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Abstract

The purpose of this paper is to prove a strong convergence theorem of an iterative
scheme associated to a strongly nonexpansive sequence for finding a common
element of the set of equilibrium problems and the set of fixed point problems of a
pair of sequences of nonexpansive mappings where one of them is a strongly
nonexpansive sequence. Moreover, in the last section, by using our main result, we
obtain a strong convergence theorem of an iterative scheme associated to a strongly
nonexpansive sequence for finding a common element of the set of a finite family of
equilibrium problems and the set of fixed point problems of a pair of sequences of
nonexpansive mappings where one of them is a strongly nonexpansive sequence in
a Hilbert space, and we also give some examples to support our main result.

Keywords: nonexpansive mappings; strongly nonexpansive sequence; equilibrium
problem; fixed point

1 Introduction

Throughout this paper, we assume that H is a real Hilbert space with the inner product (-, -)
and the norm || - ||. A mapping T of C into itself is called nonexpansiveif || Tx— Ty|| < ||x—y||
for all x,y € H. The set of fixed points of T is denoted by F(T), i.e., F(T) ={x €e H: Tx =
x}. It is known that F(T) is closed and convex if T is nonexpansive. Let Pc be a metric
projection of H onto C, i.e., for x € H, Pcx satisfies the property

€ — Pcx|| = min [lx - y||.
yeC

We use ' =" and ' —” to denote weak and strong convergence, respectively. Let {T},} be

a sequence of mappings of C into H. The set of common fixed points of {T}} is denoted

by F({T,}) = (-, F(T,). Recall the main concepts as follows:

(1) A sequence {z,} in C is said to be an approximate fixed point sequence of {T,} if

zy — Tyzy, — 0. The set of all bounded approximate fixed point sequences of {T},} is
denoted by ﬁ({T,,}); see [1]. It is clear that if {T},} has a common fixed point, then
F(T,)) is nonempty.
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(2) A sequence {T,} is said to be a strongly nonexpansive sequence if each T}, is
nonexpansive and

Xn _yn - (Tnxn - Tnyn) - 0;

whenever {x,} and {y,} are sequences in C such that {x, — y,} is bounded and
1 = Yull = | Tt = Toyall = 0.
(3) A sequence {T,} having a common fixed point is said to satisfy the condition (Z) if
every weak cluster point of {x,} is a common fixed point whenever {x,} € E(T,)).
(4) A sequence {T,} of nonexpansive mappings of C into H is said to satisfy the
condition (R) if

lim sup || T2y — Tyl =0

n—00 yeD
for every nonempty bounded subset D of C; see [2].

Example 1.1 Let R be a set of real numbers. For every n € N, the mapping 7, : R — R is
defined by T),x = %x for allx e R.
Then {7} is a nonexpansive sequence, but it is not a strongly nonexpansive sequence.

Example 1.2 For every n € N, the mapping 7, : [0,1] — [0,1] is defined by T,x = (1 - %)x
forall x € [0,1].
Then {7} is a strongly nonexpansive sequence.

Solution It is easy to see that T}, is a nonexpansive mapping for all # € N.

Let {x,} and {y,} be sequences in [0,1] with {x, — y,} being bounded and |x, — y,| —
| Tyxp — Tpyu| — 0 as 1 — oco.

Since x, — ¥ — (Tyxy — Tyyy) = %(x,, —yy), for all n € N, then we have

Xn—Yn— (Tnxn - Tnj/n) — 0 asn— oo.
Then {7} is a strongly nonexpansive sequence.

Let G: C x C — R be a bifunction. The equilibrium problem for G is to determine its
equilibrium points, i.e., the set

EP(G) = {x€ G:G(x,y) > 0,Vy € C}.

It is a unified model of several problems, namely, variational inequality problem, comple-
mentary problem, saddle point problem, optimization problem, fixed point problem, etc.;
see [3-5]. Several iterative methods have been proposed to solve the equilibrium problem;
see, for instance, [6-8]. In 2005, Combettes and Hirstoaga [4] introduced some iterative
schemes of finding the best approximation to the initial data when EP(G) is nonempty and
proved a strong convergence theorem.

Also in [4], Combettes and Hiratoaga, following [3], defined S, : H — C by

1
Sy(x) = {zeC:G(z,y)+ -(y—z,z-x)>0,Vy EC}.
r
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They proved that under suitable hypotheses S, is single-valued and firmly nonexpansive
with F(S,) = EP(G).
In 2007, Takahashi and Takahashi [9] proved the following theorem.

Theorem 1.3 Let C be a nonempty closed convex subset of H. Let G be a bifunction from
C x C to R satisfying

(Al) G(x,x)=0,Vx e C;

(A2) G is monotone, i.e., G(x,y) + G(y,x) < 0,Vx,y € C;

(A3) Va,y,z € C, lim;_, o+ G(tz + (1 - t)x,y) < G(x,%);

(A4) Vx € C,y+— Gl(x,y) is convex and lower semicontinuous;
and let S be a nonexpansive mapping of C into H such that F(S) N EP(G) # (. Let f be a
contraction of H into itself, and let {x,} and {u,} be sequences generated by x; € H and

1
G y) + —(y -ttty —%4) >0, VyeC,
4

n

Xn+l = O[r(f(xn) + (1 - a,)Su,

forall n e N, where {«,} C [0,1] and {r,} C (0,1) satisfy
(C1) lim,_ oo, = 0;
(C2) Y 2 an =00
(C3) oy lter — o] < 005
and liminf,_.oor, > 0 and Y 2; |yt — 14| < 00.
Then {x,} and {u,} converge strongly to z € F(S) N EP(G), where z = Prs)nepc)f (2).

Very recently, in 2011, Aoyama and Kimura [10] proved a strong convergence theorem
of the iterative scheme of {x,} associated to a strongly nonexpansive sequence as follows.

Theorem 1.4 Let H be a Hilbert space, let C be a nonempty closed convex subset of H,
and let {S,} and {T,} be sequences of nonexpansive self-mappings of C. Suppose that F =
F({S,}) N F({T,}) is nonempty, both {S,} and {T,} satisfy the conditions (R) and (Z), and
{S,} or {T},} is a strongly nonexpansive sequence. Let {a,,} and {B,} be sequences in [0, 1]

such that
oo
lim a, =0, Y ay=00 and O<liminfp, <limsupp, <1.
n—00 ) n—00 00

Let x,u € C and let {x,} be a sequence in C defined by x; =x € C and
Xus1 = Bun + (1 - ,Bn)Sn (anu + (1 - an)Tnxn)
foralln e N. Then {x,} converges strongly to Pru.

For x1,u,v € C, let {u,}, {v,}, {y»} and {x,} be the sequences defined by

Fl(un:u)+i<u_un:un_xn>Zor
E(w,v)+Lv-v,,v,—x >0,
2(n ) Sn< nVn n) (1'1)
Yn = Splhy + (1 - 671)1’;'1’

Xpa1 = By + (1 - ,Bn)Sn(anf(Tnyn) +(1- an)Tnyn): Vn=>1,
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where f : C — C is a contractive mapping with « € (0, %) and {S,}, {T,} are sequences of
nonexpansive mappings, one of them is a strongly nonexpansive sequence.

In this paper, inspired and motivated by [10] and [9], we prove that a strong conver-
gence theorem of the iterative scheme {x, } defined by (1.1) converges strongly to z = Pgf(2),
where F = EP(F;) N EP(Fy) N F({S,}) N F({T,}), under the conditions (R) and (Z) and suit-
able conditions of {r,}, {s,}, {@.}, {B.} and {3,}.

2 Preliminaries
In this section, we need the following lemmas to prove our main result in the next section.

Lemma 2.1 (See [11]) Given x € H and y € C. Then Pcx = y if and only if the following
inequality holds:

(x-yy—-2)>0, VzeC.
Lemma 2.2 (See [12]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sps1 =1 —ay)sy +a,B,, Vu=>0,

where {a,.}, {Bn} satisfy the conditions

(D) {etn} € [0,1], 357 0t = 005

(2) limsup,_, . B <0 0r Y o2 |l < 0.
Then lim,_, o s, = 0.

Lemma 2.3 (See [13]) Let {x,} and {z,} be bounded sequences in a Banach space X, and
let {B,} be a sequence in [0,1] with 0 < liminf,_, o B, <limsup,_, ., B, < 1. Suppose that

Xnsl = ;ann + (1 - ﬂn)zn
for all integers n > 0 and

lim Sup(”ZVl+1 _Zn” - ”xn+1 _xn”) <0.
n—00

Then lim,,_, o ||x, — z,|| = 0.

Lemma 2.4 (See [14]) Let C be a closed convex subset of a strictly convex Banach space E.
Let {T, : n € N} be a sequence of nonexpansive mappings on C. Suppose that (-, F(T,) is
nonempty. Let {.,,} be a sequence of positive numbers with ) -, A, = 1. Then a mapping S
on C defined by

S(x) = iky, T.x
n=1

for all x € C is well defined, nonexpansive and F(S) = (e, F(T,) holds.

Lemma 2.5 (See [4]) Let C be a nonempty closed convex subset of a Hilbert space H, and
let G: C x C — R satisfy
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(Al) G(x,x)=0,Vx e C;

(A2) G is monotone, i.e., G(x,y) + G(y,x) <0, Vx,y € C;

(A3) Vx,y,z€ C, lim o+ G(tz + 1 - t)x,y) < G(x,);

(A4) Vx € C,y > Gl(x,y) is convex and lower semicontinuous.
Forx € H and r > 0, define a mapping S, : H — C as follows:

1
Sy(x) = {zeC:G(z,y)+ ;(y—z,z—x) >0,Vye C}.

Then S, is well defined and the following hold:
(1) S, is single-valued,;
(2) S, is firmly nonexpansive, i.e., ||S,(x) — S,¥)||* < (S;(x) = S,(y), % - y), Vx,y € H;
(3) F(S,) = EP(G);
(4) EP(QG) is closed and convex.

Lemma 2.6 (See [11]) (Demiclosedness principle) Assume that T is a nonexpansive self-
mapping of a closed convex subset C of a Hilbert space H. If T has a fixed point, then I - T
is demiclosed. That is, whenever {x,} is a sequence in C weakly converging to some x € C
and the sequence {(I — T)x,} converges strongly to some v, it follows that (I — T)x = y. Here,
1 is the identity mapping of H.

Lemma 2.7 Let H be a real Hilbert space. Then, for all x,y € H,
ll+ y11 < [l%l1* + 2(p, + 9).

Lemma 2.8 (See [10]) Let H be a Hilbert space, let C be a nonempty subset of H, and let
{S,} and {T,,} be the sequences of nonexpansive self-mappings of C. Suppose that {S,} and
{T,} satisfy the condition (R) and that {T,y: n € N,y € D} is bounded for any bounded
subset D of C. Then {S, T,} satisfies the condition (R).

Lemma 2.9 (See [1]) Let H be a Hilbert space, let C be a nonempty subset of H, and let
{S,} and {T,} be the sequences of nonexpansive self-mappings of C. Suppose that {S,} or
{T,} is a strongly nonexpansive sequence and that F {s,h n F ({T,}) is nonempty. Then
F{S:) NEAT,Y) = FUS. T

3 Main result

Theorem 3.1 Let H be a Hilbert space, let C be a nonempty closed convex subset of H. Let
Fy and F, be two bifunctions from C x C into R satisfying (Al)-(A4), respectively, and let
{Sn} and {T,} be sequences of nonexpansive self-mappings of C with F = EP(F;) N EP(F;) N
F({S,}) NF({T,}) # 0. Let {T,} or {S,} be a sequence of strongly nonexpansive mappings,
and letf : C — C be a contractive mapping with « € (0, %). Let {x,}, {u,}, {vn} be sequences
generated by x,,u,v € C and

Fl(un:u)+i<u_un:un_xn>Zor
E(w,v)+Lv-v,,v,—x >0,
2(n ) Sn< nVn n) (3'1)
Yn = Splhy + (1 - 671)1’;'1’

Xpa1 = By + (1 - ,Bn)Sn(anf(Tnyn) +(1- an)Tnyn): Vn=>1,
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where {a,},{Bn} € [0,1], {r,},{sn} € (a,b) € [0,1]. Assume that the following conditions
hold:

(i) limy ooy =0andy o) o, = 00;

(i) 0<liminf,_ oo By <limsup,_, . Bu<1;

(i) 0 [Tnet = Tuls 2op2o Isnen = sul < 00;

(iv) lim,_ 008, =38 € (0,1);

(v) {Su} and {T,)} satisfy the conditions R and Z.
Then the sequences {x,}, {ut,}, {vn}, {yn} converge strongly to z = Pgf (2).

Proof Letv e F. From the definition of x,,, we have

%1 = VIl = | BuCen = v) + (L= B (Su(@af (Toyn) + (1= ) Ty) = v) |
< Bullxw = VIl + (1= Ba) | anf (Tyn) + (1 = ) Ty = v |
< Bulln = vl + A = Ba) (@ [/ (Tuyn) = v|| + @ = )| Tuyu = vll)
< Bull%n = vIl + A = Ba) (eu |/ (Tuyn) = W)|| + | f () - v
+ (L= a) I Tyn = vI)
< Bulltw = VIl + (1= Ba) (@nerllyn — VIl + et [ f(v) = |
+ (L= an)llyn vl
= Bulln = vl + (1= Bo) (e f ) -]
+ (1= an@ = @) g — V). (32)
From Lemma 2.5 and (3.1), we have EP(F,) = F(S,,), EP(F,) = F(Sy,), Sy, %, = u, and
Ss,%u = V. By v € F and the nonexpansiveness of S, and S;,, we have
1y = VIl = || 8ot = v) + (A = 8,) (v = )|
< Sullttn = VIl + (1= 8,)l|v = V|
= 81y, % = VIl + (1= 8,) 1S5, %0 — V|
< llxn = vl (33)

Substituting (3.3) into (3.2), we have

%1 = VIl < Bulln = vIl + A = Bu) (e [ f () = v
+ (1= s =) llyn —vll)
< Bulln = vl + A= B (cu[f () = v
+ (1- s - ) [lxn = v])
= Bullxn = vIl + (1 = B [f () = V|
+ (1= B0) (1 - an1 - @) [l = V|
= (1= Buan|[f ) = v] + (1 - au(1 = B)A - @) 20 — VI
Ilf( - v }
-

< max{ I, — V||, ——
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By inductign we can cgnclude thai {x,} is bour~1ded and so are {u,}, {v.}, {yn}. Next, we
show that F({S,A,}) = F({S,}) and F({A, T,}) = F({T,}), where A, = o,,f + (1 — oy)1.
Let {z,} be a bounded sequence in C. From the nonexpansiveness of S,,, we have

1151 Anzn = Suzull < NAnzn = 2l = ot |[f (20) = 2. (3.4)
From (3.4) and «,, — 0 as n — 00, we have

lim 15,42, = Suznll = 0. (3.5)
Let {z,} € F({S,A,}), then we have

120 = Snzull < 120 = SpAnzull + [|SpAnzn = Snznll-
From (3.5), we have

lim |z, - Sz, = 0,
which implies that {z,} € E({S,.}). It follows that

F({SxAn}) SE({S4}). (3.6)
Let {z,} € E({S,,}), then we have

I2n = SwAnznll < 120 = Suzull + 1Snzn — SuAnzull-
From (3.5), we have

im |z, = SyAnzall = 0,
which implies that {z,} € E({S,A,}). It follows that

F(iS.}) S F((SsAn)- (3.7)
From (3.6) and (3.7), we have

F({Su}) = F({SuAn)- (3:8)

Let {z,} be a bounded sequence in C, then we have {T}z,} is bounded and so is {f(7T},z,)}.
Since

”An Tnzn - Tnzn ” =0y “f(Tnzn) - Tnzn H
and «,, — 0 as n — 00, we have

lim |4, Tazn — Tyzall = 0. (3.9)
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Let {z,} € f({A,,Tn}), then we have

20 = Tuznll < 20 = AnTuznll + |AnTnzn — Tnznll-
From (3.9), we have

im |z, = Tzl = 0,
which implies that

{en) € E({T)-
It follows that

F({A.T.}) SF({T)- (3.10)
Let {z,} € IT"({T,,}), then we have

20 = AnTuznll < 120 = Tuznll + | Tnzn — AnTuznll.
From (3.9), we have

Jim ||z, — A, Tyzull = 0,
which implies that

{zn) € F({AnT0)).-
It follows that

F({T,}) SF({ATo)). (3.11)
From (3.10) and (3.11), we have

E({T)) = E(1A.T.). (3.12)
Next, we show that

F(1S,AuT,}) = F({S:}) NF({T,.}).
Since F is nonempty, from (3.8), (3.12), we have

F(18,4.) NF({T) = E(1Su}) NF({T}) #9 (3.13)
and

F(18:)) NE({A.T}) = E(1S.}) NE({T)) #9. (3.14)

Page 8 of 23
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Suppose that {S,} is a strongly nonexpansive sequence. From (3.14) and Lemma 2.9, we
have

F(8,4,T,)) = E(1S4)) N F({A,T,)) = E(1S}) N E({T)). (3.15)

On the other hand, suppose that {7} is a strongly nonexpansive sequence. From (3.13)
and Lemma 2.9, we have

F(1S,AuT,}) = F(1S,4,) NF(IT,}) = F({S,}) N F({T.)). (3.16)

From (3.16) and (3.15), we have E({S,A, T,,}) = E({S,}) N E({T,}). Next, we show that {A,}
and {S,A, T,} satisfy the condition (R). It is easy to see that A, is a nonexpansive mapping
for every n € Nand that {4,y : n € N,y € D} is bounded, where D is a bounded subset of C.
Let y € D, then we have

”An+1y _Any” = ||06n+1f0’) + (1 - Ol;’1+1)y - Olnf()’) - (1 - Oln)yH
E |an+1 - an| |Lf()’) H + |an+1 - an| ||J/||

From the condition (i), we have

lim sup l4,11y — Ayl = 0.
n=>0 yeD

It follows that {A,} satisfies the condition (R). From Lemma 2.8, we have that {S,A,} satis-
fies the condition (R). From the nonexpansiveness of T,, and F # ¢, wehave {T,,y:n e N,y €
D} is bounded for any bounded subset D of C. From Lemma 2.8, we have that {S,4,7T,}
satisfies the condition (R).

Next, we show that

lim ||%,41 — %, = 0. (3.17)
n—oQ

Put
Xps1 = Buxn + (1= Bu)wy, (3.18)

where w, = S, (a,f (T,yn) + 1 — &) T),y,,). From the definition of w,,, we have

Wie1 = Wil = 1Sns1Ani1 TnarYner — SuAnTuynll
=< ”Sn+1Ar1+1 Tn+1yn+1 - SnAn Tnyn+1” + ”SnAn Tnyn+1 - SnAnTnyn”

< sup ||Sn+1An+1 Tn+1y - SnAn Tny” + ||yn+1 _yn”r (319)
yeD

where D is a bounded subset of C. Besides, we have

lyns1 = yull = ||8n+1un+1 + (1= 841)Vii1 = St — (1 = 8,)vyy ”

= ”(Sn+1un+1 - 8n+1un + 8n+lun - (1 - 6n+1)vn + (1 - 8n+1)vn
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+ (1= 8,4 1)Vie1 — Sutty — (1 = 8,) v ”
= ||6n+1(un+1 —tp) + (a1 = 8ty + (1 = 8141) (Va1 — Vi) + (81 — 81i1) Vi ”
< St llttnr = tnll + 181 = Sullletnll + (1 = 8s1) | Virs1 — varll

+ 181 = Sl llvall- (3.20)

From (3.1) and Lemma 2.5, we have u, = S,,x,. This implies that

1
Fi(up,u) + —(u—uy,u,—x,) >0 forallueC (3.21)
Ty
and
1
Fl(un+1’ Ll) +— (M — Upsl Unsl — xn+1> > 0 fOl" all ue C (322)
Tnl

Putting u = u,,41 in (3.21) and u = u, in (3.22), we have

1
Fi(ty, 1) + r_<un+1 — Uy Uy —%Xy) >0 (3.23)
n

and

1
Fl(un+1’ un) + — (un — Uptl Upsl — xn+1) > 0. (324)
Tnsl

Summing up the last two inequalities and using (A2), we obtain

Up =Xy Uptl — Xpsl
<un+1 — Up, - > 0.
n Tns1

This implies that

'n
<un+1 —Upy Uy — Ups1 + Uyl —Xp — . (Ui _xn+1)> >0.
n+l

Hence,

2 Tn
”Mn+1 — Uy ” Upsl — Upy Upsl — Xy — _(un+l - xn+1)>

Tn+l

E <
T

=\t = Uy Ut = st + X1 = =~ (Une1 — Xns1)
n+l

T'n
Upsl — Upy Xpyl —Xn + 1-— (un+1 _xn+1)
Tnyl

1
< lttys1 — || (”xnﬂ = Xull + ——re1 = 1l | th1 _xn+1||>
Tn+l

1
< a1 — uyll <||xn+l — Xl + ;|rn+l — Tullletps1 _xn+1||>'
Then we have

1
N2£n41 — Unll < 1%ns1 — X0l + ;|rn+1 = Pulllttns1 — X1l (3.25)
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From (3.1) and Lemma 2.5, we have v, = Sy, x,,. This implies that

1
EW,v)+ —(v—=v, v, —x,) >0 forallveC.
Sn

By using the same method as (3.25), we have
1
”Vn+1 - Vn” = ||xn+1 _xn” + ; |sn+1 - Sn| ”Vn+1 - xn+1||- (326)
Substituting (3.25) and (3.26) into (3.20), we have

1Yne1 = Yull < Spatllttnsr — tnll + 18041 = Sulllttnll + (L= 8 Vi1 — vl

+ |8n - 3n+l|||vn||
1
< Susr| s — xall + ;|rn+1 = ulllttns1 = X1l
1
+ (1 - 6n+1) ||xn+1 _xn” + ; |5n+1 - 5n| ||Vn+1 - xn+1||
+ 2M|8n - 5n+1|
1
< e —xall + ;lrnﬂ = Tulllttns1 = Xpaa |
1
+ ; 5141 = SulllVas1 = Xpaa | + 2M|8, = 8141, (3.27)
where M = sup, il 4.l IV ll}. Substituting (3.27) into (3.19), we have

”Wn+1 - er” = sup ||Sn+1An+1Tn+1y - SnAn Tny” + ”yrl+1 _yn”
yeD

S sup ||Sn+1An+1 Tn+1y - SnAn Tny” + ||xn+1 _xn”
yeD

1
+ =111 = Tulllttns1 = X1
a
1
+ ; 8541 = Sul1Vie1 = X1 | + 2M18,, — 81| (3.28)
From (3.28), the conditions (iii), (iv) and {S,A, T} satisfying the condition (R), we have

limsup([[ w1 = Wil = %501 = %) < O. (3:29)

n—00

From Lemma 2.3 and the definition of x,,, we have
lim ||x, —wy]| = 0. (3.30)
n—00
From the definition of x,,, we have
Xns1 = %n = (1= B)(Wy — %) (3.31)
From (3.30), (3.31) and the condition (ii), we have

lim (%, —x,( = 0.
n— 00
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Next, we show that
lim ”yn _xn” =0.
n— 00
From the definition of y,,, we have
”yn =% ll < 8pulltty — x|l + (X = 8) Vi — % . (3.32)
Next, we show that
lim |lu, —x,|l = lim |lv, —x,| = 0.
n—oQ n— 00
Let v € F. From the definition of x,,, we have

1 = VI < Bulltn = V1% + (U= B) | Su(oraf (Tuy) + (1 = 00) Toy) — v
< Bulltn = VI + (1= B) | (F (Ty) =) + (1 = @) Ty — W) |
< Bulltn = VI + (1= Ba) (ot [f (Ty) = v|* + A= @)1 T3 — vII?)
< Bulltn = vI% + (L= B) (@ (Tuyn) = v|* + A= )13 — V1)
< Bulltn = VI + (1= Ba) (o |f (Toy) =]
+ (1= ) (Bulletw = vI® + (L= 8,) v — vII%)). (3.33)

From the firm nonexpansiveness of S,, and u, = S,,x,, we have

2 2
ltn = vI* = 1S5, %0 = Sy, vl
= <un —V,Xn — V)

1
= 5(||un I+ % = VI = Nt — 2 ]1?).
It implies that
lotw = VI> < llotn = VI* = [t — 241> (3.34)

Since S, is a firmly nonexpansive mapping and v, = S;,%,, by using the same method as
(3.34), we have

Vi = V1% < lltw = vI? = Vi — 20l (3.35)
Substituting (3.34), (3.35) into (3.33), we have

%1 = V11> < Bullan = vII> + (1= B) (| f(Toyn) - v
+ (1= o) (S llstn = VI + @ = 8,)lvis — vI1*))
< Bullw = vI* + (A= B (@ |[f(Tuyn) - v|*

+ (L= ) (8 (o6 = VI* = N2t — %4lI%)
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+ (=8 (Ien = VI = v = x4ll*)))
= Bullx = I + U = Bo) (@[ f(Toyn) — v|)*
+ (1= ) (Bl = V11 = 8l 2t —
+ (=8 lIxn = vII* = (L= 8,) [V — 24%))
= Bullx = I + A = Bo) (@[ f(Tyn) - v|)*
(U= ) (16 = V11 = Bl — 512
— (1= 8,)[[vn — %all?))
= Ballstn = VI + (1= B |[f(Toya) v
+ (1= a,) (1= B) (% = VII* = 8,1t — 21
= (1= 81V — xull®)
= Ballstn = VI + (1= B |[f(Toya) |
+ (1= o) = Bu)ll%n = vII* = 8,(1 = n) (A = B) |14 — %>
~ (1= 8,)(1 ) = B IVe — xal®
< 1 = VI + [ (Tuy) = v|* = 801 = ) = B 1t — 201>

- (l_an)(l_an)(l_ﬁn)nvn _xn”2~ (3.36)
From (3.36), we have

8n(1 = o)L = Bu)lltt = 21 < 1% = VI = a1 = VI + | (T3) = v
— (1= 8,1 = an)d = B)Ivi — %l
< (16 = VI + 12001 = VI %1 = 2%l + [ (Toy) = v
— (1= 8,1 = n)(X = B)Ive — %l
< (120 = VI + [rsr = VI 1601 — %

2
+ay, |[f(T,,yn) - v|| .
From the conditions (i), (ii), (iv) and (3.17), we have
lim ||u, —x,|| = 0. (3.37)
n—00
By using the method as (3.37), we have
lim ||v, —x,| = 0. (3.38)
From (3.32), (3.37) and (3.38), we have
lim [y, — %l = 0. (3.39)
n—00
Next, we show that

{yut € E(1S)) NE({T)). (3.40)
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Since

1S:AR T Y0 = Yull < NSpARTrYn — Xl + 1%, = Yl

= lwp = xull + 1% = yull,
from (3.30) and (3.39), we have
lim (1S4, Tyyn = yull = 0.
n—00
Since {y,} is bounded, we have
9} € F(1S4AAT,}). (3.41)

Since F({S,A,T,}) = E({S,}) N E({T,}) and (3.41), we have (3.40).
Next, we show that

lim ||S,m, — m,| =0,
n—0oQ
where m,, = o, f (T,y,) + 1 — ;) T,,y,,. From the definition of m,,, we have

1Sumy — my |l < |Sumy — x4l + |12, — x|
= |Sumy — x4l + Han(f(Tnyn) _xn) + (1 =) (Tuyn _xn)H
< Wy —xull + oy Hf(Tnyn) —Xn ” + (1= o)1 Ty — %l
< wn = x|l + |V(Tnyn) —Xn ”
+ ”Tnyn _yn” + ”yn _xn”'
From (3.39), (3.40), (3.30) and the condition (i), we have
lim ||S,m, —m,| = 0.

Next, we show that

limsup(f (z) — z,m, —z) < 0,

n—00

where z = Prf(2). Since {y,} is bounded, there exists a subsequence {y,,} of {y,,} converging
weakly to v, that is, y,, = v as i — 0o. From (3.40), {S,} and {T,} satisfying the condition
(Z), we have v e F({S,,}) N F({T}.}).

Define the mapping Q: C — C by

Qx) =48S,,x+(1-8)S;,x forallx e C,

where lim,,_,« 8, = 6 € (0,1). From the nonexpansiveness of S, , S5, and Lemma 2.4, we
have

F(Q) = F(S,) N E(Ss,) = EP(Fy) N EP(F).

Page 14 of 23
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From the definitions of ¥, and Q, we have

It — Qxull < 1% = yull + 70 — Qx|
E ”xn _yn” + ”5"14” + (1 - 8,,)1/,, - SSrnxn - (1 - S)Ss,,xn ||

< 1 = 9l + 18, = 81t + 18, = 8l v . (3.42)
From (3.39), (3.42) and the condition (iv), we have
lim ||x, — Qx,|l = 0. (3.43)
n— 00

From (3.39) and y,, — vas i — 00, we have x,,, = vasi— o0.By (3.43),x,, =~ vasi— o0
and Lemma 2.6, we have

v € F(Q) = EP(F)) N EP(F,).
Hence,

v e EP(F) N EP(F,) NF({S,}) NF({T,)) = F. (3.44)
By (3.40), (3.44) and the condition (i), we have

limsup(f (z) — z, m, — z) = limsup(a,(f (2) = 2,f (Tyyn) = Tnyn)

n—00

+{f(2) — 2, Tuyn — 7))

Jim (@, {f (2) = 2.f (Tuyn) = Tuyu)

+{f(2) =2, Tyyu; — 2))

Jim (o £ (2) = 2. (T 9) = Tuyn)

+{f@) = 2 T I = ) + (f@) = 2., - 2))
=(f(z)—z,v-2) <0.

Finally, we show that the sequence {x,} converges strongly to z = Prf(z). From the defini-
tion of {x,}, we have

(%641 — Z||2 = ”,Bn(xn = 2) + (1= Bu)(Sumy, — Z)||2
= ,3n||xn _Z||2 + (1 - ﬂn)”snmn _Z||2

< Bullxn —2I* + (1= B,)llm, — 21> (3.45)
Since m,, = a,f (T, yn) + (1 — oty) Ty ¥y, we have

|72, _2”2 = ”an(f(Tnyn) _Z) + (1 =) (Tnyn _Z)“2
<A - Tyyn —z|* + Za,,(f(Tnyn) —z,my, — z)

< (1= o) llxn = 2lI* + 20{f (Tyyn) — f (2), m, — 2)
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+20,(f (2) — 2, m, — 2)

< (L= a) o — 2l1* + 2apet |2, — 2| 71, — 2
+20,(f (2) — z,m, — 2)

< (L= )l — 2l1* + awer (16 — 211> + 1112, — 2I|)
+20,(f (2) — z,m,, — 2)

= (L—a)llxn — 211% + w2, — 2II* + x|, — 2]
+20,(f (2) — z,m,, — 2)

= (1-an(l - )%, — 2l1* + eyt ||, — 2|

+ 2a,,<f(z) —z,m, — z).

This implies that

1-a,(1-a)
||W1n—2||2§1nﬁ|| —z|? 1 (f(Z) Z,my, —2)
—WUn

1-a,0+a,a —oz,,(l—a)

Ot
= %, — 21> + ﬁ(f(z)—z,mn -2
— QU

1-o,x
1-2 2
=(1- on(l = 20) %, — )| + L(f(z) —z,m, - 2). (3.46)
1-o,a 1-o,a

Substituting (3.46) into (3.45), we have

2 2 2
%01 =217 < Bull%n — 211" + (1 = Bu) 11, — 2]|

< Bullan -zl + (1 —ﬂn)(<1 - %) I, — 2]
(f(2) —z,m, —z))

< Bullxn —zII> + (1 - ﬁn)<1 - M) %, — 2]

20,

1-a,a

1-o,a
W(ﬂz) zZ, M, — z>
= Bullxn -zl + ((1 B - W) It — 2
— o0
e R
(1 =20)(1 - B,
=(1——“( 1_"2(“ ﬂ))nxn—znz

Oln(l ,Bn)(l 2“)2(f(2) zZ,my, — 2z)
1-a,0 (1-2)

(3.47)

Applying (3.47), the conditions (i), (ii) and Lemma 2.2, we have {x,} converges strongly
to z = Pgf(2). From (3.39), (3.37) and (3.38), it is easy to see that {y,}, {#,}, {vs} converge
strongly to z = Prf(z). This completes the proof. O
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4 Applications
In this section, we give three examples for a strongly nonexpansive sequence and prove a
strong convergence theorem associated to the variational inequality problem.

Before we give three examples, we need the following definition and lemmas.

Definition 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H.
A mapping A : C — H is called an «-inverse strongly monotone mapping if there exists
an « > 0 such that

(x—y,ax - Ay) > a| Ax - Ay|)*

forallx,y € C.
A mapping A : C — H is called «-strongly monotone if there exists o > 0 such that

(x —y,ax - Ay) = allx - y||*
forallx,y € C.
A mapping T : C — C is called a «-strictly pseudo-contractive mapping if there is k €
[0,1) such that

1T = Tyl < lx =yl + | (T = T)x = (T = T)y| (4.1)

forallx,y € C.
Then (4.1) is equivalent to

A T Et [T ST Y
forallx,y € C.

The set of solutions of the variational inequality problem of the mapping A: C — H is
denoted by VI(C, A), that is,

VI(C,A)={xe€ C: (y-x,Ax) > 0,¥ye C}.

Let A,B: C — H be two mappings. In 2013, Kangtunyakarn [15] modified VI(C,A) as
follows:

VI(C,aA + (l—a)B) = {xe C: (y—x, (aA + (l—a)B)x) >0,YyeCandac (0,1)}.

Remark 4.1 If T: C — C is a «-strictly pseudo-contractive mapping with F(T') # {J, then
(I-T)isa 1‘T"—inverse strongly monotone mapping and F(T) = VI(C,I - T).

Lemma 4.2 (See [16]) Let H be a Hilbert space, let C be a nonempty closed convex subset
of H, and let A be a mapping of C into H. Let u € C. Then, for 1 >0,

u=PcI-2A)u < uecVICA),

where Pc is the metric projection of H onto C.


http://www.fixedpointtheoryandapplications.com/content/2013/1/193

Kangtunyakarn Fixed Point Theory and Applications 2013, 2013:193 Page 18 of 23
http://www.fixedpointtheoryandapplications.com/content/2013/1/193

Lemma 4.3 (See [15]) Let C be a nonempty closed convex subset of a real Hilbert space H,
and let A,B: C — H be a and B-inverse strongly monotone mappings, respectively, with
o, B>0and VI(C,A)NVI(C,B) #@. Then

VI(C,aA + (1-a)B) = VI(C,A) N VI(C,B), Vae(0,1). (4.2)

Furthermore, if 0 < y < 2n, where n = min{«, 8}, we have I — y(aA + (1 — a)B) is a nonex-
pansive mapping.

Example 4.4 Let T: C — C be a «-strictly pseudo-contractive mapping with F(T) # @.
Let {1,} be a sequence of positive real numbers such that

O<infi, <suphr,<l-k and lim (A, —A,) =0,
neN neN n—00

and let {T,} be a sequence of mappings defined by T}, = Pc(I — A,(I — T)). Then {T},} is a
strongly nonexpansive sequence satisfying the conditions (R) and (Z).

. . . . . .o 1-k
Proof Since T is a «k-strictly pseudo-contractive mapping, then I — T is —*-inverse

strongly monotone. From Example 4.3 in [10], we have {T},} is a strongly nonexpansive
sequence satisfying the conditions (R) and (Z). O

Example4.5 LetA,B: C — H be a, f-inverse strongly monotone mappings, respectively,
with y = min{e, 8} and VI(C,A) N VI(C,B) # . Let {A,} be a sequence of positive real
numbers such that

O<infi, <supi,<2y and lim (A1 —-24,) =0,
n—0oQ

neN neN

and let {T},} be a sequence of mappings defined by T,, = Pc(I — A, D), where D = aA +(1-a)B
for all @ € (0,1). Then {7} is a strongly nonexpansive sequence satisfying the conditions
(R) and (Z).

Proof Let x,y € C, then we have

(x—y,Dx —Dy) = (x—y,(aA + (1 - a)B)x — (aA + (1 - a)B)y)
> a(x—y,Ax — Ay) + (1 — a)(x — y, Bx — By)
> aa||Ax - Ay|* + (1 - a)B|Bx - By|*
> 7 (|aAx + 1 - a)Bx — aAy - (l—a)ByHZ)
> 7(|Dx - Dyl|*.

Then D is a y-inverse strongly monotone mapping. From Example 4.3 in [10], we have
that {7} is a strongly nonexpansive sequence satisfying the conditions (R) and (Z). O

Example 4.6 Let A: C — H be an a-strongly monotone and L-Lipschitzian mapping
with VI(C,A) #@. Let {X,,} be a sequence of positive real numbers such that

2
0<inf A, <supi,< =« and lim (A, —A,) =0,
ne neN L? n—00
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and let {T},} be a sequence of mappings defined by T}, = Pc(I — A,A). Then {T,} is a strongly

nonexpansive sequence satisfying the conditions (R) and (Z).

Proof Letx,y € C, then we have

(x—y,Ax — Ay) = a|lx - y|?

o
> §||Ax—Ay||2.

Then A is an 75 -inverse strongly monotone mapping. From Example 4.3 in [10], we have

that {7} is a strongly nonexpansive sequence satisfying the conditions (R) and (Z). O

Example 4.7 (See [10]) Let {R,} be a sequence of nonexpansive mappings of C into itself
having a common fixed point, and let {;1,,} be a sequence in [0,1]. For each n e N, a W-
mapping [17] T, generated by R, R,_1,..., Ry and iy, -1, ..., (1 is defined as follows:

Un,n = //Lan + (1 - /’Ln)l:
un,n—l = Mn—an—l un,n + (1 - :Uvn—l)[:

Un,n—2 = /'Ln—ZRn—Z Un,n—l + (1 - /’Ln—Z)Ir
Ui = R U jesn + (1= ),

Uy = paRolyz + (1 — o),

Ty=Ug =Rkl + (1 - o)l

IfO<pu;<land O < pu, < b, forall »>2and 0 < b <1, then {T,} satisfies the conditions
(R) and (2).

By using our main result and these three examples, we obtain the following results.

Theorem 4.8 Let H be a Hilbert space, let C be a nonempty closed convex subset of H.
Let F) and F, be two bifunctions from C x C into R satisfying (Al)-(A4), respectively. Let
T : C — C bea k-strictly pseudo-contractive mapping with F(T) # (). Let {,,} be a sequence
of positive real numbers such that

O<infX, <suphr,<l-k and lim (X, —-A,)=0,
neN neN n— 00

and let {T,} be a sequence of mappings defined by T, = Pc(I — A,(I — T)). Let {R,} be a
sequence of nonexpansive mappings of C into itself having a common fixed point, and let
{,} be asequencein [0,1]. Foreachn € N, W, isa W-mapping generated by R,;,R,, 1, ..., Ry
and Wy, y-1, ..., 1. Assume that F = EP(Fy) N EP(F,) NF({R,}) NF(T) #W. Let f : C — C

be a contractive mapping with a € (0, %). Let {x,}, {un}, {va} be sequences generated by
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x1,u,v € C and

Fytt, 1) + - (= thy, Uy = %) = 0,

Fz(Vn,V) + é(V — Vs Vn _xn> = 0) (43)

Yn = 8nun + (1 - 5,,)1/,,,
Xn+l = lgnxn + (1 - ﬁn)Wn(anf(Tnyn) + (1 - an)Tnyn)x Vn > 1;

where {a,},{Bn} € [0,1], {r,},{sn} € (a,b) € [0,1]. Assume that the following conditions
hold:
(i) limy—ooay =0andy o2 ay = 00;
(i) 0<liminf, , B, <limsup,_, . B, <L
(iif) ZZZO [Tns1 = Tl, Zzio 8541 = S| < 00;
(iv) lim,_ 6, =68 € (0,1).
Then the sequences {x,}, {ut,}, {vn}, {yn} converge strongly to z = Pgf(z).

Proof From Example 4.4, we have {T,} is a strongly nonexpansive sequence satisfying
the conditions (R) and (Z). From Lemma 4.2, we have F(T,) = F(Pc(I — A,(I = T))) =
VI(C,I — T) = F(T) for all n € N. It implies that F({T,}) = F(T). From [18], we have
F{W,}) = F{R,}). It follows that IF = EP(F;) N EP(F,) N F{W,}) N F({T,}) # @. From Ex-
ample 4.7, we have { W, } is a nonexpansive sequence satisfying the conditions (R) and (Z).
By Theorem 3.1, we can conclude the desired result. O

Theorem 4.9 Let H be a Hilbert space, let C be a nonempty closed convex subset of H.
Let Fy and F, be two bifunctions from C x C into R satisfying (Al)-(A4), respectively. Let
A,B: C — H be «, B-inverse strongly monotone mappings, respectively, with y = min{c, B}
and VI(C,A) N VI(C,B) # 0. Let {)\,,} be a sequence of positive real numbers such that

O<infA, <supr,<2y and lim (A,q—2,) =0,
neN neN n—00
and let {T,} be a sequence of mappings defined by T,, = Pc(I — A,D), where D = aA + (1-a)B
for all a € (0,1). Let {R,} be a sequence of nonexpansive mappings of C into itself hav-
ing a common fixed point, and let {j1,,} be a sequence in [0,1]. For each n € N, W, is a
W -mapping generated by R,,R,1,...,R1 and (L, Ly1,..., 41. Assume that F = EP(F;) N
EP(Fy) N F({R,}) N VI(C,A) N VI(C,B) # 9. Let f : C — C be a contractive mapping with
a € (0, %). Let {x,}, {u,}, {v,} be sequences generated by x,,u,v € C and

Fl(um M) + i(u — Uy, Uy _xn> > 0)
1

FZ(Vm V) + ;(V — Vi, Vn _xn> > 0: (44)

Yn = Oplhy + (L=8,)Vn,

Xn+1 = BnXn + 1- ,Bn)Wn(arLf(Tnyn) +(1- an)Tnyn), Vn>1,

where {a,},{Bn} € [0,1], {r,},{sn} € (a,b) € [0,1]. Assume that the following conditions
hold:

(i) limyooay =0andy o) ay = 00;

(i) 0<liminf,_ oo By <limsup,_, . Bu<1;
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(iii) Z:io [7ps1 — Tl Z;O:O |Sn+1 — Sul < 00;
(iv) lim,— o 8, =38 € (0,1).
Then the sequences {x,}, {u,}, {vn}, {yn} converge strongly to z = Pgf(2).

Proof From Example 4.5, we have {7} is a strongly nonexpansive sequence satisfying
the conditions (R) and (Z). From Lemmas 4.2 and 4.3, we have F(T,) = F(Pc(I — A,,D)) =
VI(C,D) = VI(C,A) N VI(C, B) for all n € N. It implies that F({T,}) = VI(C,A) N VI(C, B).
From [18], we have F({W,,}) = F({R,}). It follows that F = EP(F;) N EP(F,) N F{W,.}) N
F({T,}) # 9. From Example 4.7, we have {W,,} is a nonexpansive sequence satisfying the

conditions (R) and (Z). By Theorem 3.1, we can conclude the desired result. O

Theorem 4.10 Let H be a Hilbert space, let C be a nonempty closed convex subset of H.
Let Fy and F, be two bifunctions from C x C into R satisfying (Al)-(A4), respectively. Let
A: C — H be an a-strongly monotone and L-Lipschitzian mapping with VI(C,A) # (. Let

{1} be a sequence of positive real numbers such that

. 20 .
O<infi, <suphr,<— and lim (X, —A,) =0,
neN neN L2 n—oo

and let {T,} be a sequence of mappings defined by T,, = Pc(I — A, A). Let {R,,} be a sequence
of nonexpansive mappings of C into itself having a common fixed point, and let {j1,,} be a
sequence in [0,1]. For each n € N, W, is a W-mapping generated by R,,R,_1,...,R, and
Wos Un—1s - - -» 1. Assume that F = EP(F1) N EP(Fp) N F({R,}) N VI(C,A) #@. Let f : C — C
be a contractive mapping with a € (0, %). Let {x,}, {u,}, {v.} be sequences generated by

x1,u,v € Cand

Fi(uy,u) + i(u — Uy, Uy —Xy) >0,
1

FZ(Vm V) + ;(V VYV Vn _xn> Z Or (45)

Yn = Splhy + (L=8,)Vn,

Xn+1 = BnXn + 1- ,Bn)Wn(arLf(Tnyn) +(1- an)Tnyn), Vn>1,

where {a,},{Bn} € [0,1], {r,},{sn} € (a,b) € [0,1]. Assume that the following conditions
hold:
(i) limy—ooay =0andy o) ay = 00;
(i) 0<liminf,_, o B, <limsup,_, B, <1
(i) D020 1 = Tuly 2onlo ISnar = $ul < 00;
(iv) lim,_ o 8, =6 € (0,1).
Then the sequences {x,}, {ttn}, {Vu}, {yu} converge strongly to z = Prf (z).

Proof From Example 4.6, we have {T,} is a strongly nonexpansive sequence satisfying the
conditions (R) and (Z). From Lemma 4.2, we have F(T),,) = F(Pc(I - 1,A)) = VI(C, A) for all
n € N. It implies that F({T,}) = VI(C,A). From [18], we have F({W,}) = F({R,}). It follows
that F = EP(F;) N EP(F,) N F({W,,}) N F({T,}) # . From Example 4.7, we have {W,} is
a nonexpansive sequence satisfying the conditions (R) and (Z). By Theorem 3.1, we can

conclude the desired result. O
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Theorem 4.11 Let H be a Hilbert space, let C be a nonempty closed convex subset of H. Let
Fy be a bifunction from C x C into R satisfying (A1)-(A4), and let {S,} and {T,} be sequences
of nonexpansive self-mappings of C with F = EP(F1) N F({S,}) N F({T,}) # 9. Let {T,,} or
{S,} be a sequence of strongly nonexpansive mappings, and let f : C — C be a contractive
mapping with a € (0, %). Let {x,}, {u,} be sequences generated by x,,u € C and

Fy(tt, ) + 5 (1t =ty Uy = 20) = 0,

Xn+l = ﬁnxn + (1 - ﬂn)Sn(anf(Tnun) + (1 - an)Tnun): Vn > 1,

(4.6)

where {a,},{Bn} € [0,1], {r,},{sn} € (a,b) € [0,1]. Assume that the following conditions
hold:
(i) limyooay =0andy o) a, = 00;
(i) 0<liminf,_, o B, <limsup,_, B, <1
(i) YopZo Irwer = 7l < 005
(iv) {Su} and {T,} satisfy the conditions R and Z.
Then the sequences {x,}, {u,} converge strongly to z = Ppf (z).

Proof Put F; = F,, s, = r, and u, = v,. From Theorem 3.1, we can conclude the desired

conclusion. O
The following result can be obtained from Theorem 3.1. We, therefore, omit the proof.

Theorem 4.12 Let H be a Hilbert space, let C be a nonempty closed convex subset of H.
Let F; be bifunctions from C x C into R, for every i =1,2,...,N, satisfying (Al1)-(A4), and
let {S,} and {T,} be sequences of nonexpansive self-mappings of C with IF = ﬂf\il EP(F;) N
F({S,}) NF({T,}) # 9. Let {T,} or {S,} be a sequence of strongly nonexpansive mappings,
and letf : C — C be a contractive mapping with « € (0, %). Let {x,}, {u,}, {v,} be sequences
generated by x1,u’ € C, foreveryic1,2,...,N, and

Fiuh, ') + 4 (u — il ul, — x,) 2 0,
In= Zf\il 8ty (4.7)
Xyl = BuXy + (1 - ﬁn)sn(()(,lf(Tnyn) + (1 - an)Tnyn); Vu>1,

where {a,},{Bn} € [0,1], {r,},{sn} € (a,b) € [0,1]. Assume that the following conditions
hold:
(i) limy oy =0andy o) o, = 00;

(i) 0<liminf, , B, <limsup,_, . B, <1

(it) Yoo lri, —ril<oo,Vi=1,2,...,N;

() X8 =1

(v) lim,—o 8. =8"€(0,1),Vi=1,2,...,N;

(vi) {S.} and {T,} satisfy the conditions R and Z.
Then the sequences {x,}, {y,} and {u.}, for every i = 1,2,...,N, converge strongly to z =

Pgf(2).
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