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1. Introduction
Let D be the open unit disk in the complex space <, dA the Lebesegue measure on D
normalized so that A(D) = 1. Let H(D) be the space of all analytic functions on D.

Let @ >-1, p >0. f is said to belong to the weighted Bergman space, denoted by
AP (= AP (D)), if f € H(D) and

||f||”=(a+1)/If(z)l”(l—lzlz)"‘dA<00«
D

When 0 < p <1, it is complete metric space; when p >1, it is a Banach space.
Let u(z)(weight) be a positive continuous function on D and n € N,. The nth
weighted space on the unit disk, denoted by w,&'”([D), consists of all f € H(D) such that

bup o) () =sup @ £ @ | < oo

For n = 0, the space becomes the weighted-type space H°(D); for n = 1, the Bloch-
type space B, (D); and for n = 2, the Zygmud-type Z, (D). For more details about these
spaces, we recommend the readers to ([1,2]).

The expression ba)L”)([D)(f) defines a semi-norm on the nth weighted space a)l(f)(lD),

while the natural norm is given by

n—1
1F ooy = D0 FP @ + b0, (1)
j=0
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With this norm, wf{‘)(lD) becomes a Banach space. The little nth weighted space,

(n

.0(D) is a closed subspace of a)g’)(lD), consisting of those f for which

denoted by w
lim (@) | f®@|=o0.

Let ¢ be a non-constant analytic self-map of D, u(z) € H(D), and m € N. The

weighted differentiation composition operator D, is defined by
DY f (@) =u@f™ (¢ (@),

forzeD feH(D).If m=1,u(z) = ¢ (2), then Dy, =DCy; iflet m = 1, u (2) = 1,
then Dy, = C,D.

Recently, there have been some interests in studying some particular cases of opera-
tors, such as DCy, CyD and Dy, between different function spaces. From those stu-
dies, they gave some sufficient and necessary conditions for these operators to be
bounded and compact. Concerning these results, we also recommend the interested
readers to ([3-9]).

In this paper, we characterize the boundedness and compactness of the operator Dy,
from A? to nth weighted space. For the case of Dy, CAh wL"), we have the following

results:
Theorem 1. Assume that p >0, a >-1, n, m € N, u is a weight on D, ¢ is a non-
constant analytic self-map of D, and u € H(D). Then,

(1a) D, : Ay > oWis bounded if and only if for each k € {0, 1,..., n}
1(2) | X, Cu P (2)Bii (¢'(2), ¢ (2), - .., 7D (2))|
sup <00

o+2
zeD (1 _ ’(p(z)lz)k m »

(1b) DI, Ab wPis compact if and only if D, CAh wPis bounded and for
each ke {0, 1,.., n}

(@) | XL Cum P (@)Bi (¢ (2), " (2), - .. 9T ()|
lim

le(z)|—1 kv @2
(1 - Iw(Z)Iz) !

For the case of D', Ah — a)f:%, our main results are the following:

Theorem 2. Assume that p > 0, o« > -1, n, m € N, y is a weight on D, ¢ is a non-

=0.

constant analytic self-map of D, and u € H(D). Then,
(22) D, (Ah > a)l(jg]is bounded if and only if D, : Al — wMis bounded and for
each ke {0, 1,.., n},

lim 4() -0, 3)

n
> Cu™ P (2) By (w’(Z)l ¢"(2), ..., w("’””(Z))
1=k

(2b) DY, Ah a)l(:%is compact if and only if D}, Ah a)l(:%is bounded and for

each ke {0, 1,..., n},
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i 2@ [Z0 Gt @B (¢'(2), ¢ (@) - 0 (2)|

lz]—>1 9 feama @42
(1 —|o(2)| ) P

The organization of this paper is as follows: we give some lemmas in Section 2, and

= 0. @)

then prove Theorem 1 in Section 3 and Theorem 2 in Section 4, respectively.
Throughout this paper, we will use the symbol C to denote a finite positive number,
and it may differ from one occurrence to the other.

2. Some Lemmas
Lemma 1 is a direct consequence of the well-known estimate in ([10], Proposition
1.4.10). Hence, we omit its proof.

Lemma 1. Assume that p >0, > -1, ne N, n >0, and w € D. Then the function

1—[w?)"
gw/n(z) = ( l+0t
(1- wz)wr p

belongs to AP. Moreover, SUP ||3W'" ”AZ <
weD

The next lemma comes from ([11]).
Lemma 2. Assume that p >0, o > -1, n € N, and z € D. Then, there is a positive
constant C independent of f such that

Hf AL
") <C " e
(1—1aP)" »
Lemma 3. Letp >0, a > -1, m e N»a=m+1+“;2and
1 1 1
a+1 e a+n

Dn+1 = “ee :
[T (a+) [T (a+j+1) - [T (a+j+n)
Then, Dn+1 = H;"l:l ]'
Proof. With a=m+1+ a;;z and replacing # by n + 1 in ([12], Lemma 2.3), the
lemma easily follows. O
The next lemma can be found in ([7], Lemma 4).

Lemma 4. Assume n e N, g, u € H(D)and ¢ is an analytic self-map of D. Then,

n

@ee@)"” =Y 8® (0(2) Y, Cut" D @ By (¢' @), ¢ (@), . 0D (2),
where
’ " (I-k+1) I l (p(]) (Z) § 5
Biu(¢'(2). ¢"(2), ... 9 )=k§lkl!mkl!£[ A (5)

and the sum in (5) is overall non-negative integers k..., k; satisfying ky + ky + ... + ky =
k and ky + 2ky + ... + lk; = 1.

By a proof in a standard way ([1], Proposition 3.11), we can get the next lemma.
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Lemma 5. Supposeu € H(D), p >0, > - 1, n, me N and ¢ is a non-constant analytic
self-map of D. Then the operator Dy, AL — wg’)is compact if and only if
Dy, : Ah — w,&”)is bounded and for any bounded sequence {fi}icn in Abwhich converges
to zero uniformly on compact subsets of Das k — o, we have Dy ,fu = Oin w;(t")as k — oo,

Lemma 6. Suppose n € N and p is a radial weight such that lim;_,; u (z) = 0. A
closed set K in a)l(:())is compact if and only if it is bounded and satisfies

lim sup w(z) ‘f(”)(z)‘ = 0.
|z]—>1 fek

Proof. The proof of this Lemma is followed by standard arguments similar to those
outlined in ([13]). We omit the details. O

3. The Proof of Theorem 1
(1a) Boundedness of Dy,
We will prove the sufficiency first. Suppose that the conditions in (1) hold. Then, for

any f € Ah, from Lemma 2 and Lemma 4, we obtain
1@ (0" @)
Zf(kwn) ((p(Z)) Z Cilu(n—l) (z)Bi ((p’(z), <p”(z), . (p(l—k+1)(z)>

k=0 I=k

SEY> 1 (9(2)|
k=0

= n(z)

3 LD (z)By (w'(z), ¢"(2), ..., 7N (z)) ‘ ©)
I=k

n (@) écau‘"—” ()Bii (¢'(2), 9" (2), - -, q)”—’“l)(z))‘
clflgy
k=0 (1 _ |(p(z)i2) p
For z = 0 and every d € {0, 1,.., n - 1},
[CARII
d d
= | ((0)) 3 D (0)Bu (40, 9 (0), .0 (0))
k=0 I=k
, (7)
p % CLu' D (0)By (¢'(0), ¢ (0), ..., w(lk”)(o))‘
=clfle )"
k=0 (1-le ) P

From (1), (6), and (7), we know that D', (Ab > o is bounded.
Conversely, suppose that D$,u :Ag — a)l(f) is bounded. Then, there exists a constant
C such that IIDZ'uf| o = C|f

For a fixed w € D, and constants c;, ¢,..., ¢, , 1, set

w0 for all f e AL,

8w (@ = le G (1 w?y o
SO ) (e e ) s



Zhang and Zeng Journal of Inequalities and Applications 2011, 2011:65
http://www.journalofinequalitiesandapplications.com/content/2011/1/65

Applying Lemma 1 and triangle inequality, it is easy to get that g, € A} for every

w € D. Moreover, we have that

sup [ gu ;< oo ©)
weD

Now we show that for each s € {m, m + 1,..., m + n}, there are constants ¢y, ¢,..., C+1,

such that,
w
g (w) = vy 8w =0, teim,...,m+nh\(s) 10)

(1_|w|2)s+ P

Indeed, by differentiating function g, for each s € {m, m + 1,..., m + n}, the system in
(10) becomes
C1+Cr+---+Cpy1 =0
(m+1+°‘;2)cl +(m+2+°‘;2)cz+~~+(m+n+1+°‘;2)cn+1 =0

(m+1+"‘;2)...(s+“;2)cl+---+(m+n+1+"‘;2).,.(n+s+"‘;2)@,+1=1 (11)

(m+1+°‘;2)...(m+n+“;2)cl+~~~+(m+n+1+“;2)...(m+2n+a;2)cn+1 =0

By Lemma 3, the determinant of system (11) is different from zero, which implies
the statement. For each k€ {0, 1, 2,..., n}, we choose the corresponding family of func-
tions that satisfy (10) with s = m + k and denote it by g, . For each fixed k € {0, 1,...,

n}, the boundedness of the operator D}, (AL — wL”), along with Lemma 4 and (8)

implies that for each ¢(w) = 0,
+k _ e+
()| (w) ™ |21, Chu D (w)Byy (¢ (w), ¢" (), . .., o7 (w)) |
a+2
(1= 1 p(w) 12" » (12)

m

< C sup | D}, (8p(w)i) || o < C| D},
weD "

Ao
From (12), it follows that for each k € {0, 1,..., n},
wp PEL G @B (¢ @) @)
lp@I> (1= 1@ 2)™ (13)
= CIDGul -
Now we use the test functions
h(z) =2°™, k=0,1,...,n.
For each k€ N, it is easy to get that
he € AL, el < 1. (14)
By applying Lemma 4 to the / (z) = 2, we get
(Dy.ho) ™ (2)

= 1" (0(2) Y D)o (¢'@), ¢ (2), .. 9 D(2)
=0

n
=mt Y Gl @ Bio (¢/(2), ¢ (@), ., 9 D(2),
1=0
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which along with boundedness of the operator Dij, : Al — a)g‘) implies that

> Gl (@B (¢' @), ¢ (@), . ¢ D(2)) (15)

1=0

= c|p;

m! szlelg n(z) o ||A£~>a),(4n).

Assume now that we have proved the following inequalities

n
sup 1(2)| 3 i P (@)By (¢'(2) @) - 0TV @) | = CIDY g (16
ze l=]

forje {0, 1,., k- 1}, k < n.
Apply Lemma 4 to the /i (z) = 2%, and knowing that 2 = 0 for s >m + k and the

boundedness of the operator D", : Al — w(®, we get
[CEARIE]

=

k-1 n
; (m+8)... (k= + D(e@) " 3 Cu D@8y (6@ 0TV @) ()

=

(m +k)! Z CLu(2)By, ((p'(z), . (p(lk”)(z))‘ .

=k

Using hypothesis (16), we can know that

sup (2) 3 Gl (@) B (¢@. 0" @ 0@ < DR e (18)
ze Ik
for each k € {0, 1,..., n}. Then, for each k € {0, 1,..., n},
sup 1(2) [ XL, Cu D (2)Bii (¢'(2), ¢ (2), - ., 07D ()
a+2
|¢(z)|5; (1_ | o(z) | 2)k+m+ o
~ (n—1) / " (I—k+1) (19)
< Csup u(2) 3 Chul™ D (2)By ((p @), ¢"(2),... ¢ (z)) :
ze 1=k
= C|Dy,

pu ”Ai’ﬁwﬂ"

From (13) and (19), we know that (1) holds.
(1b) Compactness of Dy,

Suppose DI, cAb o is bounded and (2) holds. Then, by (1a), (1) holds. Let
(fi)iew be a sequence in A, such that, Sllelan Hfi”Ag =< M and f; converges to 0 uniformly

on compact subsets of D as i — eo. By the assumption, for any ¢ > 0, there is a d € (0,
1), such that, for each k€ {0, 1,..., nj and J < |¢(2) | < 1,

1(2) [ X1 Cu" (@B (¢'(2), 9" (2), - .., 7D (2))| -

[— a+2 €. (20)
(1-1¢(x) 1?)

p
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From Lemma 2 and (20), we have

S A (p(@) 32 Cu DBy (¢ (@), 0 (z))‘

sup 1 (2)
ieN k=0 Ik

n
n 1(2) |2 Cu" D (@)Bi (¢'(2). ¢" (@), ..., w(’k”)(Z))‘ (21)
= Csup ”f’”AZ Z sup l:k a+2
ieN h=o 2€D (1_ | (P(Z) | 2)k+m+ »
<CM@m+1)e.

If |¢(z) | < r, then by Cauchy’s estimate and (19), we have

n

sup (@) [Y_ £ (0(@) Y Cu D (@B (¢ (2), . D (z))l
k=0 1=k
n (22)
<C)_ sup fi(mJ'k)((p(z))‘ — 0, (i — o)
oo le(@)=r
Forj=0,1,., n - 1, we have
(2P (0)] = 0. (i — o) (23)

Applying (21), (22), and (23), we know that ||D$uﬁ||wff) — 0, (i > 00). From Lemma
5 Dy, ‘AP a)g‘) is compact.

Conversely, suppose that DI, (Ah > o is compact, then D}, Ah — o is
bounded. Let (z;);cny be a sequence in D such that |¢(z;)|] = 1, i > . If such a

sequence does not exist, then the condition in (2) is easily satisfied. Now, assume that
when |[|¢]|. = 1 and (2) does not hold, then there is k € {0, 1,..., n} and J > 0 such that

(@) [ 2h Cou D (=) Bu (¢ (20), ¢ (@), - D (@) |

=
(1= 1e(z) 12 4

)k+m+ a2

Let 8i(2) = 8o k(2),i €N, ke 0, 1,..., n be as in Theorem 1. Then, SUDE) ”gi”AZ =M
1€

and g; — 0 uniformly on compact subsets of D as i — co. By the assumption and

Lemma 5, we have that for k€ {0, 1,..., n}
lim [ DY 8y (e 0 = O- (24)
On the other hand, from (12), we obtain

| DG 8otz o

_ m@) Le(z) | ke |3 e Chu™ D (20)Bi (¢ (i), ¢ (20), - .. 071 (7))

= +m+a+2 25
(1- o) 12)"" s 2

)
3

>

for large enough i. From (24) and (25), this is a contradiction. So, (2) holds.
Now the proof of Theorem 1 is completed.



Zhang and Zeng Journal of Inequalities and Applications 2011, 2011:65
http://www.journalofinequalitiesandapplications.com/content/2011/1/65

4. The Proof of Theorem 2
(2a) Boundedness of Dy,
First, suppose that D, Ab > a)l(f) is bounded and (3) holds. For each polynomial p

(2), we obtain [p”"*® (z)| < C,, ze D, C, is s constant depending on p.
And

1@ (00" (@)

- 1(2) | Yo (e(2) Y P (@Bu (¢ @), 0 (2))
k=0 1=k (26)
=G Y 1@ || Cut @By (¢'(2), . (p(l’”l)(z))‘
k=0 I=k

— 0, |z| = 1.

From (26), we have that for each polynomial p(z), D pe a)l(:% Since the set of poly-
nomials is dense in Af, we have that for each f e Af, there is a sequence of polyno-
mials (pr)ken such that I[f—pell o — 0 as k — . From the boundness of

Dg‘m ‘AP w/(f), we have that

|Dguf = Dbt oo = [Pl oo If = Pl o — 0.k > o0.

Then, D(’;uf € w;(:,%’ from which the boundedness of DZ‘M : Ag — wl(f()) follows.

Conversely, suppose that Dy, (Ah a)l(L'% is bounded. It is clear that
Dy, (Ab a)/(L”) is bounded. Then, taking the test functions /; (z) = Z"** for each k
e {0, 1,.., n}, we obtain Dg'uz’"*k c w;(:,l())‘ By the proof of Theorem 1, for each ke {0,
1,..., n},

Xn: Cilu(n—l) (2)Bix (‘/’/(Z)r g0//(Z)’ o (p(l_k+1)(z)> _o.

lim u(2)
lz|—1
1=k

(2a) is completed.

(2b) Compactness of Dy,

First, assume that Dy, (AP a)("g) is compact, so it is bounded and (3) holds.

1,
Hence, if ||| < 1,

n(@) [ XL, G (@)Bi (¢'(2), ¢" (@), ..., oD (2)) |

o+2
) k+m+
(1 — |o(2)] ) p
27
_ 1@ G @B (¢, @), .., D @) e
= a+2
(1= g 12)"

—0,(z]| > 1)
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If ||¢]|~ = 1, since D}, (Ab > o is compact too and (2) holds, then for all & > 0,
there is an r € (0, 1), such that when r < |¢ (2) | < 1, for ke {0, 1,..., n},

1(z2) |2, Cul™D(2)By (¢'(2), ¢ (2), - .., o7 (2)) | -
a+2
(1- I p(z) 12)""™

p
By (3), we know there is a 0 € (0, 1), such that J < |z| < 1, for k€ {0, 1,.., n},

E. (28)

(@) | Y Cu @By (¢'(2), ¢ (@), o))
1=k

(29)
k+m+0H'2
<e(l1—-17) p
Then, when d < |z| < 1and r < |¢ (2) | < 1 for k € {0, 1,..., n}, we get
1(2) [ X1 Cu" (@B (¢'(2), 9" (@), . .., 7D (2))|
o+2 <é (30)
2 Je+m+ "
(1))
In addition, when |¢ (2) | < r and J < |z| < 1, we have
1(2) |1 Cou D (2)Bi (¢ (2), ¢ (2), - ., 91D (2)) |
fe+ L2
(1=Te@ 12" » (31)
_ H@|TL Gl DB (¢ @), ¢ (@), @)
a+2 :
(1 _ 7‘2)k+m+ o

Combining (30) and (31), we know (4) holds.

Conversely, assume D}, Ah — a)l(f()) is bounded and (4) holds. Taking the supre-

mum in (6) for all fin the unit ball of A?, and using the condition (4), we have
limz—4 SUp|if| , <1 n(z) (D'(’f"uf)(") (z)| = 0, from which by Lemma 6, the compactness

of DI Ab - wl(L"()] follows.

Now the proof of Theorem 2 is finished.
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