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Abstract
The purpose of this paper is to prove a strong convergence theorem of an iterative
scheme associated to a strongly nonexpansive sequence for finding a common
element of the set of equilibrium problems and the set of fixed point problems of a
pair of sequences of nonexpansive mappings where one of them is a strongly
nonexpansive sequence. Moreover, in the last section, by using our main result, we
obtain a strong convergence theorem of an iterative scheme associated to a strongly
nonexpansive sequence for finding a common element of the set of a finite family of
equilibrium problems and the set of fixed point problems of a pair of sequences of
nonexpansive mappings where one of them is a strongly nonexpansive sequence in
a Hilbert space, and we also give some examples to support our main result.
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1 Introduction
Throughout this paper, we assume thatH is a realHilbert spacewith the inner product 〈·, ·〉
and the norm ‖·‖. AmappingT ofC into itself is called nonexpansive if ‖Tx–Ty‖ ≤ ‖x–y‖
for all x, y ∈ H . The set of fixed points of T is denoted by F(T), i.e., F(T) = {x ∈ H : Tx =
x}. It is known that F(T) is closed and convex if T is nonexpansive. Let PC be a metric
projection of H onto C, i.e., for x ∈ H , PCx satisfies the property

‖x – PCx‖ =min
y∈C ‖x – y‖.

We use �� ⇀′′ and �� →′′ to denote weak and strong convergence, respectively. Let {Tn} be
a sequence of mappings of C into H . The set of common fixed points of {Tn} is denoted
by F({Tn}) = ⋂∞

n= F(Tn). Recall the main concepts as follows:
() A sequence {zn} in C is said to be an approximate fixed point sequence of {Tn} if

zn – Tnzn → . The set of all bounded approximate fixed point sequences of {Tn} is
denoted by F̃({Tn}); see []. It is clear that if {Tn} has a common fixed point, then
F̃({Tn}) is nonempty.
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() A sequence {Tn} is said to be a strongly nonexpansive sequence if each Tn is
nonexpansive and

xn – yn – (Tnxn – Tnyn) → ,

whenever {xn} and {yn} are sequences in C such that {xn – yn} is bounded and
‖xn – yn‖ – ‖Tnxn – Tnyn‖ → .

() A sequence {Tn} having a common fixed point is said to satisfy the condition (Z) if
every weak cluster point of {xn} is a common fixed point whenever {xn} ∈ F̃({Tn}).

() A sequence {Tn} of nonexpansive mappings of C into H is said to satisfy the
condition (R) if

lim
n→∞ sup

y∈D
‖Tn+y – Tny‖ = 

for every nonempty bounded subset D of C; see [].

Example . Let R be a set of real numbers. For every n ∈ N, the mapping Tn :R → R is
defined by Tnx = 

nx for all x ∈R.
Then {Tn} is a nonexpansive sequence, but it is not a strongly nonexpansive sequence.

Example . For every n ∈N, the mapping Tn : [, ] → [, ] is defined by Tnx = ( – 
n )x

for all x ∈ [, ].
Then {Tn} is a strongly nonexpansive sequence.

Solution It is easy to see that Tn is a nonexpansive mapping for all n ∈N.
Let {xn} and {yn} be sequences in [, ] with {xn – yn} being bounded and |xn – yn| –

|Tnxn – Tnyn| →  as n→ ∞.
Since xn – yn – (Tnxn – Tnyn) = 

n (xn – yn), for all n ∈N, then we have

xn – yn – (Tnxn – Tnyn) →  as n→ ∞.

Then {Tn} is a strongly nonexpansive sequence.

Let G : C × C → R be a bifunction. The equilibrium problem for G is to determine its
equilibrium points, i.e., the set

EP(G) =
{
x ∈G :G(x, y)≥ ,∀y ∈ C

}
.

It is a unified model of several problems, namely, variational inequality problem, comple-
mentary problem, saddle point problem, optimization problem, fixed point problem, etc.;
see [–]. Several iterativemethods have been proposed to solve the equilibrium problem;
see, for instance, [–]. In , Combettes and Hirstoaga [] introduced some iterative
schemes of finding the best approximation to the initial data when EP(G) is nonempty and
proved a strong convergence theorem.
Also in [], Combettes and Hiratoaga, following [], defined Sr :H → C by

Sr(x) =
{
z ∈ C :G(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.
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They proved that under suitable hypotheses Sr is single-valued and firmly nonexpansive
with F(Sr) = EP(G).
In , Takahashi and Takahashi [] proved the following theorem.

Theorem . Let C be a nonempty closed convex subset of H . Let G be a bifunction from
C ×C to R satisfying
(A) G(x,x) = , ∀x ∈ C;
(A) G is monotone, i.e., G(x, y) +G(y,x) ≤ , ∀x, y ∈ C;
(A) ∀x, y, z ∈ C, limt→+ G(tz + ( – t)x, y)≤ G(x, y);
(A) ∀x ∈ C, y �→G(x, y) is convex and lower semicontinuous;

and let S be a nonexpansive mapping of C into H such that F(S) ∩ EP(G) �= ∅. Let f be a
contraction of H into itself, and let {xn} and {un} be sequences generated by x ∈H and

G(un, y) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)Sun

for all n ∈N, where {αn} ⊂ [, ] and {rn} ⊂ (, ) satisfy
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C)
∑∞

n= |αn+ – αn| < ∞;
and lim infn→∞ rn >  and

∑∞
n= |rn+ – rn| < ∞.

Then {xn} and {un} converge strongly to z ∈ F(S)∩ EP(G), where z = PF(S)∩EP(G)f (z).

Very recently, in , Aoyama and Kimura [] proved a strong convergence theorem
of the iterative scheme of {xn} associated to a strongly nonexpansive sequence as follows.

Theorem . Let H be a Hilbert space, let C be a nonempty closed convex subset of H ,
and let {Sn} and {Tn} be sequences of nonexpansive self-mappings of C. Suppose that F =
F({Sn}) ∩ F({Tn}) is nonempty, both {Sn} and {Tn} satisfy the conditions (R) and (Z), and
{Sn} or {Tn} is a strongly nonexpansive sequence. Let {αn} and {βn} be sequences in [, ]
such that

lim
n→∞αn = ,

∞∑
n=

αn = ∞ and  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Let x,u ∈ C and let {xn} be a sequence in C defined by x = x ∈ C and

xn+ = βnxn + ( – βn)Sn
(
αnu + ( – αn)Tnxn

)
for all n ∈N. Then {xn} converges strongly to PFu.

For x,u, v ∈ C, let {un}, {vn}, {yn} and {xn} be the sequences defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F(un,u) + 
rn 〈u – un,un – xn〉 ≥ ,

F(vn, v) + 
sn 〈v – vn, vn – xn〉 ≥ ,

yn = δnun + ( – δn)vn,

xn+ = βnxn + ( – βn)Sn(αnf (Tnyn) + ( – αn)Tnyn), ∀n≥ ,

(.)
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where f : C → C is a contractive mapping with α ∈ (,  ) and {Sn}, {Tn} are sequences of
nonexpansive mappings, one of them is a strongly nonexpansive sequence.
In this paper, inspired and motivated by [] and [], we prove that a strong conver-

gence theoremof the iterative scheme {xn} defined by (.) converges strongly to z = PFf (z),
where F = EP(F)∩ EP(F)∩ F({Sn})∩ F({Tn}), under the conditions (R) and (Z) and suit-
able conditions of {rn}, {sn}, {αn}, {βn} and {δn}.

2 Preliminaries
In this section, we need the following lemmas to prove our main result in the next section.

Lemma . (See []) Given x ∈ H and y ∈ C. Then PCx = y if and only if the following
inequality holds:

〈x – y, y – z〉 ≥ , ∀z ∈ C.

Lemma . (See []) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ = ( – αn)sn + αnβn, ∀n≥ ,

where {αn}, {βn} satisfy the conditions
() {αn} ⊂ [, ],

∑∞
n= αn = ∞;

() lim supn→∞ βn ≤  or
∑∞

n= |αnβn| <∞.
Then limn→∞ sn = .

Lemma . (See []) Let {xn} and {zn} be bounded sequences in a Banach space X, and
let {βn} be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that

xn+ = βnxn + ( – βn)zn

for all integers n ≥  and

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖xn – zn‖ = .

Lemma . (See []) Let C be a closed convex subset of a strictly convex Banach space E.
Let {Tn : n ∈ N} be a sequence of nonexpansive mappings on C. Suppose that

⋂∞
n= F(Tn) is

nonempty. Let {λn} be a sequence of positive numbers with
∑∞

n= λn = . Then a mapping S
on C defined by

S(x) =
∞∑
n=

λnTnx

for all x ∈ C is well defined, nonexpansive and F(S) =
⋂∞

n= F(Tn) holds.

Lemma . (See []) Let C be a nonempty closed convex subset of a Hilbert space H , and
let G : C ×C →R satisfy

http://www.fixedpointtheoryandapplications.com/content/2013/1/193
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(A) G(x,x) = , ∀x ∈ C;
(A) G is monotone, i.e., G(x, y) +G(y,x) ≤ , ∀x, y ∈ C;
(A) ∀x, y, z ∈ C, limt→+ G(tz + ( – t)x, y)≤ G(x, y);
(A) ∀x ∈ C, y �→G(x, y) is convex and lower semicontinuous.

For x ∈H and r > , define a mapping Sr :H → C as follows:

Sr(x) =
{
z ∈ C :G(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Then Sr is well defined and the following hold:
() Sr is single-valued;
() Sr is firmly nonexpansive, i.e., ‖Sr(x) – Sr(y)‖ ≤ 〈Sr(x) – Sr(y),x – y〉, ∀x, y ∈H ;
() F(Sr) = EP(G);
() EP(G) is closed and convex.

Lemma . (See []) (Demiclosedness principle) Assume that T is a nonexpansive self-
mapping of a closed convex subset C of a Hilbert space H . If T has a fixed point, then I –T
is demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some x ∈ C
and the sequence {(I –T)xn} converges strongly to some y, it follows that (I –T)x = y.Here,
I is the identity mapping of H .

Lemma . Let H be a real Hilbert space. Then, for all x, y ∈H ,

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.

Lemma . (See []) Let H be a Hilbert space, let C be a nonempty subset of H , and let
{Sn} and {Tn} be the sequences of nonexpansive self-mappings of C. Suppose that {Sn} and
{Tn} satisfy the condition (R) and that {Tny : n ∈ N, y ∈ D} is bounded for any bounded
subset D of C. Then {SnTn} satisfies the condition (R).

Lemma . (See []) Let H be a Hilbert space, let C be a nonempty subset of H , and let
{Sn} and {Tn} be the sequences of nonexpansive self-mappings of C. Suppose that {Sn} or
{Tn} is a strongly nonexpansive sequence and that F̃({Sn}) ∩ F̃({Tn}) is nonempty. Then
F̃({Sn})∩ F̃({Tn}) = F̃({SnTn}).

3 Main result
Theorem . Let H be a Hilbert space, let C be a nonempty closed convex subset of H . Let
F and F be two bifunctions from C × C into R satisfying (A)-(A), respectively, and let
{Sn} and {Tn} be sequences of nonexpansive self-mappings of C with F = EP(F)∩EP(F)∩
F({Sn}) ∩ F({Tn}) �= ∅. Let {Tn} or {Sn} be a sequence of strongly nonexpansive mappings,
and let f : C → C be a contractive mapping with α ∈ (,  ). Let {xn}, {un}, {vn} be sequences
generated by x,u, v ∈ C and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F(un,u) + 
rn 〈u – un,un – xn〉 ≥ ,

F(vn, v) + 
sn 〈v – vn, vn – xn〉 ≥ ,

yn = δnun + ( – δn)vn,

xn+ = βnxn + ( – βn)Sn(αnf (Tnyn) + ( – αn)Tnyn), ∀n≥ ,

(.)
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where {αn}, {βn} ∈ [, ], {rn}, {sn} ∈ (a,b) ∈ [, ]. Assume that the following conditions
hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iii)

∑∞
n= |rn+ – rn|, ∑∞

n= |sn+ – sn| <∞;
(iv) limn→∞ δn = δ ∈ (, );
(v) {Sn} and {Tn} satisfy the conditions R and Z.

Then the sequences {xn}, {un}, {vn}, {yn} converge strongly to z = PFf (z).

Proof Let v ∈ F. From the definition of xn, we have

‖xn+ – v‖ =
∥∥βn(xn – v) + ( – βn)

(
Sn

(
αnf (Tnyn) + ( – αn)Tnyn

)
– v

)∥∥
≤ βn‖xn – v‖ + ( – βn)

∥∥αnf (Tnyn) + ( – αn)Tnyn – v
∥∥

≤ βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (Tnyn) – v
∥∥ + ( – αn)‖Tnyn – v‖)

≤ βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (Tnyn) – f (v)
∥∥ + αn

∥∥f (v) – v
∥∥

+ ( – αn)‖Tnyn – v‖)
≤ βn‖xn – v‖ + ( – βn)

(
αnα‖yn – v‖ + αn

∥∥f (v) – v
∥∥

+ ( – αn)‖yn – v‖)
= βn‖xn – v‖ + ( – βn)

(
αn

∥∥f (v) – v
∥∥

+
(
 – αn( – α)

)‖yn – v‖). (.)

From Lemma . and (.), we have EP(F) = F(Srn ), EP(F) = F(Ssn ), Srnxn = un and
Ssnxn = vn. By v ∈ F and the nonexpansiveness of Srn and Ssn , we have

‖yn – v‖ =
∥∥δn(un – v) + ( – δn)(vn – v)

∥∥
≤ δn‖un – v‖ + ( – δn)‖vn – v‖
= δn‖Srnxn – v‖ + ( – δn)‖Ssnxn – v‖
≤ ‖xn – v‖. (.)

Substituting (.) into (.), we have

‖xn+ – v‖ ≤ βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (v) – v
∥∥

+
(
 – αn( – α)

)‖yn – v‖)
≤ βn‖xn – v‖ + ( – βn)

(
αn

∥∥f (v) – v
∥∥

+
(
 – αn( – α)

)‖xn – v‖)
= βn‖xn – v‖ + ( – βn)αn

∥∥f (v) – v
∥∥

+ ( – βn)
(
 – αn( – α)

)‖xn – v‖
= ( – βn)αn

∥∥f (v) – v
∥∥ +

(
 – αn( – βn)( – α)

)‖xn – v‖

≤ max

{
‖xn – v‖, ‖f (v) – v‖

 – α

}
.
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By induction we can conclude that {xn} is bounded and so are {un}, {vn}, {yn}. Next, we
show that F̃({SnAn}) = F̃({Sn}) and F̃({AnTn}) = F̃({Tn}), where An = αnf + ( – αn)I .
Let {zn} be a bounded sequence in C. From the nonexpansiveness of Sn, we have

‖SnAnzn – Snzn‖ ≤ ‖Anzn – zn‖ = αn
∥∥f (zn) – zn

∥∥. (.)

From (.) and αn →  as n→ ∞, we have

lim
n→∞‖SnAnzn – Snzn‖ = . (.)

Let {zn} ∈ F̃({SnAn}), then we have

‖zn – Snzn‖ ≤ ‖zn – SnAnzn‖ + ‖SnAnzn – Snzn‖.

From (.), we have

lim
n→∞‖zn – Snzn‖ = ,

which implies that {zn} ∈ F̃({Sn}). It follows that

F̃
({SnAn}

) ⊆ F̃
({Sn}). (.)

Let {zn} ∈ F̃({Sn}), then we have

‖zn – SnAnzn‖ ≤ ‖zn – Snzn‖ + ‖Snzn – SnAnzn‖.

From (.), we have

lim
n→∞‖zn – SnAnzn‖ = ,

which implies that {zn} ∈ F̃({SnAn}). It follows that

F̃
({Sn}) ⊆ F̃

({SnAn}
)
. (.)

From (.) and (.), we have

F̃
({Sn}) = F̃

({SnAn}
)
. (.)

Let {zn} be a bounded sequence in C, then we have {Tnzn} is bounded and so is {f (Tnzn)}.
Since

‖AnTnzn – Tnzn‖ = αn
∥∥f (Tnzn) – Tnzn

∥∥
and αn →  as n→ ∞, we have

lim
n→∞‖AnTnzn – Tnzn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/193
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Let {zn} ∈ F̃({AnTn}), then we have

‖zn – Tnzn‖ ≤ ‖zn –AnTnzn‖ + ‖AnTnzn – Tnzn‖.

From (.), we have

lim
n→∞‖zn – Tnzn‖ = ,

which implies that

{zn} ∈ F̃
({Tn}

)
.

It follows that

F̃
({AnTn}

) ⊆ F̃
({Tn}

)
. (.)

Let {zn} ∈ F̃({Tn}), then we have

‖zn –AnTnzn‖ ≤ ‖zn – Tnzn‖ + ‖Tnzn –AnTnzn‖.

From (.), we have

lim
n→∞‖zn –AnTnzn‖ = ,

which implies that

{zn} ∈ F̃
({AnTn}

)
.

It follows that

F̃
({Tn}

) ⊆ F̃
({AnTn}

)
. (.)

From (.) and (.), we have

F̃
({Tn}

)
= F̃

({AnTn}
)
. (.)

Next, we show that

F̃
({SnAnTn}

)
= F̃

({Sn}) ∩ F̃
({Tn}

)
.

Since F is nonempty, from (.), (.), we have

F̃
({SnAn}

) ∩ F̃
({Tn}

)
= F̃

({Sn}) ∩ F̃
({Tn}

) �= ∅ (.)

and

F̃
({Sn}) ∩ F̃

({AnTn}
)
= F̃

({Sn}) ∩ F̃
({Tn}

) �= ∅. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/193
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Suppose that {Sn} is a strongly nonexpansive sequence. From (.) and Lemma ., we
have

F̃
({SnAnTn}

)
= F̃

({Sn}) ∩ F̃
({AnTn}

)
= F̃

({Sn}) ∩ F̃
({Tn}

)
. (.)

On the other hand, suppose that {Tn} is a strongly nonexpansive sequence. From (.)
and Lemma ., we have

F̃
({SnAnTn}

)
= F̃

({SnAn}
) ∩ F̃

({Tn}
)
= F̃

({Sn}) ∩ F̃
({Tn}

)
. (.)

From (.) and (.), we have F̃({SnAnTn}) = F̃({Sn})∩ F̃({Tn}). Next, we show that {An}
and {SnAnTn} satisfy the condition (R). It is easy to see that An is a nonexpansive mapping
for every n ∈N and that {Any : n ∈ N, y ∈D} is bounded, whereD is a bounded subset ofC.
Let y ∈D, then we have

‖An+y –Any‖ =
∥∥αn+f (y) + ( – αn+)y – αnf (y) – ( – αn)y

∥∥
≤ |αn+ – αn|

∥∥f (y)∥∥ + |αn+ – αn|‖y‖.

From the condition (i), we have

lim
n→∞ sup

y∈D
‖An+y –Any‖ = .

It follows that {An} satisfies the condition (R). From Lemma ., we have that {SnAn} satis-
fies the condition (R). From thenonexpansiveness ofTn andF �= ∅, we have {Tny : n ∈N, y ∈
D} is bounded for any bounded subset D of C. From Lemma ., we have that {SnAnTn}
satisfies the condition (R).
Next, we show that

lim
n→∞‖xn+ – xn‖ = . (.)

Put

xn+ = βnxn + ( – βn)wn, (.)

where wn = Sn(αnf (Tnyn) + ( – αn)Tnyn). From the definition of wn, we have

‖wn+ –wn‖ = ‖Sn+An+Tn+yn+ – SnAnTnyn‖
≤ ‖Sn+An+Tn+yn+ – SnAnTnyn+‖ + ‖SnAnTnyn+ – SnAnTnyn‖
≤ sup

y∈D
‖Sn+An+Tn+y – SnAnTny‖ + ‖yn+ – yn‖, (.)

where D is a bounded subset of C. Besides, we have

‖yn+ – yn‖ =
∥∥δn+un+ + ( – δn+)vn+ – δnun – ( – δn)vn

∥∥
=

∥∥δn+un+ – δn+un + δn+un – ( – δn+)vn + ( – δn+)vn

http://www.fixedpointtheoryandapplications.com/content/2013/1/193
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+ ( – δn+)vn+ – δnun – ( – δn)vn
∥∥

=
∥∥δn+(un+ – un) + (δn+ – δn)un + ( – δn+)(vn+ – vn) + (δn – δn+)vn

∥∥
≤ δn+‖un+ – un‖ + |δn+ – δn|‖un‖ + ( – δn+)‖vn+ – vn‖

+ |δn – δn+|‖vn‖. (.)

From (.) and Lemma ., we have un = Srnxn. This implies that

F(un,u) +

rn

〈u – un,un – xn〉 ≥  for all u ∈ C (.)

and

F(un+,u) +


rn+
〈u – un+,un+ – xn+〉 ≥  for all u ∈ C. (.)

Putting u = un+ in (.) and u = un in (.), we have

F(un,un+) +

rn

〈un+ – un,un – xn〉 ≥  (.)

and

F(un+,un) +


rn+
〈un – un+,un+ – xn+〉 ≥ . (.)

Summing up the last two inequalities and using (A), we obtain
〈
un+ – un,

un – xn
rn

–
un+ – xn+

rn+

〉
≥ .

This implies that
〈
un+ – un,un – un+ + un+ – xn –

rn
rn+

(un+ – xn+)
〉
≥ .

Hence,

‖un+ – un‖ ≤
〈
un+ – un,un+ – xn –

rn
rn+

(un+ – xn+)
〉

=
〈
un+ – un,un+ – xn+ + xn+ – xn –

rn
rn+

(un+ – xn+)
〉

=
〈
un+ – un,xn+ – xn +

(
 –

rn
rn+

)
(un+ – xn+)

〉

≤ ‖un+ – un‖
(

‖xn+ – xn‖ + 
rn+

|rn+ – rn|‖un+ – xn+‖
)

≤ ‖un+ – un‖
(

‖xn+ – xn‖ + 
a
|rn+ – rn|‖un+ – xn+‖

)
.

Then we have

‖un+ – un‖ ≤ ‖xn+ – xn‖ + 
a
|rn+ – rn|‖un+ – xn+‖. (.)
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From (.) and Lemma ., we have vn = Ssnxn. This implies that

F(vn, v) +

sn

〈v – vn, vn – xn〉 ≥  for all v ∈ C.

By using the same method as (.), we have

‖vn+ – vn‖ ≤ ‖xn+ – xn‖ + 
a
|sn+ – sn|‖vn+ – xn+‖. (.)

Substituting (.) and (.) into (.), we have

‖yn+ – yn‖ ≤ δn+‖un+ – un‖ + |δn+ – δn|‖un‖ + ( – δn+)‖vn+ – vn‖
+ |δn – δn+|‖vn‖

≤ δn+

(
‖xn+ – xn‖ + 

a
|rn+ – rn|‖un+ – xn+‖

)

+ ( – δn+)
(

‖xn+ – xn‖ + 
a
|sn+ – sn|‖vn+ – xn+‖

)
+ M|δn – δn+|

≤ ‖xn+ – xn‖ + 
a
|rn+ – rn|‖un+ – xn+‖

+

a
|sn+ – sn|‖vn+ – xn+‖ + M|δn – δn+|, (.)

whereM = supn∈N{‖un‖,‖vn‖}. Substituting (.) into (.), we have

‖wn+ –wn‖ ≤ sup
y∈D

‖Sn+An+Tn+y – SnAnTny‖ + ‖yn+ – yn‖

≤ sup
y∈D

‖Sn+An+Tn+y – SnAnTny‖ + ‖xn+ – xn‖

+

a
|rn+ – rn|‖un+ – xn+‖

+

a
|sn+ – sn|‖vn+ – xn+‖ + M|δn – δn+|. (.)

From (.), the conditions (iii), (iv) and {SnAnTn} satisfying the condition (R), we have

lim sup
n→∞

(‖wn+ –wn‖ – ‖xn+ – xn‖
) ≤ . (.)

From Lemma . and the definition of xn, we have

lim
n→∞‖xn –wn‖ = . (.)

From the definition of xn, we have

xn+ – xn = ( – βn)(wn – xn). (.)

From (.), (.) and the condition (ii), we have

lim
n→∞‖xn+ – xn‖ = .
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Next, we show that

lim
n→∞‖yn – xn‖ = .

From the definition of yn, we have

‖yn – xn‖ ≤ δn‖un – xn‖ + ( – δn)‖vn – xn‖. (.)

Next, we show that

lim
n→∞‖un – xn‖ = lim

n→∞‖vn – xn‖ = .

Let v ∈ F. From the definition of xn, we have

‖xn+ – v‖ ≤ βn‖xn – v‖ + ( – βn)
∥∥Sn(αnf (Tnyn) + ( – αn)Tnyn

)
– v

∥∥

≤ βn‖xn – v‖ + ( – βn)
∥∥αn

(
f (Tnyn) – v

)
+ ( – αn)(Tnyn – v)

∥∥

≤ βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (Tnyn) – v
∥∥ + ( – αn)‖Tnyn – v‖)

≤ βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (Tnyn) – v
∥∥ + ( – αn)‖yn – v‖)

≤ βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (Tnyn) – v
∥∥

+ ( – αn)
(
δn‖un – v‖ + ( – δn)‖vn – v‖)). (.)

From the firm nonexpansiveness of Srn and un = Srnxn, we have

‖un – v‖ = ‖Srnxn – Srnv‖

≤ 〈un – v,xn – v〉
=



(‖un – v‖ + ‖xn – v‖ – ‖un – xn‖

)
.

It implies that

‖un – v‖ ≤ ‖xn – v‖ – ‖un – xn‖. (.)

Since Ssn is a firmly nonexpansive mapping and vn = Ssnxn, by using the same method as
(.), we have

‖vn – v‖ ≤ ‖xn – v‖ – ‖vn – xn‖. (.)

Substituting (.), (.) into (.), we have

‖xn+ – v‖ ≤ βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (Tnyn) – v
∥∥

+ ( – αn)
(
δn‖un – v‖ + ( – δn)‖vn – v‖))

≤ βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (Tnyn) – v
∥∥

+ ( – αn)
(
δn

(‖xn – v‖ – ‖un – xn‖
)
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+ ( – δn)
(‖xn – v‖ – ‖vn – xn‖

)))
= βn‖xn – v‖ + ( – βn)

(
αn

∥∥f (Tnyn) – v
∥∥

+ ( – αn)
(
δn‖xn – v‖ – δn‖un – xn‖

+ ( – δn)‖xn – v‖ – ( – δn)‖vn – xn‖
))

= βn‖xn – v‖ + ( – βn)
(
αn

∥∥f (Tnyn) – v
∥∥

+ ( – αn)
(‖xn – v‖ – δn‖un – xn‖

– ( – δn)‖vn – xn‖
))

= βn‖xn – v‖ + ( – βn)αn
∥∥f (Tnyn) – v

∥∥

+ ( – αn)( – βn)
(‖xn – v‖ – δn‖un – xn‖

– ( – δn)‖vn – xn‖
)

= βn‖xn – v‖ + ( – βn)αn
∥∥f (Tnyn) – v

∥∥

+ ( – αn)( – βn)‖xn – v‖ – δn( – αn)( – βn)‖un – xn‖

– ( – δn)( – αn)( – βn)‖vn – xn‖

≤ ‖xn – v‖ + αn
∥∥f (Tnyn) – v

∥∥ – δn( – αn)( – βn)‖un – xn‖

– ( – δn)( – αn)( – βn)‖vn – xn‖. (.)

From (.), we have

δn( – αn)( – βn)‖un – xn‖ ≤ ‖xn – v‖ – ‖xn+ – v‖ + αn
∥∥f (Tnyn) – v

∥∥

– ( – δn)( – αn)( – βn)‖vn – xn‖

≤ (‖xn – v‖ + ‖xn+ – v‖)‖xn+ – xn‖ + αn
∥∥f (Tnyn) – v

∥∥

– ( – δn)( – αn)( – βn)‖vn – xn‖

≤ (‖xn – v‖ + ‖xn+ – v‖)‖xn+ – xn‖
+ αn

∥∥f (Tnyn) – v
∥∥.

From the conditions (i), (ii), (iv) and (.), we have

lim
n→∞‖un – xn‖ = . (.)

By using the method as (.), we have

lim
n→∞‖vn – xn‖ = . (.)

From (.), (.) and (.), we have

lim
n→∞‖yn – xn‖ = . (.)

Next, we show that

{yn} ∈ F̃
({Sn}) ∩ F̃

({Tn}
)
. (.)
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Since

‖SnAnTnyn – yn‖ ≤ ‖SnAnTnyn – xn‖ + ‖xn – yn‖
= ‖wn – xn‖ + ‖xn – yn‖,

from (.) and (.), we have

lim
n→∞‖SnAnTnyn – yn‖ = .

Since {yn} is bounded, we have

{yn} ∈ F̃
({SnAnTn}

)
. (.)

Since F̃({SnAnTn}) = F̃({Sn})∩ F̃({Tn}) and (.), we have (.).
Next, we show that

lim
n→∞‖Snmn –mn‖ = ,

wheremn = αnf (Tnyn) + ( – αn)Tnyn. From the definition ofmn, we have

‖Snmn –mn‖ ≤ ‖Snmn – xn‖ + ‖mn – xn‖
= ‖Snmn – xn‖ +

∥∥αn
(
f (Tnyn) – xn

)
+ ( – αn)(Tnyn – xn)

∥∥
≤ ‖wn – xn‖ + αn

∥∥f (Tnyn) – xn
∥∥ + ( – αn)‖Tnyn – xn‖

≤ ‖wn – xn‖ + αn
∥∥f (Tnyn) – xn

∥∥
+ ‖Tnyn – yn‖ + ‖yn – xn‖.

From (.), (.), (.) and the condition (i), we have

lim
n→∞‖Snmn –mn‖ = .

Next, we show that

lim sup
n→∞

〈
f (z) – z,mn – z

〉 ≤ ,

where z = PFf (z). Since {yn} is bounded, there exists a subsequence {yni} of {yn} converging
weakly to v, that is, yni ⇀ v as i → ∞. From (.), {Sn} and {Tn} satisfying the condition
(Z), we have v ∈ F({Sn})∩ F({Tn}).
Define the mapping Q : C → C by

Q(x) = δSrnx + ( – δ)Ssnx for all x ∈ C,

where limn→∞ δn = δ ∈ (, ). From the nonexpansiveness of Srn , Ssn and Lemma ., we
have

F(Q) = F(Srn )∩ F(Ssn ) = EP(F)∩ EP(F).
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From the definitions of yn and Q, we have

‖xn –Qxn‖ ≤ ‖xn – yn‖ + ‖yn –Qxn‖
≤ ‖xn – yn‖ +

∥∥δnun + ( – δn)vn – δSrnxn – ( – δ)Ssnxn
∥∥

≤ ‖xn – yn‖ + |δn – δ|‖un‖ + |δn – δ|‖vn‖. (.)

From (.), (.) and the condition (iv), we have

lim
n→∞‖xn –Qxn‖ = . (.)

From (.) and yni ⇀ v as i→ ∞, we have xni ⇀ v as i → ∞. By (.), xni ⇀ v as i → ∞
and Lemma ., we have

v ∈ F(Q) = EP(F)∩ EP(F).

Hence,

v ∈ EP(F)∩ EP(F)∩ F
({Sn}) ∩ F

({Tn}
)
= F. (.)

By (.), (.) and the condition (i), we have

lim sup
n→∞

〈
f (z) – z,mn – z

〉
= lim sup

n→∞
(
αn

〈
f (z) – z, f (Tnyn) – Tnyn

〉
+

〈
f (z) – z,Tnyn – z

〉)
= lim

i→∞
(
αni

〈
f (z) – z, f (Tniyni ) – Tniyni

〉
+

〈
f (z) – z,Tniyni – z

〉)
= lim

i→∞
(
αni

〈
f (z) – z, f (Tniyni ) – Tniyni

〉
+

〈
f (z) – z,Tniyni – yni

〉
+

〈
f (z) – z, yni – z

〉)
=

〈
f (z) – z, v – z

〉 ≤ .

Finally, we show that the sequence {xn} converges strongly to z = PFf (z). From the defini-
tion of {xn}, we have

‖xn+ – z‖ =
∥∥βn(xn – z) + ( – βn)(Snmn – z)

∥∥

≤ βn‖xn – z‖ + ( – βn)‖Snmn – z‖

≤ βn‖xn – z‖ + ( – βn)‖mn – z‖. (.)

Sincemn = αnf (Tnyn) + ( – αn)Tnyn, we have

‖mn – z‖ =
∥∥αn

(
f (Tnyn) – z

)
+ ( – αn)(Tnyn – z)

∥∥

≤ ( – αn)‖Tnyn – z‖ + αn
〈
f (Tnyn) – z,mn – z

〉
≤ ( – αn)‖xn – z‖ + αn

〈
f (Tnyn) – f (z),mn – z

〉
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+ αn
〈
f (z) – z,mn – z

〉
≤ ( – αn)‖xn – z‖ + αnα‖xn – z‖‖mn – z‖

+ αn
〈
f (z) – z,mn – z

〉
≤ ( – αn)‖xn – z‖ + αnα

(‖xn – z‖ + ‖mn – z‖)
+ αn

〈
f (z) – z,mn – z

〉
= ( – αn)‖xn – z‖ + αnα‖xn – z‖ + αnα‖mn – z‖

+ αn
〈
f (z) – z,mn – z

〉
=

(
 – αn( – α)

)‖xn – z‖ + αnα‖mn – z‖

+ αn
〈
f (z) – z,mn – z

〉
.

This implies that

‖mn – z‖ ≤  – αn( – α)
 – αnα

‖xn – z‖ + αn

 – αnα

〈
f (z) – z,mn – z

〉
=

 – αnα + αnα – αn( – α)
 – αnα

‖xn – z‖ + αn

 – αnα

〈
f (z) – z,mn – z

〉
=

(
 –

αn( – α)
 – αnα

)
‖xn – z‖ + αn

 – αnα

〈
f (z) – z,mn – z

〉
. (.)

Substituting (.) into (.), we have

‖xn+ – z‖ ≤ βn‖xn – z‖ + ( – βn)‖mn – z‖

≤ βn‖xn – z‖ + ( – βn)
((

 –
αn( – α)
 – αnα

)
‖xn – z‖

+
αn

 – αnα

〈
f (z) – z,mn – z

〉)

≤ βn‖xn – z‖ + ( – βn)
(
 –

αn( – α)
 – αnα

)
‖xn – z‖

+
αn( – βn)
 – αnα

〈
f (z) – z,mn – z

〉
= βn‖xn – z‖ +

(
( – βn) –

αn( – α)( – βn)
 – αnα

)
‖xn – z‖

+
αn( – βn)
 – αnα

〈
f (z) – z,mn – z

〉
=

(
 –

αn( – α)( – βn)
 – αnα

)
‖xn – z‖

+
αn( – βn)( – α)

 – αnα

〈f (z) – z,mn – z〉
( – α)

. (.)

Applying (.), the conditions (i), (ii) and Lemma ., we have {xn} converges strongly
to z = PFf (z). From (.), (.) and (.), it is easy to see that {yn}, {un}, {vn} converge
strongly to z = PFf (z). This completes the proof. �
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4 Applications
In this section, we give three examples for a strongly nonexpansive sequence and prove a
strong convergence theorem associated to the variational inequality problem.
Before we give three examples, we need the following definition and lemmas.

Definition . Let C be a nonempty closed convex subset of a real Hilbert space H .
A mapping A : C → H is called an α-inverse strongly monotone mapping if there exists
an α >  such that

〈x – y,ax –Ay〉 ≥ α‖Ax –Ay‖

for all x, y ∈ C.
A mapping A : C →H is called α-strongly monotone if there exists α >  such that

〈x – y,ax –Ay〉 ≥ α‖x – y‖

for all x, y ∈ C.
A mapping T : C → C is called a κ-strictly pseudo-contractive mapping if there is κ ∈

[, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥∥(I – T)x – (I – T)y

∥∥ (.)

for all x, y ∈ C.
Then (.) is equivalent to

〈
x – y, (I – T)x – (I – T)y

〉 ≥  – κ


∥∥(I – T)x – (I – T)y

∥∥

for all x, y ∈ C.

The set of solutions of the variational inequality problem of the mapping A : C → H is
denoted by VI(C,A), that is,

VI(C,A) =
{
x ∈ C : 〈y – x,Ax〉 ≥ ,∀y ∈ C

}
.

Let A,B : C → H be two mappings. In , Kangtunyakarn [] modified VI(C,A) as
follows:

VI
(
C,aA + ( – a)B

)
=

{
x ∈ C :

〈
y – x,

(
aA + ( – a)B

)
x
〉 ≥ ,∀y ∈ C and a ∈ (, )

}
.

Remark . If T : C → C is a κ-strictly pseudo-contractive mapping with F(T) �= ∅, then
(I – T) is a –κ

 -inverse strongly monotone mapping and F(T) = VI(C, I – T).

Lemma . (See []) Let H be a Hilbert space, let C be a nonempty closed convex subset
of H , and let A be a mapping of C into H . Let u ∈ C. Then, for λ > ,

u = PC(I – λA)u ⇔ u ∈ VI(C,A),

where PC is the metric projection of H onto C.
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Lemma . (See []) Let C be a nonempty closed convex subset of a real Hilbert space H ,
and let A,B : C → H be α and β-inverse strongly monotone mappings, respectively, with
α,β >  and VI(C,A)∩VI(C,B) �= ∅. Then

VI
(
C,aA + ( – a)B

)
= VI(C,A)∩VI(C,B), ∀a ∈ (, ). (.)

Furthermore, if  < γ < η, where η = min{α,β}, we have I – γ (aA + ( – a)B) is a nonex-
pansive mapping.

Example . Let T : C → C be a κ-strictly pseudo-contractive mapping with F(T) �= ∅.
Let {λn} be a sequence of positive real numbers such that

 < inf
n∈N

λn ≤ sup
n∈N

λn <  – κ and lim
n→∞(λn+ – λn) = ,

and let {Tn} be a sequence of mappings defined by Tn = PC(I – λn(I – T)). Then {Tn} is a
strongly nonexpansive sequence satisfying the conditions (R) and (Z).

Proof Since T is a κ-strictly pseudo-contractive mapping, then I – T is –κ
 -inverse

strongly monotone. From Example . in [], we have {Tn} is a strongly nonexpansive
sequence satisfying the conditions (R) and (Z). �

Example . LetA,B : C →H be α,β-inverse stronglymonotonemappings, respectively,
with γ̄ = min{α,β} and VI(C,A) ∩ VI(C,B) �= ∅. Let {λn} be a sequence of positive real
numbers such that

 < inf
n∈N

λn ≤ sup
n∈N

λn < γ̄ and lim
n→∞(λn+ – λn) = ,

and let {Tn} be a sequence ofmappings defined byTn = PC(I–λnD), whereD = aA+(–a)B
for all a ∈ (, ). Then {Tn} is a strongly nonexpansive sequence satisfying the conditions
(R) and (Z).

Proof Let x, y ∈ C, then we have

〈x – y,Dx –Dy〉 = 〈
x – y,

(
aA + ( – a)B

)
x –

(
aA + ( – a)B

)
y
〉

≥ a〈x – y,Ax –Ay〉 + ( – a)〈x – y,Bx – By〉
≥ aα‖Ax –Ay‖ + ( – a)β‖Bx – By‖

≥ γ̄
(∥∥aAx + ( – a)Bx – aAy – ( – a)By

∥∥)
≥ γ̄ ‖Dx –Dy‖.

Then D is a γ̄ -inverse strongly monotone mapping. From Example . in [], we have
that {Tn} is a strongly nonexpansive sequence satisfying the conditions (R) and (Z). �

Example . Let A : C → H be an α-strongly monotone and L-Lipschitzian mapping
with VI(C,A) �= ∅. Let {λn} be a sequence of positive real numbers such that

 < inf
n∈N

λn ≤ sup
n∈N

λn <
α
L

and lim
n→∞(λn+ – λn) = ,
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and let {Tn} be a sequence ofmappings defined byTn = PC(I–λnA). Then {Tn} is a strongly
nonexpansive sequence satisfying the conditions (R) and (Z).

Proof Let x, y ∈ C, then we have

〈x – y,Ax –Ay〉 ≥ α‖x – y‖

≥ α

L
‖Ax –Ay‖.

Then A is an α

L -inverse strongly monotone mapping. From Example . in [], we have
that {Tn} is a strongly nonexpansive sequence satisfying the conditions (R) and (Z). �

Example . (See []) Let {Rn} be a sequence of nonexpansive mappings of C into itself
having a common fixed point, and let {μn} be a sequence in [, ]. For each n ∈ N, a W -
mapping [] Tn generated by Rn,Rn–, . . . ,R and μn,μn–, . . . ,μ is defined as follows:

Un,n = μnRn + ( –μn)I,

Un,n– = μn–Rn–Un,n + ( –μn–)I,

Un,n– = μn–Rn–Un,n– + ( –μn–)I,

...

Un,k = μkRkUn,k+ + ( –μk)I,

...

Un, = μRUn, + ( –μ)I,

Tn =Un, = μRUn, + ( –μ)I.

If  < μ ≤  and  < μn ≤ b, for all n ≥  and  < b < , then {Tn} satisfies the conditions
(R) and (Z).

By using our main result and these three examples, we obtain the following results.

Theorem . Let H be a Hilbert space, let C be a nonempty closed convex subset of H .
Let F and F be two bifunctions from C × C into R satisfying (A)-(A), respectively. Let
T : C → C be a κ-strictly pseudo-contractivemapping with F(T) �= ∅. Let {λn} be a sequence
of positive real numbers such that

 < inf
n∈N

λn ≤ sup
n∈N

λn <  – κ and lim
n→∞(λn+ – λn) = ,

and let {Tn} be a sequence of mappings defined by Tn = PC(I – λn(I – T)). Let {Rn} be a
sequence of nonexpansive mappings of C into itself having a common fixed point, and let
{μn} be a sequence in [, ].For each n ∈N,Wn is aW-mapping generated by Rn,Rn–, . . . ,R

and μn,μn–, . . . ,μ. Assume that F = EP(F)∩ EP(F)∩ F({Rn})∩ F(T) �= ∅. Let f : C → C
be a contractive mapping with α ∈ (,  ). Let {xn}, {un}, {vn} be sequences generated by
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x,u, v ∈ C and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F(un,u) + 
rn 〈u – un,un – xn〉 ≥ ,

F(vn, v) + 
sn 〈v – vn, vn – xn〉 ≥ ,

yn = δnun + ( – δn)vn,

xn+ = βnxn + ( – βn)Wn(αnf (Tnyn) + ( – αn)Tnyn), ∀n≥ ,

(.)

where {αn}, {βn} ∈ [, ], {rn}, {sn} ∈ (a,b) ∈ [, ]. Assume that the following conditions
hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iii)

∑∞
n= |rn+ – rn|, ∑∞

n= |sn+ – sn| <∞;
(iv) limn→∞ δn = δ ∈ (, ).

Then the sequences {xn}, {un}, {vn}, {yn} converge strongly to z = PFf (z).

Proof From Example ., we have {Tn} is a strongly nonexpansive sequence satisfying
the conditions (R) and (Z). From Lemma ., we have F(Tn) = F(PC(I – λn(I – T))) =
VI(C, I – T) = F(T) for all n ∈ N. It implies that F({Tn}) = F(T). From [], we have
F({Wn}) = F({Rn}). It follows that F = EP(F) ∩ EP(F) ∩ F({Wn}) ∩ F({Tn}) �= ∅. From Ex-
ample ., we have {Wn} is a nonexpansive sequence satisfying the conditions (R) and (Z).
By Theorem ., we can conclude the desired result. �

Theorem . Let H be a Hilbert space, let C be a nonempty closed convex subset of H .
Let F and F be two bifunctions from C × C into R satisfying (A)-(A), respectively. Let
A,B : C →H be α,β-inverse strongly monotone mappings, respectively, with γ̄ =min{α,β}
and VI(C,A)∩VI(C,B) �= ∅. Let {λn} be a sequence of positive real numbers such that

 < inf
n∈N

λn ≤ sup
n∈N

λn < γ̄ and lim
n→∞(λn+ – λn) = ,

and let {Tn} be a sequence of mappings defined by Tn = PC(I –λnD),where D = aA+(–a)B
for all a ∈ (, ). Let {Rn} be a sequence of nonexpansive mappings of C into itself hav-
ing a common fixed point, and let {μn} be a sequence in [, ]. For each n ∈ N, Wn is a
W-mapping generated by Rn,Rn–, . . . ,R and μn,μn–, . . . ,μ. Assume that F = EP(F) ∩
EP(F) ∩ F({Rn}) ∩ VI(C,A) ∩ VI(C,B) �= ∅. Let f : C → C be a contractive mapping with
α ∈ (,  ). Let {xn}, {un}, {vn} be sequences generated by x,u, v ∈ C and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F(un,u) + 
rn 〈u – un,un – xn〉 ≥ ,

F(vn, v) + 
sn 〈v – vn, vn – xn〉 ≥ ,

yn = δnun + ( – δn)vn,

xn+ = βnxn + ( – βn)Wn(αnf (Tnyn) + ( – αn)Tnyn), ∀n≥ ,

(.)

where {αn}, {βn} ∈ [, ], {rn}, {sn} ∈ (a,b) ∈ [, ]. Assume that the following conditions
hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
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(iii)
∑∞

n= |rn+ – rn|, ∑∞
n= |sn+ – sn| <∞;

(iv) limn→∞ δn = δ ∈ (, ).
Then the sequences {xn}, {un}, {vn}, {yn} converge strongly to z = PFf (z).

Proof From Example ., we have {Tn} is a strongly nonexpansive sequence satisfying
the conditions (R) and (Z). From Lemmas . and ., we have F(Tn) = F(PC(I – λnD)) =
VI(C,D) = VI(C,A) ∩ VI(C,B) for all n ∈ N. It implies that F({Tn}) = VI(C,A) ∩ VI(C,B).
From [], we have F({Wn}) = F({Rn}). It follows that F = EP(F) ∩ EP(F) ∩ F({Wn}) ∩
F({Tn}) �= ∅. From Example ., we have {Wn} is a nonexpansive sequence satisfying the
conditions (R) and (Z). By Theorem ., we can conclude the desired result. �

Theorem . Let H be a Hilbert space, let C be a nonempty closed convex subset of H .
Let F and F be two bifunctions from C × C into R satisfying (A)-(A), respectively. Let
A : C → H be an α-strongly monotone and L-Lipschitzian mapping with VI(C,A) �= ∅. Let
{λn} be a sequence of positive real numbers such that

 < inf
n∈N

λn ≤ sup
n∈N

λn <
α
L

and lim
n→∞(λn+ – λn) = ,

and let {Tn} be a sequence of mappings defined by Tn = PC(I – λnA). Let {Rn} be a sequence
of nonexpansive mappings of C into itself having a common fixed point, and let {μn} be a
sequence in [, ]. For each n ∈ N, Wn is a W-mapping generated by Rn,Rn–, . . . ,R and
μn,μn–, . . . ,μ. Assume that F = EP(F) ∩ EP(F) ∩ F({Rn}) ∩ VI(C,A) �= ∅. Let f : C → C
be a contractive mapping with α ∈ (,  ). Let {xn}, {un}, {vn} be sequences generated by
x,u, v ∈ C and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F(un,u) + 
rn 〈u – un,un – xn〉 ≥ ,

F(vn, v) + 
sn 〈v – vn, vn – xn〉 ≥ ,

yn = δnun + ( – δn)vn,

xn+ = βnxn + ( – βn)Wn(αnf (Tnyn) + ( – αn)Tnyn), ∀n≥ ,

(.)

where {αn}, {βn} ∈ [, ], {rn}, {sn} ∈ (a,b) ∈ [, ]. Assume that the following conditions
hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iii)

∑∞
n= |rn+ – rn|, ∑∞

n= |sn+ – sn| <∞;
(iv) limn→∞ δn = δ ∈ (, ).

Then the sequences {xn}, {un}, {vn}, {yn} converge strongly to z = PFf (z).

Proof From Example ., we have {Tn} is a strongly nonexpansive sequence satisfying the
conditions (R) and (Z). From Lemma ., we have F(Tn) = F(PC(I –λnA)) = VI(C,A) for all
n ∈ N. It implies that F({Tn}) = VI(C,A). From [], we have F({Wn}) = F({Rn}). It follows
that F = EP(F) ∩ EP(F) ∩ F({Wn}) ∩ F({Tn}) �= ∅. From Example ., we have {Wn} is
a nonexpansive sequence satisfying the conditions (R) and (Z). By Theorem ., we can
conclude the desired result. �
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Theorem. Let H be aHilbert space, let C be a nonempty closed convex subset of H . Let
F be a bifunction fromC×C intoR satisfying (A)-(A), and let {Sn} and {Tn} be sequences
of nonexpansive self-mappings of C with F = EP(F) ∩ F({Sn}) ∩ F({Tn}) �= ∅. Let {Tn} or
{Sn} be a sequence of strongly nonexpansive mappings, and let f : C → C be a contractive
mapping with α ∈ (,  ). Let {xn}, {un} be sequences generated by x,u ∈ C and

⎧⎨
⎩F(un,u) + 

rn 〈u – un,un – xn〉 ≥ ,

xn+ = βnxn + ( – βn)Sn(αnf (Tnun) + ( – αn)Tnun), ∀n≥ ,
(.)

where {αn}, {βn} ∈ [, ], {rn}, {sn} ∈ (a,b) ∈ [, ]. Assume that the following conditions
hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iii)

∑∞
n= |rn+ – rn| <∞;

(iv) {Sn} and {Tn} satisfy the conditions R and Z.
Then the sequences {xn}, {un} converge strongly to z = PFf (z).

Proof Put F ≡ F, sn = rn and un = vn. From Theorem ., we can conclude the desired
conclusion. �

The following result can be obtained from Theorem .. We, therefore, omit the proof.

Theorem . Let H be a Hilbert space, let C be a nonempty closed convex subset of H .
Let Fi be bifunctions from C × C into R, for every i = , , . . . ,N , satisfying (A)-(A), and
let {Sn} and {Tn} be sequences of nonexpansive self-mappings of C with F =

⋂N
i= EP(Fi) ∩

F({Sn}) ∩ F({Tn}) �= ∅. Let {Tn} or {Sn} be a sequence of strongly nonexpansive mappings,
and let f : C → C be a contractive mapping with α ∈ (,  ). Let {xn}, {un}, {vn} be sequences
generated by x,ui ∈ C, for every i ∈ , , . . . ,N , and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fi(uin,ui) +


rin

〈u – uin,uin – xn〉 ≥ ,

yn =
∑N

i= δ
i
nuin,

xn+ = βnxn + ( – βn)Sn(αnf (Tnyn) + ( – αn)Tnyn), ∀n≥ ,

(.)

where {αn}, {βn} ∈ [, ], {rn}, {sn} ∈ (a,b) ∈ [, ]. Assume that the following conditions
hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iii)

∑∞
n= |rin+ – rin| <∞, ∀i = , , . . . ,N ;

(iv)
∑N

i= δ
i
n = ;

(v) limn→∞ δin = δi ∈ (, ), ∀i = , , . . . ,N ;
(vi) {Sn} and {Tn} satisfy the conditions R and Z.

Then the sequences {xn}, {yn} and {uin}, for every i = , , . . . ,N , converge strongly to z =
PFf (z).
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