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Abstract
Background: Following practice of skilled movements, changes continue to take place in the brain
that both strengthen and modify memory for motor learning. These changes represent motor
memory consolidation a process whereby new memories are transformed from a fragile to a more
permanent, robust and stable state. In the present study, the neural correlates of motor memory
consolidation were probed using repetitive transcranial magnetic stimulation (rTMS) to the dorsal
premotor cortex (PMd). Participants engaged in four days of continuous tracking practice that
immediately followed either excitatory 5 HZ, inhibitory 1 HZ or control, sham rTMS. A delayed
retention test assessed motor learning of repeated and random sequences of continuous
movement; no rTMS was applied at retention.

Results: We discovered that 5 HZ excitatory rTMS to PMd stimulated motor memory
consolidation as evidenced by off-line learning, whereas only memory stabilization was noted
following 1 Hz inhibitory or sham stimulation.

Conclusion: Our data support the hypothesis that PMd is important for continuous motor
learning, specifically via off-line consolidation of learned motor behaviors.

Background
It is clear that skilled practice is essential for the acquisi-
tion of learned motor behaviors [1-3] and that the brain
continues to process information from practice sessions
well beyond the timeframe of motor performance [4-7].
In fact, many changes take place after practice that both
strengthen and modify the motor skill being learned.
These changes represent motor memory consolidation [5-
7] a process whereby new, fragile memories are trans-
formed into more permanent, robust and stable state.

Consolidation of motor skill memories has been pur-
ported to take two forms: 1) off-line improvements in

behavior that occur in between practice sessions, and 2)
memory stabilization which reduces the fragility or sus-
ceptibility to interference by other motor actions while
behavioral improvements are maintained [6-9]. While
these two elements of motor consolidation are not com-
pletely independent of one another, the degree to which
they interact and/or rely of unique neural structures
remains unclear.

Functional brain imaging has been used to consider how
the neural structures associated with movement change as
motor learning occurs [5,10,11]. Following practice,
while motor ability remains unchanged, positron emis-
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sion tomography shows that the brain recruits new
regions to perform the task. Early in motor skill acquisi-
tion prefrontal brain regions are active. Later, there is a
shift in activation to premotor, posterior parietal and cer-
ebellar structures [5]. Evolution of the network activated
in association with motor learning is widely believed to
support motor consolidation or the increase in stability of
the new skill [5-7,11].

Intracortical recordings in animals and human neuroim-
aging studies indicate that the premotor cortex (PMC)
plays an important role in the selection of movements
[12,13]. The PMC can be functionally segregated accord-
ing to the type of movement being selected [14-18]. The
ventral premotor (PMv) cortex is involved in grasping
movements that are externally triggered by the environ-
ment [12], while the dorsal premotor (PMd) cortex
appears to be particularly important in the selection
movements that are learned [12,19].

At present it is unclear whether PMd is important for
selecting learned movements [20] or for learning new
movements [21,22]. Some animal work suggests that PMd
is involved in motor learning. The PMd cortex may be crit-
ical for holding sensory information in working memory
and then converting it to a motor program [22]. Single cell
recordings from PMd during motor task practice demon-
strate the emergence of new motor programs that are
based on the sensory information acquired through prac-
tice [22]. Other research in humans, suggests a dominance
of left PMd for the selection of learned movements
[12,19]. Functional magnetic resonance imaging (MRI)
studies show that only right PMd is active during move-
ments of the left hand; however, left PMd is activated dur-
ing movements of both the right and left hands [19]. The
disparate nature of PMd activity during movements of
each hand has also been confirmed by transcranial mag-
netic stimulation (TMS) studies demonstrating that dis-
ruption of left PMd alters movements in both hands [21].

Though past work has purported to investigate the role of
PMd in skill acquisition it has often been limited by the
failure to consider motor learning at a separate delayed
retention test [7,23] but rather has largely considered
behavioral changes across a single day or session. Without
data from separate sessions it is impossible to evaluate the
impact of any intervention of the long-term, permanent
ability to perform new motor skills [24]. Because we were
interested in the possibility that PMd might play a role in
consolidation of new motor learning we designed the
present experiment to contain practice sessions and a
delayed retention test, which were all conducted on sepa-
rate days.

To investigate the role of PMd in motor skill learning we
coupled brain stimulation with motor-skill acquisition,

pairing the delivery of an epoch of excitatory (5 Hz) repet-
itive TMS (rTMS) with movement task practice. To verify
the effects of excitatory rTMS, we also trained a group of
individuals who only received inhibitory (1 Hz) rTMS and
another cohort who received sham stimulation. Because
of the known role of PMd in motor learning and its pur-
ported role in the stabilization of newly acquired skills,
we hypothesized that excitatory rTMS to PMd would facil-
itate motor skill consolidation.

Methods
Participants
Thirty-two healthy, neurologically intact individuals aged
20 to 38 (14 men and 18 women) enrolled in the experi-
ment (Table 1). All participants gave written informed
consent and the protocol was approved by the University
research ethics board. Two participants were unable to
complete the testing as a result of discomfort during initial
motor thresholding with TMS. All participants reported to
be right hand dominant; all received left sided rTMS. Par-
ticipants were not enrolled if 1) they exhibited any frank
or clinically evident signs of neurological impairment or
disease [25], or 2) they had any color blindness that
would impair response ability. Participants were recruited
from the University, the local community and the lab
database.

Behavioural task
Participants were seated in front of a computer monitor
and engaged in continuous tracking of a target moving in
a sine-cosine waveform by manipulating a joystick using
their right arm [26-29]. The target appeared as a white cir-
cle and participant movements were represented as a red
dot (Figure 1A). Joystick position sampling and all stimuli
were presented at 40 Hz using custom software developed
on the LabView platform (v. 7.1; National Instruments
Co.).

The pattern of target movement was predefined according
to a method modified from Wulf and Schmidt.[26] A
unique 33s trial was constructed from one 3s baseline and
three 10s sine-cosine segments. One block consisted of
ten 33 second trials. Unknown to the participants, the
middle third of each tracking pattern was repeated and
identical across practice and retention. This pattern was
constructed using the polynomial equation as described
by Wulf and Schmidt (1997) with the following general
form:

Table 1: Subject characteristics for the Excitatory, Inhibitory, 
and Sham groups

Excite Inhibit Sham

Age (years ± sd) 24 ± 2 24 ± 1 27 ± 7
Gender 6 M, 4 F 3 M, 7 F 5 M, 5 F
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The middle (repeated) segment was constructed by using
the same coefficients for every trial (Appendix 1). The first
and third segments of the tracking pattern were generated
randomly using coefficients ranging from 5.0 to -5.0. A
different random sequence was used for both the first and
third segments for every trial (Figure 1B); however, to
ensure uniformity across participants the same set of trials
were practiced by all of the participants so that on any
given trial the random segments were the same for each
participant. In each third of the tracking pattern there
were 10 separate reversals in the direction. The trajectories
of the target and participants' movements did not leave a
trail and thus, participants could not visualize the entire
target pattern.

The same trial order was employed for every participant.
Participants were not informed of the existence of the
repeating sequence but instructed daily to track the target
as accurately as possible by controlling the position of the
cursor with the joystick.

TMS
Application of TMS was performed with a 70 mm figure-
8 air-cooled coil (Magstim Super Rapid2, Magstim Com-
pany, Ltd.). The magnetic stimulus had a biphasic wave-
form with a pulse width of 400 us. During stimulation of
both M1 for thresholding and PMd for repetitive stimula-
tion the TMS coil was oriented tangentially to the scalp
with the handle pointing back and away from midline at

45 degrees. Prior to the start of the experiment each partic-
ipant underwent an anatomical MRI scan on a separate
day at the UBC 3T MRI Centre (T1 images TE = 5 ms, TR =
24 ms, 40° flip angle, NEX = 1, thickness = 1.2 mm, FOV
= 256 mm). These images were imported into Brainsight™
TMS neuronavigation software (Rogue Research Inc.) to
allow for stereotaxic registration of the participant's brain
with TMS coil for online control of coil positioning.

Participants were instructed to remain relaxed throughout
the application of rTMS. Surface electromyography
(EMG) from participants' right flexor digitorum muscle
was monitored through the output screen attached to the
transcranial magnetic stimulator (Magstim Super Rapid2,
Magstim Company, Ltd.). Determination of the location
of left primary motor cortex (M1) for resting motor
threshold was performed using Brainsight. M1 was identi-
fied using the axial scans by locating the "hand knob" and
hook MRI images.[30-34] Resting motor threshold (RMT)
was determined for each participant, as the percentage of
maximal stimulator output to evoke a response of ³ 50 mV
in 5 of 10 trials. The location and trajectory of the coil for
this spot was marked using Brainsight™ to minimize vari-
ability across subsequent trials and days (Figure 2). Next,
the left dorsal pre-motor (PMd) area was marked in Brain-
sight™ by moving one gyrus forward from the flexor digi-
torum "hot spot" identified during determination of RMT.
The location of PMd was confirmed as the posterior aspect
of the middle frontal gyrus (Figure 1).[21,33-38]

Several steps were taken to ensure that stimulation of PMd
without M1 during rTMS. First we used a coil that has pre-
viously been shown to have a focal enough output to
stimulate PMd in isolation. Application of TMS was per-
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Illustration of the behavioral taskFigure 1
Illustration of the behavioral task. A) Continuous tracking of sequences was performed using a joystick; participants were 
instructed to manipulate the joystick in the vertical direction to track the target (open circle) as accurately as possible. Partici-
pant movements appeared as a red, closed circle. B) Continuous tracking trials were constructed from three individual 
sequences that were joined seamlessly to form one trace. Unknown to participants, the first and last third of each trial (10 s 
each) were random. The middle third was repeated on every tracking trial. Unlike this illustration, no trace or trail from move-
ment was evident during tacking, only the target and current position of the participant's cursor were visible.
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formed with a 70 mm figure-8 air-cooled coil (Magstim
Super Rapid2, Magstim Company, Ltd.). Past work has
demonstrated that a 70 mm coil can deliver focal stimula-
tion [39] with a current spread small enough, 10 × 10 × 20
mm [31], to stimulate M1 without PMd and vice
versa.[40] Second, we oriented our coil over the PMd
using anatomic landmarks shown via each individual's T1
MRI to guide us to the posterior aspect of the middle fron-
tal gyrus.[21,35] Once confirmed, the location of PMd
and the direction of our stimulation were maintained
both within and across sessions by trajectory targeting
using BrainSight.

Participants were randomly assigned to one of three
groups: 5 Hz excitatory rTMS stimulation (Excite group),
1 Hz inhibitory rTMS stimulation (Inhibit group), or 5 Hz
sham stimulation (Sham group). Sham stimulation was
performed using a custom sham coil that looks and
sounds like an active coil but does not induce any current
in the underlying cortex (Magstim Company Ltd.). All
participants were naive to TMS measures and were
blinded to group assignment. rTMS was performed over
the marked spot for left PMd for 15 minutes at 120% of
RMT.[21,41] If stimulation at this level caused any visible
motor activation intensity was decreased in 5% incre-
ments of RMT until there was no longer any motor
response. rTMS stimulation intensity over PMd was
decreased to eliminate motor response in 16 of 20 partic-
ipants who received active stimulation: 10 in the Excite
group and 6 in the Inhibit group. Across participants rTMS
stimulation was never decreased below 100% RMT
(Tables 2 &3).

Because a 15 minute bout of rTMS has been shown to
induce approximately a 15-minute after-effect,[42] indi-
viduals underwent rTMS first, then immediately practiced
the motor task on each of the four practice days. This
structure was identical regardless of the rTMS group
assignment.

Design and procedures
The experiment lasted for five days spread over a 2-week
timeframe. Days 1–4 were training (rTMS paired with
motor task practice). In each of these days participants
performed 3 blocks (30 trials) of tracking. Tracking was
performed immediately after application of rTMS. Partici-
pants were given 2 weeks to complete the entire 5-day
experiment, but no more than one day lapsed between
day 4 of practice and the retention test for any subject.
That is, retention testing always occurred within 48 hours
of the last practice session. However, it was necessary to
allow days between practice sessions in order to accom-
modate individual participants' schedules.

Illustration of the sterotaxic system and markers that guided TMS coil placementFigure 2
Illustration of the sterotaxic system and markers that guided TMS coil placement. Brainsight™ was used to locate 
primary motor cortex (M1) for resting motor threshold determination and also to subsequently for coil placement over PMd 
for rTMS. Markers were placed on day 1 of testing to ensure accuracy and repeatability of coil placement and rTMS application 
across days.

Table 2: Mean (standard deviation) RMT from day 1 and day 5 of 
the experiment by group. 

Day 1 Day 5 p-value

Excite 59.3 (7.1) 59.0 (8.3) .93
Inhibit 58.0 (7.6) 59.7 (7.5) .62
Sham 59.5 (9.1) 59.8 (9.0) .94

Paired t-tests revealed that there were no statistically significant 
changes in RMT from day 1 to day 5 of the experiment.
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To better separate performance effects from more perma-
nent changes in behaviour associated with learning [23],
a retention test consisting of 1 block of continuous track-
ing was given on a separate 5th day. No rTMS was admin-
istered at the retention test.

Repeated sequence awareness
On day 5 following the retention test block, participants
were shown 10, 30s blocks (all 3 sequences) of continu-
ous target movement and asked to decide if they recog-
nized any as the pattern that they had seen during
practice. Three of the 10 were "true" middle sequence i.e.,
the same as the repeated practice pattern; 7 were foils.
Individuals who identified the repeated sequence at a bet-
ter than chance rate, i.e., 2 of 3 repeated sequences identi-
fied correctly as being recognized and 4 of 7 novel,
random epochs identified correctly as never having been
seen before, were considered to have gained explicit
awareness of the repeating sequence.

Outcome measures
Motor performance was evaluated across practice and
retention. Our analysis considered changes in root mean
squared error (RMSE; Appendix 2), which reflects overall
tracking error in the kinematic pattern and is the average
difference between the target pattern and participant
movements. This score was calculated separately for ran-
dom and repeating sequences on every tracking trial and
averaged by block (every 10 trials)[27,28,43]. Compari-
son between RMSE from the repeated and random
sequences reflects sequence specific learning. This meas-
ure was used to evaluate reductions in tracking errors
across practice and at retention.

To investigate the possibility that rTMS stimulated off-line
motor learning we calculated a change score to reflect the
difference in tracking error at the end of practice with that
at the retention test. This computation was performed for
both repeated and random sequences. We assume that
continued further decrease in tracking error (RMSE)
between the last practice block and the retention test
reflects off-line motor learning associated with consolida-
tion [6,7].

Statistical analyses
Prior to running analyses of variance on our motor prac-
tice and learning data the normality of distribution was

assessed with a Kolmogorov-Smirnov test. The data were
normally distributed. Overall, our analyses were con-
ducted in three steps. First, we considered performance
related changes across the four experimental days when
practice was paired with rTMS. Second, we assessed motor
learning at the retention test on day 5. Third, we assessed
offline learning. We defined off-line learning related gains
according to Robertson (2004, 2006) as the difference in
RMSE in between the last block of practice on day 4 (when
rTMS was last delivered) and the retention test on day 5
when there was no rTMS. Our retention test was delivered
within 48 hours of the last practice day to ensure that we
assessed off-line learning within the accepted time
frame.[7,44]

Acquisition practice. Performance of the repeated
sequence during practice was examined using two factor
(Group [Excite, Inhibit, Sham] X Block [1-12]) repeated
measures ANOVA. This analysis was performed separately
with repeated sequence RMSE and random sequence
RMSE as the dependent variables.

Retention. Motor learning at retention was examined via
a Group [Excite, Inhibit, Sham] by Sequence [Random,
Repeated] repeated measures ANOVA with RMSE or track-
ing error as the dependent measure. A Bonferroni correc-
tion was used for post-hoc tests to determine the locus of
significant group by sequence interactions. Off-line motor
learning was assessed via a one-way ANOVA using the
change score from the last block of practice to the reten-
tion test as the dependent measure. This test was per-
formed separately for random and repeated sequence
change scores.

Results
Overall, our data demonstrate three main results. First,
regardless of stimulation condition tracking error as
reflected by RMSE decreased with practice. Second, at the
retention test all groups showed motor learning of the
repeated sequence; however, the largest amount of change
between repeated and random sequence tracking error
was shown by the Excite group. Third, consideration of
gains made in tracking accuracy between the last block of
practice and the retention test demonstrate off-line motor
learning for the Excite group but not for the Inhibit or
Sham groups.

Acquisition practice
All groups improved performance on the repeating
sequence across practice as demonstrated by a main effect
of Block for repeating sequence tracking error (F(11, 286)
= 15.23, p = .000; Figure 3A). In addition, non-specific
improvements in tracking that reflect improved motor
control during random sequence tracking also was dem-
onstrated by a main effect of Block (F(11,286) = 11.31, p
= .000; Figure 3B). There were no significant interactions

Table 3: Mean (standard deviation) adjusted %RMT for rTMS 
from days 1 to 4 of the experiment for the Excite and Inhibit 
groups.

Day 1 Day 2 Day 3 Day 4

Excite 107.0 (7.2) 106.6 (4.8) 104.3 (2.7) 104.9 (2.2)
Inhibit 112.1 (8.6) 109.3 (7.8) 107.5 (8.7) 108.0 (8.4)
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for either random or repeated sequence tracking data over
practice.

Retention
All groups demonstrated motor learning at retention as
shown by a main effect of Sequence that illustrated a sig-
nificant difference between tracking error for repeated and
random sequences (F(1,26) = 99.28, p = .000). More
interesting, was a Group by Sequence interaction (F(2,26)
= 4.257, p = .003). Post-hoc testing revealed that the Excite
group made less tracking error than then Inhibit group (p
= .002) or Sham group (p = .012) during repeated
sequence tracking but not during random sequence track-
ing at retention (Figure 4).

Off-line learning
Between group differences in consolidation that occurred
off-line were illustrated by a significant one-way ANOVA
using the repeated sequence change scores from the
groups as the dependent measure (F(91,26) = 8.32, p =
.002). Consolidation of motor learning occurred off-line
for the Excite group as demonstrated by the continued
decrease in tracking error that occurred between the end
of practice and the retention test. This finding is con-
trasted to the Inhibit and Sham groups who both showed
slightly worse tracking error at retention as compared to
the end of practice (Figure 5A). There were no between
group differences in change scores for random sequence
tracking (Figure 5B).

Explicit knowledge
None of the experimental groups gained explicit knowl-
edge of the repeating sequence as demonstrated by the
ability to identify the repeating sequence during recogni-
tion tests on the final day at chance.

Discussion
Even single sessions of motor practice can lead to long-
term storage of movement representations in the brain
[5]. It is now clear that after practice has ended the func-
tional properties and representation of skilled movement
continues to evolve in the brain [4-7]. These changes are
evident in the gradual development of resistance to inter-
ference from other behaviours as time passes after task
practice [4,5]. In some cases motor skills are not merely
stabilized but can be improved through this consolida-
tion process [6,7]. Indeed, this is what we discovered
when we paired 5 Hz excitatory rTMS to left PMd with
motor task practice; motor skill continued to improve off-
line after practice. Conversely, participants who practiced
the motor task and received either inhibitory or sham
stimulation showed only memory stabilization, there was
no further between session improvement, but rather a rel-
ative preservation in motor skill level acquired via practice
[7]. Though these two forms of memory consolidation are
not mutually exclusive, our data suggest that PMd has a

role in off-line motor skill enhancement. Importantly, we
separated the short-term effects of practice from more per-
manent changes in behaviour demonstrated at retention
by performing these tests on different days [23]. This
experimental feature allowed us to view off-line learning
in the Excite group without any interference effects from
practice [7].

Critically, the off-line motor consolidation demonstrated
by the Excite group was related to sequence-specific motor
learning rather than to generalized improvements in
motor control associated with task practice. Illustration of

Twelve blocks of sequence tracking were performed across four days of practice (3 blocks per day; each block consisted of 10 trials of the 30 track)Figure 3
Twelve blocks of sequence tracking were performed 
across four days of practice (3 blocks per day; each 
block consisted of 10 trials of the 30 track). Root mean 
square error (RMSE) for repeated and random sequence 
tracking was calculated. A) RMSE for repeated sequences 
across practice and at the retention test. B) RMSE for ran-
dom sequences across practice and at the retention test. 
Data are mean RMSE ± standard error of the mean (SEM).
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this point is evident in the difference in tracking error
across groups for the repeated sequence at retention (Fig-
ure 4); the three groups demonstrated equivalent per-
formance on random sequences at the same time.
Random sequence tracking reflects generalized motor exe-
cution whereas repeated sequence performance shows
motor learning [27,28,43]. Thus, the role of PMd in
motor consolidation in the present work related to
implicit sequence-specific learning rather than an overall
improvement in the generalized ability to track continu-
ous sequences.

There has been debate as to whether PMd activity relates
to motor learning [22] or to the recall of already learned
movements [5,20]. Our data support the hypothesis that
PMd activity facilitates motor learning, specifically by aid-
ing memory consolidation. Two features of our data sup-
port our conclusion. Critically, excitatory stimulation to
PMd promoted off-line learning. We expected that if PMd
played a role in recall of learned movements rather than
in motor learning, we would have noted memory stabili-
zation rather than off-line improvements. Second, the
improvements associated with excitatory stimulation to
PMd were sequence-specific and not simply related to
generalized motor control improvements.

The influence of PMd activity on motor learning and
memory consolidation likely operated though a network
of brain regions. PMd is ideally situated to impact a broad

range of cortico-cortical and cortic-subcortical networks.
On-line rTMS-fMRI imaging has shown that excitatory
stimulation of PMd increases the BOLD signal both
locally (in PMd, PMv, supplementary motor area, somato-
sensory cortex, and cingulate motor area) and distantly
(in contralateral PMd, cerebellum, putamen and caudate;
[45]). Further, these rTMS driven modifications in hemo-
dynamics occur even in the absence of overt motor

RMSE for repeated and random sequences at the retention testFigure 4
RMSE for repeated and random sequences at the 
retention test. All groups showed sequence specific motor 
learning as demonstrated by significantly lower RMSE for 
repeated as compared to random sequences at retention. 
However, individuals in the Excite group showed even lower 
tracking error for repeated sequences that those in the 
Inhibit or Sham stimulation groups. Data are mean RMSE ± 
SEM.

Change in tracking error (RMSE) between the last block of sequence practice and the retention test by group for repeated and random sequencesFigure 5
Change in tracking error (RMSE) between the last 
block of sequence practice and the retention test by 
group for repeated and random sequences. A) 
Sequence specific off-line learning was evident for the Excite 
group as demonstrated by the continued decrease in tracking 
error from practice to retention (show by negative num-
bers). This was not the case for the Inhibit or Sham stimula-
tion groups who showed slight losses in tracking accuracy as 
evidenced by positive changes from practice to retention. B) 
No non-specific generalized motor control improvements 
occurred off-line. For random sequences slightly higher 
tracking error was shown at retention as compared to prac-
tice for all three groups. Data are mean change in RMSE ± 
standard error of the mean (SEM).
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responses. This pattern of brain activation associated with
rTMS to PMd reflects the known anatomical and func-
tional connectivity amongst these regions [14,15,45].
Though we cannot ascribe the offline learning we docu-
mented to any single region within this broad network, it
is evident that 5 Hz rTMS stimulated motor memory con-
solidation most likely via up-regulating at least some ele-
ments of both local and distantly connected brain regions.

We expected that the Inhibit group might have demon-
strated worse behaviour than those participants in the
Sham stimulation condition. However, it may be that the
positive effects of practice on accuracy of motor tracking
performance countered the impact of 1 Hz stimulation.
Indeed, we and others [26-28,46] have shown that motor
task practice of continuous tracking tasks may be well
learned over as few as three practice sessions. It is possible
that in the present study the effects of 1 Hz TMS was either
overcome by motor practice or that the network of brain
regions associated with motor learning [5,21,45] was able
to compensate for less PMd function following inhibitory
stimulation.

Though sleep may have played a role in the consolidation
we noted across our experimental groups it cannot explain
the lower tracking error for repeated sequences shown
only by the Excite group at retention. Each of our groups
slept in between the last practice day and the retention
test; conferring the benefit of sleep on motor skill consol-
idation regardless of group assignment. Further, past work
has demonstrated that off-line improvements in implicit
motor learning in young, healthy controls are not sleep
dependent [47]. Instead, sleep related improvements in
motor skill may develop equally well over the day as they
do over the night [44]. Thus, we do not believe that the
sleep-induced benefits that are associated with consolida-
tion can account for our findings.

It is also unlikely that differences in explicit knowledge
explain any of our group differences across practice or at
retention; none of the groups gained explicit awareness of
the repeating sequence. In addition, past work [27,48] has
not shown a benefit of explicit knowledge for motor
learning of tracking tasks. Based on the results of our
explicit tests we are confident that our data reflect changes
associated with the implicit motor learning system.

We were surprised at the large number (n = 16) of individ-
uals who required TMS intensity to be reduced owing to
inadvertent motor twitching during PMd stimulation.
These individuals were from the Excite and Inhibit groups
alike. One possible explanation is that the threshold for
stimulating primary motor cortex (from which we derived
our resting motor threshold) is not the same as the thresh-
old in other brain regions [45,49]. Specifically, it is possi-

ble that PMd has a lower threshold for stimulation than
M1; thus, stimulation of PMd may have either activated
M1 via PMd-M1 connections or recruited descending
tracts from PMd that normally would not fire at lower
intensities. Future work will have to endeavor to develop
methods for thresholding stimulation intensity more
appropriately for regions outside motor cortex.

Conclusion
Taken together, our data support a role for PMd in motor
memory consolidation through the process of off-line
learning. In addition, our findings support the concept
that motor memory consolidation may take two distinct
forms (off-line improvement and memory stabilization)
and that these processes may be dissociated during learn-
ing of the same task [6,7]. Though it is likely that 5 HZ
rTMS increased activation in a network of brain regions,
we did note a strong influence on excitatory stimulation
on memory consolidation suggesting a role for PMd in
motor learning. Importantly, the positive effect of 5 HZ
rTMS to PMd was directly related to sequence-specific
motor learning and had little effect on generalized motor
control during continuous tracking.

Authors' contributions
LB conceived of the study, designed the experiment, and
programmed the task and analyses. ML coordinated and
collected the TMS and behavioral data. Both LB and ML
drafted the manuscript, read and approved the final man-
uscript.

Appendix 1
b0 = 2.0, a1 = -4.0, b1 = 3.0, a2 = -4.9, b2 = -3.6, a3 = 3.9, b3
= 4.5, a4 = 0.0, b4 = 1.0, a5 = -3.8, b5 = -0.5, a6 = 1.0, and b6
= 2.5

Appendix 2

xi = participant's position in degrees at time 1, Ti = target
position at time 1, n = the number of samples for the par-
ticipant's trajectory array
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