell models have also been established which may
more closely reflect HIV latency in vivo [25], but they are
limited by their somewhat contrived induction. Latently-
infected cells isolated from HIV-infected individuals and
analyzed ex vivo may be the most reliable of the “in vitro”
models, but they are more difficult to obtain in sufficient
numbers (often requiring leukapheresis) and are still
assessed in isolation from the immune system and in vivo
environment. Animal models of lentiviral latency have
therefore garnered much interest for investigations into
the location and nature of viral reservoirs and potential in-
duction therapy.
Humanized mouse models of HIV infection, based on

engraftment of human cells and tissue into recipient im-
munocompromised mice, are undoubtedly the most tract-
able and versatile in vivo model. All of the benefits of
using mice (cost, genetic traceability, and availability of re-
agents, among others), in addition to the fact that this
model employs HIV-1 rather than another lentivirus,
make it an attractive model for latency [26]. On the other
hand, accurately modeling an infection that is so intri-
cately related to the intact immune system is difficult in
an incomplete or immunocompromised background. In
addition, the inbred nature and non-natural host aspects
of mouse models may be considered a disadvantage. The
SIV-infected macaque, on the other hand, represents an
outbred, large-animal model with a natural physiology
close to that of humans. Using infected macaques treated
with HAART regimens, SIV latency has been observed in
peripheral blood, the central nervous system [27], and
various lymphoid tissues [12], making this a strong model
to study viral reservoirs that persist during therapy. How-
ever, nonhuman primate studies are expensive and time-
consuming, and while HIV remains latent in humans for
several years, this phase is abbreviated to several months
in macaques [23]. The macaque monkey is also not a nat-
ural host of SIV. Like SIV, FIV represents an outbred, large
animal model which is still experimentally tractable. In
contrast, while SIV has greater genetic similarity to HIV,
FIV infection in cats is the only case (other than HIV) of
an immunodeficiency-causing lentiviral infection in its
natural host. And unlike macaques, transgenic cats are be-
coming available for lentivirus-related research [28]. The
cost and difficulty of using cats in research is much less
compared to nonhuman primates. Given the complexity
of the problem and the various strengths and weaknesses
of each model, it may be concluded that each of these
models, both in vitro and in vivo, have a role to play in the
study of lentiviral latency, reservoirs, and eradication
strategies.

The FIV model of HIV infection
FIV was first isolated and described in 1986 from do-
mestic cats with immunodeficiency-like syndromes in
a northern California cattery [29]. The five major sub-
types (clades) of FIV are designated A through E, and
each has a particular geographic distribution through-
out the world [30]. FIV is similar to HIV in genome
structure and immunopathogenesis [31,32], and has
been utilized as the only naturally-occurring animal
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model of immunodeficiency for HIV-infection in people
[33]. Acute FIV infection results in flu-like symptoms in-
cluding peripheral lymphadenopathy, neutropenia, and
pyrexia [34-36]. During terminal stages of infection, ani-
mals exhibit feline acquired immunodeficiency syndrome
(FAIDS), which includes opportunistic infections, lymph-
omas, wasting, and death [37]. As in HIV infection, there
is typically a protracted asymptomatic phase lasting at
least several years prior to the terminal immunodeficiency
syndrome. Despite a lack of clinical signs, there is evidence
of immunological impairment (CD4+ T cell depletion and
CD4/CD8 ratio inversion) during the asymptomatic phase
[38,39].
The genomes of FIV and HIV-1 (the predominant sub-

type of HIV) encode the same three main genes found in
all retroviruses: ‘group-specific antigen’ (gag), polymerase
(pol), and envelope (env), in addition to the lentivirus-
specific accessory genes ‘viral infectivity factor’ (vif) and
‘regulator of virion expression’ (rev). HIV-1 encodes four
additional accessory proteins not found in FIV: tat, vpr,
vpu, and nef. FIV does however encode a unique accessory
gene known as orf-A, thought to have functional overlap
with vpr, vpu, and nef [40,41]. Importantly, the orf-A pro-
tein has not been shown to have significant transcriptional
transactivating activity like HIV tat [42], and FIV is not
known to encode any such transcriptional transactivator.
In addition to genomic differences, the cellular tropism of
FIV is generally thought to be broader than that of HIV as
it includes all major subsets of mononuclear leukocytes
[34]. However, both FIV and HIV have been shown to in-
fect CD8+ T cells and B cells in addition to the CD4+ T
cells and monocytes/macrophages, which are the primary
permissive cell types in vivo [43-49]. Both viruses have also
been reported to infect microglia, astrocytes, and various
other cell types to a lesser extent [34]. The primary cellu-
lar receptors used by these lentiviruses are CD4 and
CD134 for HIV-1 and FIV respectively [50-53]. Both vi-
ruses may use the chemokine receptor CXCR4, and HIV-1
can additionally use CCR5 as a co-receptor [54-57].
Despite intensive study since its discovery over 27 years

ago, relatively little has been published on FIV in the
chronic/asymptomatic, or even terminal FAIDS stages of
disease. The vast majority of experimental FIV research has
focused on acute FIV infection, with most studies terminat-
ing at or before 6 months post infection. This is in large
part due to initial enthusiasm for FIV infection as a model
for vaccine development and early immunopathogenesis
[33,58], as well as the cost associated with long-term stud-
ies. As a result, relatively little is known about virological
parameters during chronic FIV infection under experimen-
tally controlled conditions. In naturally-infected cats,
plasma viral RNA load has been shown to correlate with
the clinical stage, survival time, and disease progression
[59]. Similar to acute HIV infection, experimental FIV
infection causes an initial undulating viremia lasting four to
six months [10,31,34]. Diehl et al. described a decrease in
plasma viremia after approximately 10 weeks of FIV-B in-
fection, though it remained significant and detectable (~105

copies/mL) until the end of the study period (36 weeks)
[60]. The same group developed a model of rapid FAIDS
progression by acute-phase FIV-C passage [61], and dem-
onstrated with this accelerated model of pathogenesis that
plasma viremia is predictive of FIV disease progression
[62]. Miller and Fogle reported detectable viremia at 1, 2,
and 3 years post infection with FIV-A [63]. Another study
by Miller et al. found cell-free virus in cerebrospinal fluid
and neural tissue at 350 days post intravenous infection
with FIV-A, C, and an A/C chimeric virus [64]. Freer et al.
reported stable, moderate plasma viremia and PBMC pro-
viral burden after 1 to 7 years of experimental infection
with FIV-B [65]. Kraase et al. found variably detectable pro-
viral burden in cats infected with FIV-A for 322 weeks
(~6 years), but significantly increased viral env evolution
relative to 12 weeks post infection [66], suggestive of on-
going viral replication. In two studies of FIV superinfection,
viral loads in both plasma and PBMC remained detectable
over 9 months [67] or three years [68] in cats infected with
just one subtype, but declined significantly or was undetect-
able in cats pre-infected with another, attenuated or
chimeric subtype. Kohmoto et al. observed 3 experimen-
tally FIV-infected cats over the course of 8 years, and found
that the one animal that developed FAIDS had a very high
plasma viral load (210 titration) whereas the other two were
undetectable [37]. Our research group has observed persist-
ently undetectable plasma viremia using a sensitive real-
time PCR assay after approximately 10 months of infection
with FIV-C [10]. Other studies documenting the develop-
ment of clinical signs and pathologic lesions after years of
experimental FIV infection [69-74] have not examined
plasma viremia or the status of intracellular virus replica-
tion. To summarize, plasma viremia and cellular proviral
load during the chronic, asymptomatic phase of experimen-
tal FIV infection has been found to be quite variable, ran-
ging from undetectable to 105 copies/mL or higher, which
may depend on viral subtype, inoculating titer, route of in-
oculation, or other factors.
More attention has been paid to immunological effects of

long-term FIV infection, with a particular emphasis on the
hallmark CD4+ T-cell depletion and persistent CD4/CD8
ratio inversion [38,39,75,76]. There has also been documen-
tation of chronic immune dysregulation [75,77,78] and in-
adequate CD8+ T-cell antiviral function [79] in longitudinal
studies. The immunophenotype of cells harboring latent
FIV, which is largely uncharacterized for this virus, may
affect the ability to pharmacologically reactivate latent virus.
FIV has been shown to preferentially infect CD4 +CD25+
activated/regulatory T-cells (Tregs) [80], which correlates
with both surface CXCR4 expression and binding of
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cellular transcription factors to the FIV promoter [81].
Feline Tregs have since been characterized using FoxP3
[82,83], so these studies are merely suggestive of infec-
tion in that subset. Importantly, the FIV receptor
CD134 (OX40) is constitutively expressed on Tregs
[84], lending support to this hypothesis. CD4 + CD25+
and CD4 + CD25- T cells appear to possess different
activation requirements, modulated by viral titer and
cytokine stimuli, to reach threshold activation levels re-
quired to harbor a productive FIV infection [85]. This
holds implications for the differential ability of the two
subsets to serve as potential latent reservoirs, though
our research group has found both subsets to be equal
in terms of latency status in the periphery during
chronic FIV-C infection [10]. Finally, the ability of
the immune system to adequately respond and kill
reactivated cells is critical to proposed strategies to
purge viral reservoirs. Selective depletion of CD4 +
CD25+ cells has been shown to result in improved anti-
viral responses in cats chronically infected with FIV
[83,86], which could potentially be part of a strategy to
boost the immune system during or after ALT. There is
much still to be learned about these and other interac-
tions between the immune system and latent FIV.
FIV Latency
Though the research has thus far been somewhat limited,
several groups have observed FIV latency both in vitro
and in vivo. Ikeda et al. demonstrated that an infectious
molecular clone of FIV-Petaluma (FIV-A) was able to in-
fect the human lymphoblastoid cell line MOLT-4 in vitro,
but established a transcriptionally latent infection unless
stimulated by phorbol ester [87]. The molecular mechan-
ism of FIV latency in human cell lines has not been
reported; however, this form of latency may be due to dif-
ferences in species-specific viral restriction factors and
corresponding viral evasion mechanisms. More recently,
another group demonstrated that a cellular clone of a fe-
line T-cell line (FeT-J) chronically infected (>50 days) with
FIV-A led to a latent phenotype, which was inducible by
treatment with mitogens [88]. There is also evidence that
FIV can establish a latent infection in vivo following muco-
sal administration of low-dose cell-associated FIV-A [89],
in peripheral blood CD4+ T-cells during chronic FIV-C
infection [10], and in peripheral blood mononuclear
cells (PBMC) during chronic FIV-B infection [90]. The
later reported the presence of multiply-spliced FIV
mRNA, but extremely low or undetectable levels of
unspliced or singly-spliced mRNA in PBMC from FIV-B
infected cats. The larger mRNA species, and production
of infectious virus, could be rapidly induced by mitogen
treatment. This is in contrast to our findings for FIV-C,
in which we observed only short, promoter-proximal
transcripts [91], similar to what was reported for HIV
latency in vivo [92]. We have quantified the latent reser-
voir in peripheral CD4+ T-cells during asymptomatic
phase of FIV-C infection to be approximately one in 105

cells (1 in 103 cells is infected, but only 1:100 of those is
replication competent), with just one provirus per
infected cell [91]. This figure is similar to that of HIV-
infected humans in the asymptomatic phase [93,94].
Lastly, Uckun et al. report outgrowth of infectious virus
from PBMC of cats chronically infected (> 6 months)
with FIV-A, B, and D upon co-culture with specific
pathogen free (SPF) T-cell-enriched PBMC [95]. While
this is suggestive of latency, measures of viremia or cell-
associated vRNA were not reported. The specific mem-
ory phenotype of CD4+ T cells that serve as a reservoir
for FIV is currently unknown, but this question is ac-
tively being pursued.
A number of studies have used in vitro and ex vivo

models to study mechanisms of FIV latency. One group
found a temperature-induced latency in Crandell-Rees
feline kidney (CRFK) cells and feline PBMC incubated
with FIV at 41°C, which was reversible with return to
the permissive temperature of 37°C [96]. Using
methylcytosine mapping, our group found no evidence
that proviral promoter CpG hypermethylation is associ-
ated with latency in peripheral CD4+ T cells or mono-
cytes obtained from experimentally FIV-infected cats
[97]. Though DNA methylation was originally impli-
cated from in vitro studies of HIV latency [98,99], this
association was not found in latently-infected, resting
CD4+ T cells from HIV-infected individuals on ART
[100], similar to our findings for FIV. We have, however,
found an association between latency and a locally re-
strictive chromatin environment characterized by his-
tone methylation and de-acetylation on lysine residues
[91]. In the same study, we demonstrated that RNA
polymerase II appeared to be paused on the latent FIV
promoter, transcribing only short (between 66 and
118 bp) transcripts as mentioned above. This is espe-
cially interesting given the lack of a known tat-like func-
tion encoded by FIV. Histone modification (particularly
acetylation) and resulting chromatin condensation is
thought to be an important mechanism of latency
in HIV [11,21,101-103]. A variety of pharmacologic in-
hibitors of histone deacetylase (HDAC) and histone
methyltransferase (HMT) are able to reactivate latent
FIV ex vivo [104], corroborating the link between FIV
latency and chromatin status, and confirming that la-
tent proviruses are capable of productive virus replica-
tion upon activation. There is substantial interest in
the use of HDAC inhibitors, especially suberoylanilide
hydroxamic acid (SAHA), for ALT in HIV infection
[101,105-110]. Another group independently found
that sodium butyrate (NaB) was able to reactive a
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clonal in vitro model of FIV latency [88]. Although not
identified as such in that report, NaB is a type of
HDAC inhibitor. Finally, Chan et al. found that the
protein kinase C (PKC)-activating phorbol ester
Prostratin stimulated FIV replication in a feline CD4+
T-cell line depleted of IL-2 (which was otherwise non-
productive) [111]. This study suggests that PKC is im-
portant for FIV replication, and PKC-activators such as
Prostratin may be useful in purging latent reservoirs.
PKC activators have similarly been shown to reactivate
latent HIV [112-115]. Taken together, observations re-
garding FIV latency reveal many similarities with the
features and mechanisms of HIV-1 latency as summa-
rized in Table 1.

Conclusions
FIV latency is a relatively new field, with a paucity of
pertinent and published research on the topic, but it
represents a novel and exciting model of HIV latency.
FIV is known to support latent infection, both in vitro
and in vivo, and many parallels have been drawn be-
tween FIV and HIV mechanisms of latency. Further-
more, many of the same drugs under investigation as
potential ALT candidates for HIV have been shown to
pharmacologically reactivate FIV as well. If the concept
of induction therapy (reactivating latent virus to purge
the reservoir) is to progress, use of an animal model of
lentiviral latency will be critical to guide the research
forward. Not only is latency reactivation potentially
dangerous, but removing HAART from well-controlled
patients may not be logistically or ethically feasible.
Moreover, the dosage, timing, and sequence of ALT
Table 1 Summary of the features of FIV and HIV-1 latency dis

Feature

Latently infected peripheral CD4+ T cells per million, approximate

Primary T cell reservoir

Viremia in chronic infection (untreated)

Accessory genes

Tat-like function

Paused RNA Polymerase II detected on LTR in vivo

Detection of short, promoter-proximal transcripts in vivo

Detection of multiply-spliced viral mRNA in vivo

Promoter associated histone modifications involved
in chromatin control of latency

Ace

CpG methylation of latent proviral promoter in vivo

Transcriptional reactivation by HDAC inhibitors

Transcriptional reactivation by HMT inhibitors

Transcriptional reactivation by DNMT inhibitors

Transcriptional reactivation by PKC activators
versus ART must be determined, and the potential for
pharmacologically isolated anatomic reservoirs to re-
seed the latent population must be thoroughly exam-
ined. FIV may be particularly well-suited as a model of
central nervous system reservoirs due to high viral loads
in circulating monocytes and potential for latent micro-
glial infection. FIV has advantages and disadvantages
relative to other in vivo latency models as described
above, but perhaps its most valuable property as a
model at this early stage of ALT development is the
level of natural control of the virus during the chronic
phase of infection. Because viremia and cell-associated
vRNA naturally progress to low or undetectable levels
in peripheral lymphoid cells, the effect of reactivating
agents can be extricated from ART-mediated suppres-
sion. Drug-related parameters such as efficacy, po-
tency, and kinetics of the effect (reactivation), can
therefore be more easily evaluated and “disentangled”
in this animal model. In addition, since eradication
strategies depend heavily on immune surveillance and
effective killing of reactivated cells, it is possible (if not
likely) that the compromised immune systems of
infected individuals will need to be boosted in order to
mount a sufficient response [116]. The extensive re-
search into correlates of immune protection against
FIV infection (including the existence of a commercial
vaccine) are an additional advantage of this model [58].
In conclusion, FIV infection of the domestic cat signi-
fies a relatively unexplored and under-recognized but
potentially informative and valuable model for
lentiviral latency and therapeutic reactivation in
humans.
cussed in this review

FIV HIV-1

10 1-10

CD4+ T cells Central memory CD4 + T cells

Undetectable to low Low to moderate

rev, vif, orf-A rev, vif, tat, vpr, vpu, nef

NO YES

YES YES

YES YES

NO NO

tylation and methylation
(others unknown)

Acetylation, methylation, phosphorylation
and ubiquitination

NO NO

YES YES

YES YES

Unknown NO

YES YES
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