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Summary - This paper reviews some problems encountered in estimating heterogeneous
variances in Gaussian linear mixed models. The one-way and multiple classification
cases are considered. EM-REML algorithms and Bayesian procedures are derived. A
structural mixed linear model on log-variance components is also presented, which allows
identification of meaningful sources of variation of heterogeneous residual and genetic
components of variance and assessment of their magnitude and mode of action.

heteroskedasticity / mixed linear model / restricted maximum likelihood / Bayesian
statistics

Résumé - Variances hétérogènes en modèle linéaire mixte gaussien. Cet article fait
le point sur un certain nombre de problèmes qui surviennent lors de l’estimation de
variances hétérogènes dans des modèles linéaires mixtes gaussiens. On considère le cas
d’un ou plusieurs facteurs d’hétéroscédasticité. On développe des algorithmes EM-REML
et bayésiens. On propose également un modèle linéaire mixte structurel des logarithmes
des variances qui permet de mettre en évidence des sources significatives de variation des
variances résiduelles et génétiques et d’appréhender leur importance et leur mode d’action.

hétéroscédasticité / modèle linéaire mixte / maximum de vraisemblance résiduelle /
statistique bayésienne

INTRODUCTION

Genetic evaluation procedures in animal breeding rely mainly on best linear unbi-
ased prediction (BLUP) and restricted maximum likelihood (REML) estimation of
parameters of Gaussian linear mixed models (Henderson, 1984). Although BLUP
can accommodate heterogeneous variances (Gianola, 1986), most applications of



mixed-model methodology postulate homogeneity of variance components across
subclasses involved in the stratification of data. However, there is now a great deal
of experimental evidence of heterogeneity of variances for important production
traits of livestock (eg, milk yield and growth in cattle) both at the genetic and envi-
ronmental levels (see, for example, the reviews of Garrick et al, 1989, and Visscher
et al, 1991).

As shown by Hill (1984), ignoring heterogeneity of variance decreases the ef-
ficiency of genetic evaluation procedures and consequently response to selection,
the importance of this phenomenon depending on assumptions made about sources
and magnitude of heteroskedasticity (Garrick and Van Vleck, 1987; Visscher and
Hill, 1992). Thus, making correct inferences about heteroskedastic variances is crit-
ical. To that end, appropriate estimation and testing procedures for heterogeneous
variances are needed. The purpose of this paper is an attempt to describe such pro-
cedures and their principles. For pedagogical reasons, the presentation is divided
into 2 parts according to whether heteroskedasticity is related to a single or to a
multiple classification of factors.

THE ONE-WAY CLASSIFICATION

Statistical model

The population is assumed to be stratified into several subpopulations (eg, herds,
regions, etc) indexed by i = 1, 2, ... , I, representing a potential source of hetero-
geneity of variances. For the sake of simplicity, we first consider a one-way random
model for variances such as

where yi is the (n2 x 1) data vector for subpopulation i, 13 is the (p x 1) vector of
fixed effects with incidence matrix Xi, u* is a (q x 1) vector of standardized random
effects with incidence matrix Zi and ei is the (ni x 1) vector of residuals.

The usual assumptions of normality and independence are made for the distri-
butions of the random variances u* and ei, ie u* ! N(0, A) (A positive definite
matrix of coefficients of relationship) and ei N NID(O, er! 1!;) and Cov(ei, u*!) = 0
so that y2 N N(Xil3, a u 2i Z’AZI i +0,2 ei 1, where or2 ei and o, ui 2 are the residual and

u-components of variance pertaining to subpopulation i. A simple example for [1]
is a 2-way additive mixel model Yij = p,+hi+as!8! + ezjk with fixed herd (hi) and
random sire (<7..;,!) effects. Notice that model [1] includes the case of fixed effects
nested within subpopulations as observed in many applications.

EM REML estimation of heterogeneous variance components

To be consistent with common practice for estimation of variance components,
we chose REML (Patterson and Thompson, 1971; Harville, 1977) as the basic
estimation procedure for heterogeneous variance components (Foulley et al, 1990).
A convenient algorithm to compute such REML estimates is the ’expectation-
maximization’ (EM) algorithm of Dempster et al (1977). The iterative scheme will



be based on the general definition of EM (see pages 5 and 6 and formula 2.17 in
Dempster et al, 1977) which can be explained as follows.

L tt’ ( 1 1 1 1 )1 2 { 2} l 2 { 2} d 2 ( 2’Lettlng y = y 1 , Y 2, ... , Y i, ... , Y I , (ye 2 = 10,2 ei 1, U2 u = fo,2 Ui and U2 = (g2&dquo; e
9 u 2’), the derivation of the EM algorithm for REML stems from a complete data set
defined by the vector x = (y’, 131, U*/)I and the corresponding likelihood function
L(62;x) = Inp(xlc¡2). In this presentation, the vector (3 is treated in a Bayesian
manner as a vector of random effects with variance fixed at infinity (Dempster et al,
1977; Foulley, 1993). A frequentist interpretation of this algorithm based on error
contrasts can be found in De Stefano (1994). A similar derivation was given for the
homoskedastic case by Cantet (1990). As usual, the EM algorithm is an iterative
one consisting of an ’expectation’ (E) and of a ’maximization’ (M) step. Given the
current estimate c¡2 = c¡2[t] at iteration [t], the E step consists of computing the
conditional expectation of L( c¡2; x), ie

given the data vector y and ()&dquo;2 = ()&dquo;2[t].
The M step consists of choosing the next value ()&dquo;2[t+l] of U2 by maximizing

Q()&dquo;21()&dquo;2[t]) with respect to U2

Since In p(xl(T2) = ln p (y ! (3, u* , (T2)+ln p(l3, u* 1(T2) with In p(l3, u* I (T2) providing
no information about o-2, Q( (T21 (T2[t]) can be replaced by

Under model !1!, the expression for Q*(cr 21U2[l] ) reduces to

where E!t!(.) indicates a conditional expectation taken with respect to the distribu-
tion of [3, U* I y, 62 = (J’2[t]. This posterior distribution is multivariate normal with
mean E(l3ly, 62) = BLUE (best linear unbiased estimate) of j3, E(u!y, (7’) = BLUP
of u, and Var(l3, uly, (J’2) = inverse of the mixed-model coefficient matrix.

The system of equations åQ* ( (J’21 o’!)/9o’! = 0 can be written as follows: With
respect to the u-component, we have

and



For the residual component,

Since E!t] (e!ei) is a function of the unknown Qui only, equation [5] depends only
on that unknown whereas equation [6] depends of both variance components. We
then solve [5] first with respect to Ju, , and then solve [6] second substituting the
solution a!t+1! to o,,,, back into E!t](e!ei) of (6!, ie with

Hence

It is worth noticing that formula [7] gives the expression of the standard deviation
of the u-component, and has the form of a regression coefficient estimator. Actually
Ju, is the coefficient of regression of any element of yi on the corresponding element
of Zju*.

Let the system of mixed-model equations be written as

and

C = [ C,3,3 C,3. J = g inverse of the coefficient matrix.L C.,3 CUU I = 
-

The elements of [7] and [8] can be expressed as functions of y, (3, u and blocks of
C as follows

For readers interested in applying the above formulae, a small example is the
presented in tables I and II for a (fixed) environment and (random) sire model. It



is worth noticing that formulae [7] and [8] can also be applied to the homoskedastic
case by considering that there is just one subpopulation (I = 1). The resulting
algorithm looks like a regression in contrast to the conventional EM whose formula

(a![t+1] = Elt] (u’A-1u)/q) where u is not standardized (u = cr!u*) is in terms of
a variance. Not only do the formulae look quite different, but they also perform
quite differently in terms of rounds to convergence. The conventional EM tends to
do quite poorly if or » o, and (or) with little information, whereas the scaled
EM is at its best in these situations. This can be demonstrated by examining a
balanced paternal half-sib design (q families with progeny group size n each). This
is convenient because in this case the EM algorithms can be written in terms of
the between- and within-sire sums of squares and convergence performance checked
for a variety of situations without simulating individual records. For this simple
situation performance was fairly well predicted by the criterion R2 = n/(n + a),
where a = a2/0,2 . Figure 1 is a plot of rounds to convergence for the scaled and usual
EM algorithms for an arbitrary set of values of n and a. As noted by Thompson
and Meyer (1986), the usual EM performs very poorly at low R2, eg, n = 5 and
h2 = 4/(a + 1) = 0.25 or n = 33 and h2 = 0.04, ie R2 = 0.25, but very well
at the other end of the spectrum: n = 285 and h2 = 0.25 or n = 1881 and
h2 = 0.04, ie R2 = 0.95. The performance of the scaled version is the exact opposite.
Interestingly, both EM algorithms perform similarly for R2 values typical of many
animal breeding data sets (n = 30 and h2 = 0.25, ie R2 = 2/3).

Moreover, solutions given by the EM algorithm in [7] and [8] turn out to be
within the parameter space in the homoskedastic case (see proof in the Appendix)
but not necessarily in the heteroskedastic case as shown by a counter-example.



Bayesian approach

When there is little information per subpopulation (eg, herd or herdx management
unit), REML estimation of Qei and Quz can be unreliable. This led Hill (1984)
and Gianola (1986) to suggest estimates shrunken towards some common mean
variance. In this respect, Gianola et al (1992) proposed a Bayesian procedure to
estimate heterogeneous variance components. Their approach can be viewed as a



natural extension of the EM-REML technique described previously. The parameters
ol2 ei and o, U, 2 are assumed to be independently and identically distributed random
variables with scaled inverted chi-square density functions, the parameters of which
are s2,,q, e and su, r!! respectively. The parameters se and s! are location parameters
of the prior distributions of variance components, and TIe and 77,, (degrees of belief)
are quantities related to the squared coefficient of variation (cv) of true variances
by qe = (2/cve ) + 4 and qu = (2/cufl) + 4 respectively:

Moreover, let us assume as in Searle et al (1992, page 99), that the priors for residual
and u-components are assumed independent so that p (,72i, U2i) = p(,71i)p(0,2i).

The Q@( 0’21 O’2[t]) function to maximize in order to produce the posterior mode
of o-2 is now (Dempster et al, 1977, page 6):

with

Equations based on first derivatives set to zero are:

Using !l2ab!, one can use the following iterative algorithm
[t+ll .t’ f(7ui positive root of

or, alternatively

and

where



Comparing [13b] and [14] with the EM-REML formulae [7] and [8] shows how
prior information modifies data information (see also tables I and II). In particular
when TJe(TJu) = 0 (absence of knowledge on prior variances), formulae [13b] and [14]
are very similar to the EM-REML formulae. They would have been exactly the
same if we had considered the posterior mode of log-variances instead of variances,
!7e and !7.! replacing 17, + 2 and !7! + 2 respectively in !11!, and, consequently also in
the denominator of [13b] and !14!. In contrast, if !7e(!/u) ---> 00 (no variation among
variances), estimates tend to the location parameters s!(s!).

Extension to several u-components

The EM-REML equations can easily be extended to the case of a linear mixed
model including several independent u-components (uj; j = 1, 2, ... , J), ie

In that case, it can be shown that formula [7] is replaced by the linear system

The formula in [8] for the residual components of variance remains the same.
This algorithm can be extended to non-independent u-factors. As in a sire,

maternal grand sire model, it is assumed that correlated factors j and k are such
that Var(u*) = Var(u*) = A, and Cov(uj, u!/) = pjkA with dim(u!) = m for all
j. Let a2 = (or2&dquo; or2&dquo; p’) with p = vech(S2), S2 being a (m x m) correlation matrix
with pjk as element jk. The Q#(êT2IêT2[t]) function to maximize can be written here
as

where

The first term Q7 (u! ] 8&dquo;!°! ) = ErJ[lnp(yll3,u*,(J’!)] has the same form as with
the case of independence except that the expectation must taken with respect to the
distribution of (3, u* Iy, Õ’2 = Õ’2[t]. The second term Q!(plÕ’2[t]) = Elc’]) [In p(u* 1&2)]
can be expressed as

where D = {uj’ A -luk} is a (J x J) symmetric matrix.
The maximization of Q#(¡21(¡2[t]) with respect to 62 can be carried out in

2 stages: i) maximization of Qr(¡21(¡2[t]) with respect to the vector !2 of variance
components which can be solved as above; and ii) maximization of Q#(p 1&211,)
with respect to the vector of correlation coefficients p which can be performed via
a Newton-Raphson algorithm.



THE MULTIPLE-WAY CLASSIFICATION

The structural model on log-variances

Let us assume as above that the a2s (u and e types) are a priori independently
distributed as inverted chi-square random variables with parameters 5! (location)
and riz (degrees of belief), such that the density function can be written as:

where r(x) is the gamma function.
From !19), one can alternatively consider the density of the log-variance 1n Q2, I

or more interestingly that of vz = ln(a2/s2). In addition, it can be assumed that

71i = ! for all i, and that lns2 can be decomposed as a linear combination p’S of
some vector 5 or explanatory variables (p’ being a row vector of incidence), such
that

with

For vi --> 0, the kernel of the distribution in [21] tends towards exp( -r¡v’f /4), thus
leading to the following normal approximation

where the variance a priori (!) of true variances is inversely proportional to q
(! = 2/?!), ! also being interpretable as the square coefficient of variation of

log-variances. This approximation turns out to be excellent for most situations
encountered in practice (cv ! 0.50).

Formulae [20] and [21] can be naturally extended to several independent classi-
fications in v = (v!, v2, ... , vj, ... , v!)’ such that

with

where Kj = dim(vj) and J1 = (t,’, v’)’ is the vector of dispersion parameters and
C’ = (p!, q’) is the corresponding row vector of incidence.

This presentation allows us to mimick a mixed linear model structure with fixed
5 and random v effects on log-variances, similar to what is done on cell means

(vti = x!13 + z’u = t!0), and thus justifies the choice of the log as the link function
(Leonard, 1975; Denis, 1983; Aitkin, 1987; Nair and Pregibon, 1988) to use for this
generalized linear mixed-model approach.

Equations [23] and [24] can be applied both to residual and u-components of
variance viz,



where y! = in 0,2i 1, ye = in or’ 1; Pu, Pe are incidence matrices pertaining
to fixed effects 5u, be respectively; Qu, Qg are incidence matrices pertaining to
random effects vu = (V!&dquo;V!2&dquo;&dquo;,V!j&dquo;&dquo;)’ and Ve = (V!&dquo;V!2&dquo;&dquo;,V!jl)’ with
v! -Nid(0,!I!.) and Vel -NID(0,!,I! ,) respectively. J J UJ J J ej’

Estimation

Let A = (À!, A’)’ and (ç!, g[I’ where gu = {çuJ and Çe = !ei, 1. Inferenceu e e >
about 71 is of an empirical Bayes type and is based on the mode a of the posterior
density p(Àly, E, = i;) given I = I its marginal maximum likelihood estimator, ie

Maximization in [26ab] can be carried out according to the procedure described
by Foulley et al (1992) and San Cristobal et al (1993). The algorithm for computing
X can be written as (from iteration t to t + 1)

where

z = (z’u, z!) are working variables updated at each iteration and such that

w = W-- Wue J is a (2I, 21) matrix of weights described in Foulley et alW eu Wee
(1990, 1992) for the environmental variance part, and in San Cristobal et al (1993)
for the general case.

!,,j and çej can be computed as usual in Gaussian model methodology via the
EM algorithm



where 9tl , 9t/ are solutions of [26] for ! = ![nl and H[n] H!n!e!&dquo; are blocks ofwere uj ’ ej’ are so utlonS 0 lor L, = L, , an VjVj’ ej,ej&dquo; are oc SO

the inverse of the coefficient matrix of [27] pertaining to v Uj’ Vej’ respectively.

Testing procedure

The procedure described previously reduces to REML estimation of J1 when flat
priors are assumed for v! and v,, or equivalently when the structural model for
log-variances is a purely fixed model. This property allows derivation of testing
procedures to identify significant sources of heteroskedasticity. This can be achieved
via the likelihood ratio test (LRT) as proposed by Foulley et al (1990, 1992) and San
Cristobal et al (1993) but in using the residual (marginal) log-likelihood function
L(7!; y) instead of the full log-likelihood L(71, [3; y).

Let Ho:À c !lo be the null hypothesis and H1:À E Il - Ao its alternative, where
A refers to the complete parameter space and !lo, a subset of it, pertains to Ho.
Under Ho, the statistic

has an asymptotic chi-square distribution with r degrees of freedom; r is the
difference in the number of estimable parameters involved in A and Ilo, eg,
r = rank(K) when Ho is defined by K’71 = 0, K’ being a full row rank matrix.

Fortunately, for a Gaussian linear model, such as the one considered here

y2 N N(Xil3, a!iZ!AZi + U2ij&dquo;i), L(À; y), can be easily expressed as

1 
0 0

where N = ! ni, p = rank(X), Ti = (xi,or.izi), E- - [0 0] andwhere N 
= L ni, P 

= rank(X), Ti = (Xi, aUiZi), !- = 
10 A J 

and

<=1
! !,

e = (13, û*’) is a solution of the system of mixed-model equations in [9], ie

I 1 I

[t a;:2T!Ti + !-] ê = t a;:2T!Yi’Li=1 
&dquo; i _ i=l &dquo; 

iyi

CONCLUSION

This paper is an attempt to synthesize the current state of research in the field of
statistical analysis of heterogeneous variances arising in mixed-model methodology
and in its application to animal breeding. For pedagogical reasons, the paper
successively addressed the cases of one-way and multiple-way classification. In

any case, the estimation procedures chosen were REML and its natural Bayesian
extension, the posterior mode using inverted gamma prior distributions. For a
single classification, simple formulae for computing REML and Bayes estimations
were derived using the theory of EM. Emphasis was placed on this algorithm but
other alternatives could be considered, eg, ECME (Liu and Rubin, 1994), AI-REML
(Johnson and Thompson, 1994) and DF-REML (Meyer, 1989).



For multiple classifications, the key idea underlying the structural approach is
to render models as parsimonious as possible, which is especially critical with the
large data sets used in genetic evaluation having a large number of subclasses.
Consequently, it was shown how heterogeneity of log-residual and u-components
of variance can be described with a mixed linear model structure. This makes the

corresponding estimation procedures a natural extension of what has been done for
decades by BLUP techniques on subclass means.
An important feature of this procedure is its ability to assess via likelihood ratio

tests the effects of potential sources of heterogeneity considered either marginally
or jointly. Although computationally demanding, these procedures have begun to
be applied. San Cristobal et al (1993) applied these procedures to the analysis of
muscle development scores at weaning of 8 575 progeny of 142 sires in the Maine
Anjou cattle breed where heroskedasticity was found both for the sire and residual
components. Weigel et al (1993) and DeStefano (1994) also used the structural
approach for sire and residual variances to assess sources of heterogeneity in within-
herd variances of milk and fat records in Holstein. Herd size and within-herd means
were associated with significant increases in residual variances as well as various
management factors (eg, milking system). Approximations for the to estimation of
within region-herd-year-parity phenotypic variances were also proposed for dairy
cattle evaluation by Wiggans and Van Raden (1991) and Weigel and Gianola
(1993). These techniques also open new prospects of research in different fields of
quantitative genetics, eg, analyses of genotype x environment interactions (Foulley
et al, 1994; Robert et al, 1994), testing procedures for genetic parameters (Robert
et al, 1995ab), crossbreeding experiments and QTL detection. However, research is
still needed to improve the methodology and efficiency of algorithms.
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APPENDIX

A proof that equation [7] is non-negative in the homoskedastic case is as follows.
The numerator of [7] can be written as:

where e = y - XI3, Ê= y - X(3 = VPy, and u = auZ’y-1(y - X!) = u,,ZPy
with V = Var(y), P = y-1- Y-1X(X’y-1X)-X’Y-1, and K’y, an N-rank(X)
vector of linear contrasts.
Now

so that

Moreover V-’ - P = V-’X(X’V-’X)-X’V-1 is non-negative definite (nnd).
For a one-way random factor



then

nnd matrices, then tr(AB) > 0 (Graybill, 1969).
Hence,



COMMENT

Robin Thompson

Roslin Institute, Roslin, Midlothian EH25 9PS, UK

This paper is a synthesis of recent work of the authors and their co-workers in
the area of heterogeneous variances. I think it is a valuable review giving a logical
presentation showing how heterogeneous variance modelling can be carried out.
The parallels between estimation of linear parameters and variance parameters is
highlighted. My comments relate to transformation, convergence, simplicity and
utility.

Transformation

Emphasis is on the genetic standard deviation as a parameter rather than the
genetic variance. Such a parameterization has been used to allow estimation of
binary variance components (Anderson and Aitkin, 1985). Using scaled variables
can also allow reduction of the dimension of search in derivative-free methods of
multivariate estimation (Thompson et al, 1994). It is also a special case of the
Choleski transformation, which has been suggested to speed up estimation and
keep parameters within bounds for repeated measures data (Lindstrom and Bates,
1988) and multivariate genetic data (Groeneveld, 1994).

Reverter et al (1994) have recently suggested regression type methods for
estimation of variance parameters. As the authors point out, there is a natural

regression interpretation to the similar equations [7] and [8]. However [7] and
[8] include trace terms that essentially correct for attenuation or uncertainty in
knowing the fixed or random effects.

Convergence

In the discussion of Dempster et al (1977) I pointed out that the rate of convergence
for a balanced one-way analysis is (in the authors’ notation) approximately 1- R2,
which, I think, explains one of the graphs in figure 1. In the time available, I have
not been able to derive the rate of convergence for the scheme based on [7] and
[8], but if Qe is known and [7] is used to estimate (T2i, which should be a good
approximation, then the rate of convergence is 1 - 2R2(1 - RZ). This is in good
agreement with figure 1, suggesting symmetry about R2 = 0.5 and equality of the
speed of convergence when R2 = 2/3.

As someone who has never understood the EM algorithm or its popularity, I
would have thought schemes based on some form of second differentials would be
more useful, especially as some of the authors’ schemes allow negative standard
deviations.

Simplicity

Whilst very elegant, I was wondering if there was a simple analysis, perhaps
graphical, and based on score tests based on a homogeneous analysis that would



highlight the need for a heterogeneous analysis, both for fitting the data and
measuring the possible loss of response.

Utility

I can see the use of these methods at a phenotypic level, but I am less clear if it is
realistic to attempt to detect differences at a genetic level (Visscher, 1992). At the
simplest level if the residuals are heterogeneous can one realistically discriminate
between models with homogeneous genetic variances or homogeneous heritabilities ?
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COMMENT

Daniel Gianola

Department of Meat and Animal Science, University of Wisconsin-Madison, USA

This paper reviews and extends previous work done by the senior author and
collaborators in the area of inferences about heterogeneous variance components
in animal breeding. The authors impose a model on the variance structure, and
suggest estimation and testing procedures, so as to arrive to explanatory constructs
that have as few parameters as possible. Their approach is systematic, in contrast to
other suggestions available in the literature (some of which are referenced by Foulley
and G!uaas), where a model on the variances is adopted implicity without reference
to the amount of support that is provided by the data at hand, and often on the
basis of mechanistic or ad hoc considerations. In this front, their developments are
welcome.

They adopt either a likelihood or a Bayesian viewpoint, and restrict themselves
to conducting a search of the appropriate maximizers (REML or posterior modes,
respectively) via the EM algorithm, which is implemented in a clear, straightforward
way. In so doing, they arrive at a formulation (’scaled’ EM) which exhibits a
different numerical behavior from that of the ’standard’ EM in a simple model.
In their Bayesian version, they employ scaled inverted chi-square priors, and arrive



at estimating equations that are similar to those of Gianola et al (1992), cited by
the authors. It is now well known that setting all degree of belief parameters to
zero leads to an improper posterior distribution; surprisingly, the authors (as well
as Gianola et al, 1992) do not alert the readers about this pitfall.

The authors do not provide measures of the curvature of the likelihood or of the
pertinent posterior distribution in the neighborhood of the maximum. It is useful
to recover second derivatives either to implement fully the maximum likelihood
analysis, or to approximate the joint (or marginal) posterior with a Gaussian
distribution. Gianola et al (1992) gave expressions for second differentials for some
simple heterosckedastic models, and an extension of these would have been an
interesting contribution.

Their testing procedure relies on asymptotic properties of the (marginal) like-
lihood ratio test. I wonder how accurate this test is in situations where a het-
eroskedastic model of high dimensionality may be warranted. In this situation, the
asymptotic distribution of the test criterion may differ drastically from the exact
sampling distribution. It is somewhat surprising that the authors do not discuss
Bayesian test and associated methods for assessing uncertainty; some readers may
develop the false impression that there is a theoretical vacuum in this domain (see,
for example, Robert, 1992).

There is a lot more information in a posterior (or normalized likelihood) than
that contained in first and second differentials. In this respect, an implementation
based on Monte-Carlo Markov chain (MCMC) methods such as the Gibbs sampler
(eg, Tanner, 1993) can be used to estimate the whole set of posterior distributions
in the presence of heterogeneous variances. In some simple heteroskedastic linear
models it can be shown that the random walk involves simple chains of normal
and inverted chi-square distributions. Further, it is possible to arrive at the exact
(within the limits of the Monte-Carlo error) posterior distributions of linear and
nonlinear functions of fixed and random effects. In the sampling theory framework
one encounters immediately a Behrens-Fisher problem, even in a simple contrast
between ’treatments’. The Bayesian approach via MCMC would allow an exact
analysis of, for example, breed comparison experiments, when the sources of

germplasm involved have heterogeneous and unknown dispersion.
I have been intrigued for some time about the possible consequences of hetero-

geneous covariance matrices in animal evaluation in a multiple-trait analysis. If
there is heterogeneous variance there must be heterogeneity in covariances as well !
Perhaps the consequences on animal ranking are even more subtle than in the uni-
variate case. It is not obvious how the structural model approach can be generalized
here, and this is a challenge for future research.
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