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Abstract
The paper focuses on the degenerate Euler numbers, the degenerate Euler
polynomials and the degenerate Bernoulli polynomials. By adopting the method of
recurrences, two explicit expressions have been established for sums of products of
the degenerate Euler polynomials and the degenerate Bernoulli polynomials. As a
special case of the degenerate Euler polynomials, an expression can be obtained for∑

j1+j2+···+jN=n
j1,j2,...,jN≥0

(
n

j1,j2,...,jN )εj1 (λ)εj2 (λ) · · ·εjN (λ).
MSC: Primary 11B68; secondary 11B65; 11B73

Keywords: degenerate Euler number; degenerate Euler polynomial; degenerate
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1 Introduction
The Bernoulli numbers Bn are defined by

t
et – 

=
∞∑
n=

Bn
tn

n!
.

The study of the Bernoulli numbers has a very long history. In fact, Euler had found that

n∑
k=

(
n
k

)
BkBn–k = –(n – )Bn – nBn– (.)

for any n≥ .
In , Dilcher [] generalized (.) to the sums of products of N Bernoulli numbers:

∑
j+j+···+jN=n
j,j,...,jN≥

(
n

j, j, . . . , jN

)
BjBj · · ·BjN

=N
(
n
N

) N–∑
j=

(–)N––js(N ,N – j) · Bn–j

n – j
, (.)

where
( n
j,j,...,jN

)
are the multinomial coefficients defined by

(
n

j, j, . . . , jN

)
=

n!
j!j! · · · jN !
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and s(n,k) are the Stirling numbers of the first kind (see, e.g., []). Furthermore, Dilcher
also extended (.) to the Bernoulli polynomials.
On the other hand, in [, ], Carlitz defined the degenerate Bernoulli numbers βn(λ) as

t
( + λt)/λ – 

=
∞∑
n=

βn(λ)
tn

n!
. (.)

Carlitz showed that βn(λ) is a polynomial in λ. And the explicit formula for βn(λ) was
obtained by Howard []. Note that ( + λt)/λ tends to et as λ → . So we have βn() = Bn.
Furthermore, we know that λ–mβm(λ) tends tom!bn as λ → +∞, where bn is the Bernoulli
number of the second kind given by

t
log( + t)

=
∞∑
n=

bntn.

Formore number-theoretical properties of the degenerate Bernoulli numbers, the readers
may refer to [, ] and [].
The analogues of (.) and (.) for bn have been given in [] and []. Moreover, in [],

Zhang and Yang obtained a generalization of (.) for βn(λ):

∑
j+j+···+jN=n
j,j,...,jN≥

(
n

j, j, . . . , jN

)
βj (λ)βj (λ) · · ·βjN (λ)

=N
(
n
N

) N–∑
k=

(–)N––kσN–,k(λ,n) · βn–k(λ)
n – k

, (.)

where

σN–,k(λ,n) =
∑

≤ik<ik–<···<i<i≤N–

k∏
j=

(
(λ – )ij – (n – j)λ

)
.

The Euler numbers En are another important kind of numbers, which are defined by


et + e–t

=
∞∑
n=

En
tn

n!
.

The Euler numbers have many similar properties as the Bernoulli numbers. For example,
in the same paper, Dilcher also proved that

∑
j+j+···+jN=n
j,j,...,jN≥

(
n

j, j, . . . , jN

)
EjEj · · ·EjN

=
n+N–

(N – )!

[(N–)/]∑
j=

( j∑
k=

(
N –  – k
j – k

)
s(N ,N – k) · N

j–k

j–k

)
En+N––j

(
N


)
, (.)
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where n >N and the Euler polynomials En(x) are given by

ext

et + 
=

∞∑
n=

En(x)
tn

n!
.

In [], Wang obtained an explicit expression for sums of products of l Bernoulli polyno-
mials and n – l Euler polynomials.
In [], Carlitz also defined the degenerate Euler numbers εn(λ) by


( + λt)/λ + ( + λt)–/λ

=
∞∑
n=

εn(λ)
tn

n!
.

Motivated by (.), we shall establish a generalization of (.) for εn(λ) in this note. We
define a class of generalized Stirling-like polynomials of the first kind as follows:

τm,k(λ,x,n) =
∑

≤ik<ik–<···<i<i≤m

k∏
j=

(
x + (λ – )ij – (n +m +  – j)λ

)
.

In particular, here we set τm,(λ,x,n) = .

Theorem . For ≤N ≤ n, we have

∑
j+j+···+jN=n
j,j,...,jN≥

(
n

j, j, . . . , jN

)
εj (λ)εj (λ) · · · εjN (λ)

=
n+N–

(N – )!

N–∑
k=

(–)kτN–,k

(
λ


,
N

,n

)
εn+N––k

(
λ


,
N


)
, (.)

where the degenerate Euler polynomials εn(λ,x) are given by

( + λt)x/λ

( + λt)/λ + 
=

∞∑
n=

εn(λ,x)
tn

n!
.

In fact, we shall prove a polynomial extension of (.) in the next section. In the third
section, we also establish a generalization of (.) for the degenerate Bernoulli polynomial
βn(λ,x) (see, e.g., []).

2 Degenerate Euler numbers and polynomials
Note that εn(λ) = nεn(λ/, /). So (.) is evidently a consequence of the following theo-
rem.

Theorem . Let y = x + x + · · · + xN . Then for ≤N ≤ n, we have

∑
j+j+···+jN=n
j,j,...,jN≥

(
n

j, j, . . . , jN

)
εj (λ,x)εj (λ,x) · · · εjN (λ,xN )

=
N–

(N – )!

N–∑
k=

(–)kτN–,k(λ, y,n)εn+N––k(λ, y). (.)
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The degenerate Euler polynomials of orderm are defined by

(


( + λt)/λ + 

)m

( + λt)x/λ =
∞∑
n=

ε(m)
n (λ,x)

tn

n!
. (.)

Clearly, ε()n (λ,x) = εn(λ,x).

Lemma . For ≤m ≤ n, we have

ε(m)
n (λ,x) =

m–

(m – )!

m–∑
k=

(–)kτm–,k(λ,x,n)εn+m––k(λ,x). (.)

Proof Observe that

m+( + λt)x/λ

(( + λt)/λ + )m+

=
( + λt)

m
· d
dt

(
m( + λt)x/λ

(( + λt)/λ + )m

)

–
(x –m)

m
· m( + λt)x/λ

(( + λt)/λ + )m
.

Comparing the coefficients of tn in both sides of the above equation, we have

ε(m+)
n (λ,x) =


m

(
ε
(m)
n+(λ,x) –

(
x + (λ – )m – (n +m)λ

)
ε(m)
n (λ,x)

)
. (.)

Below we use induction onm to show (.). It is easy to see that (.) holds form = . Now
let m >  and assume that (.) holds for the smaller values of m. Then, by the induction
hypothesis, we have


m

· ε(m)
n+(λ,x) –


m

· (x + (λ – )m – (n +m)λ
)
ε(m)
n (λ,x)

=
m

m!

m–∑
k=

(–)kτm–,k(λ,x,n + )εn+m–k(λ,x)

–
m(x + (λ – )m – (n +m)λ)

m!

m∑
k=

(–)k–τm–,k–(λ,x,n)εn+m–k(λ,x).

It is easy to verify that

τm,k(λ,x,n) = τm–,k(λ,x,n + ) +
(
x + (λ – )m – (n +m)λ

)
τm–,k–(λ,x,n)

for  ≤ k ≤m – , and

τm,m(λ,x,n) =
(
x + (λ – )m – (n +m)λ

)
τm–,m–(λ,x,n).
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So by (.), we get

ε(m+)
n (λ,x)

=
m

m!

(
εn+m(λ,x) + (–)mτm,m(λ,x,n)εn(λ,x) +

m–∑
k=

(–)kτm,k(λ,x,n)εn+m–k(λ,x)

)

=
m

m!

m∑
k=

(–)kτm,k(λ,x,n)εn+m–k(λ,x).

This concludes our proof. �

Let us turn to the proof of Theorem .. Clearly,

( + λt)x/λ

( + λt)/λ + 
· ( + λt)x/λ

( + λt)/λ + 
· · · ( + λt)xN /λ

( + λt)/λ + 

=
N ( + λt)(x+x+···+xN )/λ

(( + λt)/λ + )N
.

Hence we have

∑
j+j+···+jN=n
j,j,...,jN≥

(
n

j, j, . . . , jN

)
εj (λ,x)εj (λ,x) · · · εjN (λ,xN ) = ε(N)

n (λ, y).

Thus (.) immediately follows from (.).

3 Degenerate Bernoulli numbers and polynomials
The Bernoulli polynomials Bn(x) are defined by

text

et – 
=

∞∑
n=

Bn(x)
tn

n!
.

Clearly, Bn() = Bn. In [], Dilcher proved that

∑
j+j+···+jN=n
j,j,...,jN≥

(
n

j, j, . . . , jN

)
Bj (x)Bj (x) · · ·BjN (xN )

=N
(
n
N

) N–∑
j=

(–)N––j

( j∑
k=

(
n –  – k
j – k

)
s(N ,N – k)yj–k

)
· Bn–j(y)

n – j
, (.)

where y = x + x + · · · + xN .
The degenerate Bernoulli polynomials βn(λ,x) are defined by

t( + λt)x/λ

( + λt)/λ – 
=

∞∑
n=

βn(λ,x)
tn

n!
. (.)

In this section, we shall give a generalization of (.) for βn(λ,x).
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Define σm,k(λ,x,n) by

σm,k(λ,x,n) =
∑

≤ik<ik–<···<i<i≤m

k∏
j=

(
x + (λ – )ij – (n – j)λ

)
.

In particular, we set σm,(λ,x,n) = .

Theorem . Let y = x + x + · · · + xN . Then for ≤N ≤ n, we have

∑
j+j+···+jN=n
j,j,...,jN≥

(
n

j, j, . . . , jN

)
βj (λ,x)βj (λ,x) · · ·βjN (λ,xN )

=N
(
n
N

) N–∑
k=

(–)N––kσN–,k(λ, y,n) · βn–k(λ, y)
n – k

. (.)

Proof Similarly as in the proof of Theorem ., it suffices to show that

β (m)
n (λ,x) =m

(
n
m

) m–∑
k=

(–)m––kσm–,k(λ,x,n) · βn–k(λ,x)
n – k

(.)

for  ≤m ≤ n, where the degenerate Bernoulli polynomials of orderm are defined by

(
t

( + λt)/λ – 

)m

( + λt)x/λ =
∞∑
n=

β (m)
n (λ,x)

tn

n!
. (.)

We shall use induction on m. Clearly (.) holds for m = . Let m ≥  and assume that
(.) holds form. Note that

tm+( + λt)x/λ

(( + λt)/λ – )m+ =
(
( + λt) + (x –m) · t

m

)
· tm( + λt)x/λ

(( + λt)/λ – )m

– ( + λt) · t
m

· d
dt

(
tm( + λt)x/λ

(( + λt)/λ – )m
)
.

Comparing the coefficients of tn
n! in both sides of the above equation, we get

β (m+)
n (λ,x) =

m – n
m

· β (m)
n (λ,x) +

n
m

· (x + (λ – )m – (n – )λ
)
β
(m)
n–(λ,x). (.)

Applying (.) for β
(m)
n (λ,x) and β

(m)
n–(λ,x), we have

m – n
m

· β (m)
n (λ,x) +

n
m

· (x + (λ – )m – (n – )λ
) · β

(m)
n–(λ,x)
n – 

= (m + )
(

n
m + 

)(
–

m–∑
k=

(–)m––kσm–,k(λ,x,n) · βn–k(λ,x)
n – k

+
(
x + (λ – )m – (n – )λ

) m∑
k=

(–)m–kσm–,k–(λ,x,n – ) · βn–k(λ,x)
n – k

)
.
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It is not difficult to check that

σm,k(λ,x,n) = σm–,k(λ,x,n) +
(
x + (λ – )m – (n – )λ

)
σm–,k–(λ,x,n – )

for  ≤ k ≤m – , and

σm,m(λ,x,n) =
(
x + (λ – )m – (n – )λ

)
σm–,m–(λ,x,n – ).

It follows from (.) that

β (m+)
n (λ,x) = (m + )

(
n

m + 

)(
(–)m

βn(λ,x)
n

+ σm,m(λ,x,n)
βn–m(λ,x)
n –m

)

+ (m + )
(

n
m + 

) m–∑
k=

(–)m–kσm,k(λ,x,n)
βn–k(λ,x)
n – k

= (m + )
(

n
m + 

) m∑
k=

(–)m–kσm,k(λ,x,n) · βn–k(λ,x)
n – k

.

All proofs thus are done. �
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