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1 Definitions and results
As the development of singular integral operators and their commutators, multilinear sin-
gular integral operators have been well studied (see [–]). In this paper, we study some
multilinear operator associated to the singular integral operators with non-smooth ker-
nels as follows.

Definition  A family of operators Dt , t > , is said to be ‘approximations to the identity’
if, for every t > , Dt can be represented by the kernel at(x, y) in the following sense:

Dt(f )(x) =
∫
Rn
at(x, y)f (y)dy

for every f ∈ Lp(Rn) with p ≥ , and at(x, y) satisfies

∣∣at(x, y)∣∣ ≤ ht(x, y) = Ct–n/s
(|x – y|/t),

where s is a positive, bounded and decreasing function satisfying

lim
r→∞ rn+εs

(
r

)
= 

for some ε > .

Definition  A linear operator T is called a singular integral operator with non-smooth
kernel if T is bounded on L(Rn) and associated with a kernel K(x, y) such that

T(f )(x) =
∫
Rn
K(x, y)f (y)dy
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for every continuous function f with compact support, and for almost all x not in the
support of f .
() There exists an ‘approximation to the identity’ {Bt , t > } such that TBt has an asso-

ciated kernel kt(x, y) and there exist c, c >  so that
∫

|x–y|>ct/
∣∣K(x, y) – kt(x, y)

∣∣dx ≤ c for all y ∈ Rn.

() There exists an ‘approximation to the identity’ {At , t > } such that AtT has an asso-
ciated kernel Kt(x, y) which satisfies

∣∣Kt(x, y)
∣∣ ≤ ct–n/ if |x – y| ≤ ct/,

and

∣∣K(x, y) –Kt(x, y)
∣∣ ≤ ctδ/|x – y|–n–δ if |x – y| ≥ ct/

for some c, c > , δ > .

Let mj be positive integers (j = , . . . , l), m + · · · +ml =m, and let bj be functions on Rn

(j = , . . . , l). Set, for  ≤ j ≤ m,

Rmj+(bj;x, y) = bj(x) –
∑

|α|≤mj


α!
Dαbj(y)(x – y)α .

The multilinear operator associated to T is defined by

Tb(f )(x) =
∫
Rn

∏l
j= Rmj+(bj;x, y)

|x – y|m K(x, y)f (y)dy.

Note that when m = , Tb is just the multilinear commutator of T and bj (see []).
However, when m > , Tb is a non-trivial generalization of the commutator. It is well
known that multilinear operators are of great interest in harmonic analysis and have
been widely studied by many authors (see [–]). Hu and Yang (see []) proved a variant
sharp estimate for the multilinear singular integral operators. In [], Pérez and Trujillo-
Gonzalez proved a sharp estimate for the multilinear commutator when bj ∈OscexpLrj (R

n)
and noted that OscexpLrj ⊂ BMO. The main purpose of this paper is to prove a sharp
function inequality for the multilinear singular integral operator with non-smooth kernel
when Dαbj ∈ BMO(Rn) for all α with |α| =mj. As an application, we obtain an Lp (p > )
norm inequality and an L logL-type inequality for the multilinear operators. In [–],
the boundedness of a singular integral operator with non-smooth kernel is obtained. In
[], the boundedness of the commutator associated to the singular integral operator with
non-smooth kernel is obtained. Our works are motivated by these papers.
First, let us introduce some notations. Throughout this paper, Q denotes a cube of Rn

with sides parallel to the axes. For any locally integrable function f , the sharp function of
f is defined by

f #(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y) – fQ
∣∣dy,

http://www.journalofinequalitiesandapplications.com/content/2013/1/439
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where, and in what follows, fQ = |Q|– ∫Q f (x)dx. It is well known that (see [, ])

f #(x) ≈ sup
Q�x

inf
c∈C


|Q|

∫
Q

∣∣f (y) – c
∣∣dy.

We say that f belongs to BMO(Rn) if f # belongs to L∞(Rn) and ‖f ‖BMO = ‖f #‖L∞ . LetM be
a Hardy-Littlewood maximal operator defined by

M(f )(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y)∣∣dy.

For k ∈N , we denote byMk the operatorM iterated k times, i.e.,M(f )(x) =M(f )(x) and

Mk(f )(x) =M
(
Mk–(f )

)
(x) when k ≥ .

The sharp maximal function MA(f ) associated with the ‘approximations to the identity’
{At , t > } is defined by

M#
A(f )(x) = sup

Q�x


|Q|
∫
Q

∣∣f (y) –AtQ (f )(y)
∣∣dy,

where tQ = l(Q) and l(Q) denotes the side length of Q. For  < r < ∞, we denote M#
A(f )r

by

M#
A(f )r =

[
M#

A
(|f |r)]/r .

Let � be a Young function and �̃ be the complementary associated to �. For a func-
tion f , we denote the �-average by

‖f ‖�,Q = inf

{
λ >  :


|Q|

∫
Q

�

( |f (y)|
λ

)
dy ≤ 

}

and the maximal function associated to � by

M�(f )(x) = sup
Q�x

‖f ‖�,Q.

The Young functions used in this paper are �(t) = t( + log t)r and �̃(t) = exp(t/r), the
corresponding average and maximal functions are denoted by ‖ · ‖L(logL)r ,Q, ML(logL)r and
‖ · ‖expL/r ,Q,MexpL/r . Following [, , ], we know the generalized Hölder inequality


|Q|

∫
Q

∣∣f (y)g(y)∣∣dy≤ ‖f ‖�,Q‖g‖�̃,Q

and the following inequality, for r, rj ≥ , j = , . . . , l with /r = /r + · · · + /rl , and any
x ∈ Rn, b ∈ BMO(Rn),

‖f ‖L(logL)/r ,Q ≤ ML(logL)/r (f ) ≤ CML(logL)l (f ) ≤ CMl+(f ),

‖b – bQ‖expLr ,Q ≤ C‖b‖BMO,

|bk+Q – bQ| ≤ Ck‖b‖BMO.

We denote the Muckenhoupt weights by Ap for  ≤ p < ∞ (see []).
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We shall prove the following theorems.

Theorem  If T is a singular integral operator with non-smooth kernel as given in Def-
inition , let Dαbj ∈ BMO(Rn) for all α with |α| = mj and j = , . . . , l. Then there exists a
constant C >  such that for any f ∈ C∞

 (Rn),  < r <  and x̃ ∈ Rn,

M#
A
(
Tb(f )

)
r(x̃)≤ C

l∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
Ml+(f )(x̃).

Theorem  If T is a singular integral operator with non-smooth kernel as given in Defini-
tion , let Dαbj ∈ BMO(Rn) for all α with |α| =mj and j = , . . . , l. Then Tb is bounded on
Lp(w) for any  < p < ∞ and w ∈ Ap, that is,

∥∥Tb(f )
∥∥
Lp(w) ≤ C

l∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
‖f ‖Lp(w).

Theorem  If T is a singular integral operator with non-smooth kernel as given in Defini-
tion , let w ∈ A, Dαbj ∈ BMO(Rn) for all α with |α| =mj and j = , . . . , l. Then there exists
a constant C >  such that for all λ > ,

w
({
x ∈ Rn :

∣∣Tb(f )(x)
∣∣ > λ

}) ≤ C
∫
Rn

|f (x)|
λ

[
 + log+

( |f (x)|
λ

)]l

w(x)dx.

2 Proof of the theorem
To prove the theorems, we need the following lemma.

Lemma  (see []) Let b be a function on Rn and Dαb ∈ Lq(Rn) for all α with |α| =m and
some q > n. Then

∣∣Rm(b;x, y)
∣∣ ≤ C|x – y|m

∑
|α|=m

(


|Q̃(x, y)|
∫
Q̃(x,y)

∣∣Dαb(z)
∣∣q dz

)/q

,

where Q̃ is the cube centered at x and having side length 
√
n|x – y|.

Lemma  ([, p.]) Let  < p < q < ∞ and for any function f ≥ , we define that for
/r = /p – /q,

‖f ‖WLq = sup
λ>

λ
∣∣{x ∈ Rn : f (x) > λ

}∣∣/q, Np,q(f ) = sup
E

‖f χE‖Lp/‖χE‖Lr ,

where the sup is taken for all measurable sets E with  < |E| < ∞. Then

‖f ‖WLq ≤ Np,q(f ) ≤
(
q/(q – p)

)/p‖f ‖WLq .

Lemma  (see []) Let rj ≥  for j = , . . . , l, we denote that /r = /r + · · · + /rl . Then


|Q|

∫
Q

∣∣f(x) · · · fl(x)g(x)∣∣dx ≤ ‖f ‖expLr ,Q · · · ‖f ‖expLrl ,Q‖g‖L(logL)/r ,Q.
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Lemma  ([, ]) Let T be a singular integral operator with non-smooth kernel as given
in Definition . Then T is bounded on Lp(Rn) for every  < p < ∞ and bounded from L(Rn)
to WL(Rn).

Lemma  (see [, ]) For any γ > , there exists a constant C >  independent of γ such
that

∣∣{x ∈ Rn :M(f )(x) >Dλ,M#
A(f )(x) ≤ γ λ

}∣∣ ≤ Cγ
∣∣{x ∈ Rn :M(f )(x) > λ

}∣∣

for λ > , where D is a fixed constant which only depends on n. Thus

∥∥M(f )
∥∥
Lp ≤ C

∥∥M#
A(f )

∥∥
Lp

for every f ∈ Lp(Rn),  < p < ∞.

Lemma  Let {At , t > } be an ‘approximation to the identity’ and b ∈ BMO(Rn). Then, for
every f ∈ Lp(Rn), p >  and x̃ ∈ Rn,

sup
Q�x̃


|Q|

∫
Q

∣∣AtQ
(
(b – bQ)f

)
(x)

∣∣dx≤ C‖b‖BMOM(f )(x̃),

where tQ = l(Q) and l(Q) denotes the side length of Q.

Proof We write, for any cube Q with x̃ ∈Q,


|Q|

∫
Q

∣∣AtQ
(
(b – bQ)f

)
(x)

∣∣dx ≤ 
|Q|

∫
Q

∫
Rn
htQ (x, y)

∣∣(b(y) – bQ
)
f (y)

∣∣dydx

≤ 
|Q|

∫
Q

∫
Q

htQ (x, y)
∣∣(b(y) – bQ

)
f (y)

∣∣dydx

+
∞∑
k=


|Q|

∫
Q

∫
k+Q\kQ

htQ (x, y)
∣∣(b(y) – bQ

)
f (y)

∣∣dydx
= I + I.

We have, by the generalized Hölder inequality,

I ≤ C


|Q||Q|
∫
Q

∫
Q

∣∣(b(y) – bQ
)
f (y)

∣∣dydx
≤ C‖b – bQ‖expL,Q‖f ‖L(logL),Q
≤ C‖b‖BMOM(f )(x̃).

For I, notice for x ∈ Q and y ∈ k+Q\kQ, then |x – y| ≥ k–tQ and htQ (x, y) ≤ C s((k–))
|Q| ,

then

I ≤ C
∞∑
k=

s
(
(k–)

) 
|Q|

∫
Q

∫
k+Q

∣∣(b(y) – bQ
)
f (y)

∣∣dydx

≤ C
∞∑
k=

kns
(
(k–)

) 
|k+Q|

∫
k+Q

∣∣(b(y) – bQ
)
f (y)

∣∣dy

http://www.journalofinequalitiesandapplications.com/content/2013/1/439
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≤ C
∞∑
k=

kns
(
(k–)

)‖b – bQ‖expL,k+Q‖f ‖L(logL),k+Q

≤ C
∞∑
k=

(k–)ns
(
(k–)

)‖b‖BMOM(f )(x̃)

≤ C‖b‖BMOM(f )(x̃),

where the last inequality follows from

∞∑
k=

(k–)ns
(
(k–)

) ≤ C
∞∑
k=

–(k–)ε <∞

for some ε > . This completes the proof. �

Proof of Theorem  It suffices to prove for f ∈ C∞
 (Rn) and some constant C that the

following inequality holds:

(


|Q|
∫
Q

∣∣∣∣Tb(f )(x)
∣∣r – ∣∣AtQT

b(f )(x)
∣∣r∣∣dx

)/r

≤ C
l∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
Ml+(f )(x).

Without loss of generality, wemay assume l = . Fix a cubeQ =Q(x,d) and x̃ ∈Q. Let Q̃ =

√
nQ and b̃j(x) = bj(x) –

∑
|α|=mj


α! (D

αbj)Q̃xα , then Rmj (bj;x, y) = Rmj (b̃j;x, y) and Dα b̃j =
Dαbj – (Dαbj)Q̃ for |α| =mj. We write, for f = f χQ̃ + f χRn\Q̃ = f + f,

Tb(f )(x) =
∫
Rn

∏
j= Rmj+(b̃j;x, y)

|x – y|m K(x, y)f (y)dy =
∫
Rn

∏
j= Rmj (b̃j;x, y)

|x – y|m K(x, y)f(y)dy

–
∑

|α|=m


α!

∫
Rn

Rm (b̃;x, y)(x – y)αDα b̃(y)
|x – y|m K(x, y)f(y)dy

–
∑

|α|=m


α!

∫
Rn

Rm (b̃;x, y)(x – y)αDα b̃(y)
|x – y|m K(x, y)f(y)dy

+
∑

|α|=m, |α|=m


α!α!

∫
Rn

(x – y)α+αDα b̃(y)Dα b̃(y)
|x – y|m K(x, y)f(y)dy

+
∫
Rn

∏
j= Rmj+(b̃j;x, y)

|x – y|m K(x, y)f(y)dy

= T
(∏

j= Rmj (b̃j;x, ·)
|x – ·|m f

)
– T

( ∑
|α|=m


α!

Rm (b̃;x, ·)(x – ·)αDα b̃
|x – ·|m f

)

– T
( ∑

|α|=m


α!

Rm (b̃;x, ·)(x – ·)αDα b̃
|x – ·|m f

)

+ T
( ∑

|α|=m, |α|=m


α!α!

(x – ·)α+αDα b̃Dα b̃
|x – ·|m f

)

+ T
(∏

j= Rmj+(b̃j;x, ·)
|x – ·|m f

)

http://www.journalofinequalitiesandapplications.com/content/2013/1/439
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and

AtQT
b(f )(x) =

∫
Rn

∏
j= Rmj (b̃j;x, y)

|x – y|m Kt(x, y)f(y)dy

–
∑

|α|=m


α!

∫
Rn

Rm (b̃;x, y)(x – y)αDα b̃(y)
|x – y|m Kt(x, y)f(y)dy

–
∑

|α|=m


α!

∫
Rn

Rm (b̃;x, y)(x – y)αDα b̃(y)
|x – y|m Kt(x, y)f(y)dy

+
∑

|α|=m, |α|=m


α!α!

∫
Rn

(x – y)α+αDα b̃(y)Dα b̃(y)
|x – y|m Kt(x, y)f(y)dy

+
∫
Rn

∏
j= Rmj+(b̃j;x, y)

|x – y|m Kt(x, y)f(y)dy

= AtQT
(∏

j= Rmj (b̃j;x, ·)
|x – ·|m f

)

–AtQT
( ∑

|α|=m


α!

Rm (b̃;x, ·)(x – ·)αDα b̃
|x – ·|m f

)

–AtQT
( ∑

|α|=m


α!

Rm (b̃;x, ·)(x – ·)αDα b̃
|x – ·|m f

)

+AtQT
( ∑

|α|=m, |α|=m


α!α!

(x – ·)α+αDα b̃Dα b̃
|x – ·|m f

)

+AtQT
(∏

j= Rmj+(b̃j;x, ·)
|x – ·|m f

)
,

then

[


|Q|
∫
Q

∣∣∣∣Tb(f )(x)
∣∣r – ∣∣AtQT

b(f )(x)
∣∣r∣∣dx

]/r

≤
[


|Q|

∫
Q

∣∣Tb(f )(x) –AtQT
b(f )(x)

∣∣r dx
]/r

≤
[
C
|Q|

∫
Q

∣∣∣∣T
(∏

j= Rmj (b̃j;x, ·)
|x – ·|m f

)∣∣∣∣
r

dx
]/r

+
[
C
|Q|

∫
Q

∣∣∣∣T
( ∑

|α|=m

Rm (b̃;x, ·)(x – ·)αDα b̃
|x – ·|m f

)∣∣∣∣
r

dx
]/r

+
[
C
|Q|

∫
Q

∣∣∣∣T
( ∑

|α|=m

Rm (b̃;x, ·)(x – ·)αDα b̃
|x – ·|m f

)∣∣∣∣
r

dx
]/r

+
[
C
|Q|

∫
Q

∣∣∣∣T
( ∑

|α|=m, |α|=m

∫
Q

(x – ·)α+αDα b̃Dα b̃
|x – ·|m f

)∣∣∣∣
r

dx
]/r

+
[
C
|Q|

∫
Q

∣∣∣∣AtQT
(∏

j= Rmj (b̃j;x, ·)
|x – ·|m f

)∣∣∣∣
r

dx
]/r

http://www.journalofinequalitiesandapplications.com/content/2013/1/439
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+
[
C
|Q|

∫
Q

∣∣∣∣AtQT
( ∑

|α|=m


α!

Rm (b̃;x, ·)(x – ·)αDα b̃
|x – ·|m f

)∣∣∣∣
r

dx
]/r

+
[
C
|Q|

∫
Q

∣∣∣∣AtQT
( ∑

|α|=m


α!

Rm (b̃;x, ·)(x – ·)αDα b̃
|x – ·|m f

)∣∣∣∣
r

dx
]/r

+
[
C
|Q|

∫
Q

∣∣∣∣AtQT
( ∑

|α|=m, |α|=m


α!α!

(x – ·)α+αDα b̃Dα b̃
|x – ·|m f

)∣∣∣∣
r

dx
]/r

+
[
C
|Q|

∫
Q

∣∣∣∣(T –AtQT)
(∏

j= Rmj+(b̃j;x, ·)
|x – ·|m f

)∣∣∣∣
r

dx
]/r

:= I + I + I + I + I + I + I + I + I.

Now, let us estimate I, I, I, I, I, I, I, I and I, respectively. First, for x ∈Q and y ∈ Q̃,
by Lemma , we get

Rm(b̃j;x, y) ≤ C|x – y|m
∑

|αj|=m

∥∥Dαj bj
∥∥
BMO,

by Lemma  and the weak type (, ) of T (Lemma ), we obtain

I ≤ C
∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)(


|Q|
∫
Rn

∣∣T(f)(x)∣∣r dx
)/r

≤ C
∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
|Q|– ‖T(f)χQ‖Lr

|Q|/r–

≤ C
∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
|Q|–∥∥T(f)∥∥WL

≤ C
∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
|Q̃|–‖f‖L

≤ C
∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
M(f )(x̃).

For I, we get, by Lemma  and the generalized Hölder inequality,

I ≤ C
∑

|α|=m

∥∥Dαb
∥∥
BMO

∑
|α|=m

(


|Q|
∫
Rn

∣∣T(
Dα b̃f

)
(x)

∣∣r dx
)/r

≤ C
∑

|α|=m

∥∥Dαb
∥∥
BMO

∑
|α|=m

|Q|– ‖T(D
α b̃f)χQ‖Lr
|Q|/r–

≤ C
∑

|α|=m

∥∥Dαb
∥∥
BMO

∑
|α|=m

|Q|–∥∥T(
Dα b̃f

)∥∥
WL

≤ C
∑

|α|=m

∥∥Dαb
∥∥
BMO

∑
|α|=m

|Q̃|–∥∥Dα b̃f
∥∥
L

http://www.journalofinequalitiesandapplications.com/content/2013/1/439
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≤ C
∑

|α|=m

∥∥Dαb
∥∥
BMO

∑
|α|=m

∥∥Dαb –
(
Dαb

)
Q̃

∥∥
expL,Q̃‖f ‖L(logL),Q̃

≤ C
∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
M(f )(x̃).

For I, similar to the proof of I, we get

I ≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

)
M(f )(x̃).

Similarly, for I, taking r, r, r ≥  such that /r = /r + /r, we obtain, by Lemma  and
the generalized Hölder inequality,

I ≤ C
∑

|α|=m,|α|=m

(


|Q|
∫
Rn

∣∣T(
Dα b̃Dα b̃f

)
(x)

∣∣r dx
)/r

≤ C
∑

|α|=m,|α|=m

|Q|– ‖T(D
α b̃Dα b̃f)χQ‖Lr

|Q|/r–

≤ C
∑

|α|=m,|α|=m

|Q|–∥∥T(
Dα b̃Dα b̃f

)∥∥
WL

≤ C
∑

|α|=m,|α|=m

|Q|–∥∥Dα b̃Dα b̃f
∥∥
L

≤ C
∑

|α|=m,|α|=m

∏
j=

∥∥Dαj bj –
(
Dαj bj

)
Q̃

∥∥
expLrj ,Q̃ · ‖f ‖L(logL)/r ,Q̃

≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

)
M(f )(x̃).

For I, I, I and I, by Lemma , we get

I + I + I + I ≤ C
∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)


|Q|
∫
Q

∣∣AtQT(f)(x)
∣∣dx

+C
∑

|α|=m

∥∥Dαb
∥∥
BMO

∑
|α|=m


|Q|

∫
Q

∣∣AtQT
(
Dα b̃f

)
(x)

∣∣dx

+C
∑

|α|=m

∥∥Dαb
∥∥
BMO

∑
|α|=m


|Q|

∫
Q

∣∣AtQT
(
Dα b̃f

)
(x)

∣∣dx

+C
∑

|α|=m,|α|=m


|Q|

∫
Q

∣∣AtQT
(
Dα b̃Dα b̃f

)
(x)

∣∣dx

≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

)
M(f )(x̃).
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For I, we write

(T –AtQT)
(∏

j= Rmj+(b̃j;x, ·)
|x – ·|m f

)

=
∫
Rn

∏
j= Rmj+(b̃j;x, y)

|x – y|m
(
K(x, y) –Kt(x, y)

)
f(y)dy

=
∫
Rn

∏
j= Rmj (b̃j;x, y)

|x – y|m
(
K(x, y) –Kt(x, y)

)
f(y)dy

–
∑

|α|=m


α!

∫
Rn

Dα b̃(y)(x – y)αRm (b̃;x, y)
|x – y|m

(
K(x, y) –Kt(x, y)

)
f(y)dy

–
∑

|α|=m


α!

∫
Rn

Dα b̃(y)(x – y)αRm (b̃;x, y)
|x – y|m

(
K(x, y) –Kt(x, y)

)
f(y)dy

+
∑

|α|=m, |α|=m


α!α!

∫
Rn

Dα b̃(y)Dα b̃(y)(x – y)α+α

|x – y|m
(
K(x, y) –Kt(x, y)

)
f(y)dy

= I() + I() + I() + I() .

By Lemma  and the following inequality (see [])

|bQ – bQ | ≤ C log
(|Q|/|Q|

)‖b‖BMO for Q ⊂Q,

we know that for x ∈Q and y ∈ k+Q̃ \ kQ̃,

∣∣Rm(b̃;x, y)
∣∣ ≤ C|x – y|m

∑
|α|=m

(∥∥Dαb
∥∥
BMO +

∣∣(Dαb
)
Q̃(x,y) –

(
Dαb

)
Q̃

∣∣)

≤ Ck|x – y|m
∑
|α|=m

∥∥Dαb
∥∥
BMO.

Note that |x– y| ≥ d = t/ and |x– y| ∼ |x – y| for x ∈Q and y ∈ Rn \ Q̃. By the conditions
on K and Kt , we obtain

∣∣I()
∣∣ =

∞∑
k=

∫
k+Q̃\kQ̃

∏
j= |Rmj (b̃j;x, y)|

|x – y|m
∣∣K(x, y) –Kt(x, y)

∣∣∣∣f (y)∣∣dy

≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

) ∞∑
k=

∫
k+Q̃\kQ̃

k
dδ

|x – y|n+δ

∣∣f (y)∣∣dy

≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

) ∞∑
k=

k–δk 
|kQ̃|

∫
kQ̃

∣∣f (y)∣∣dy

≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

)
M(f )(x̃).
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For I() , we get, by the generalized Hölder inequality,

∣∣I()
∣∣ ≤ C

( ∑
|α|=m

∥∥Dαb
∥∥
BMO

) ∑
|α|=m

∞∑
k=

∫
k+Q̃\kQ̃

kdδ

|x – y|n+δ

∣∣Dα b̃(y)
∣∣∣∣f (y)∣∣dy

≤ C
( ∑

|α|=m

∥∥Dαb
∥∥
BMO

)

×
∑

|α|=m

∞∑
k=

k–δk∥∥Dαb –
(
Dαb

)
Q̃

∥∥
expL,kQ̃‖f ‖L(logL),kQ̃

≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

)
M(f )(x̃).

Similarly,

∣∣I()
∣∣ ≤ C

∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

)
M(f )(x̃).

For I() , taking r, r, r ≥  such that /r = /r + /r, by Lemma  and the generalized
Hölder inequality, we get

∣∣I()
∣∣ ≤ C

∑
|α|=m,|α|=m

∞∑
k=

∫
k+Q̃\kQ̃

dδ

|x – y|n+δ

∣∣Dα b̃(y)
∣∣∣∣Dα b̃(y)

∣∣∣∣f (y)∣∣dy

≤ C
∑

|α|=m,|α|=m

∞∑
k=

∏
j=

∥∥Dαj bj –
(
Dαj bj

)
Q̃

∥∥
expLrj ,kQ̃‖f ‖L(logL)/r ,kQ̃

≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

)
M(f )(x̃).

Thus

|I| ≤ C
∏
j=

( ∑
|α|=mj

∥∥Dαbj
∥∥
BMO

)
M(f )(x̃).

This completes the proof of Theorem . �

By Theorem  and the Lp(w)-boundedness of Ml+, we may obtain the conclusions of
Theorem . By Theorem  and [, ], we may obtain the conclusions of Theorem .

3 Applications
In this section we shall apply Theorems ,  and  of the paper to the holomorphic func-
tional calculus of linear elliptic operators. First, we review some definitions regarding the
holomorphic functional calculus (see []). Given ≤ θ < π , define

Sθ =
{
z ∈ C :

∣∣arg(z)∣∣ ≤ θ
} ∪ {}

http://www.journalofinequalitiesandapplications.com/content/2013/1/439
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and its interior by Sθ . Set S̃θ = Sθ \ {}. A closed operator L on some Banach space E is said
to be of type θ if its spectrum σ (L)⊂ Sθ and if for every ν ∈ (θ ,π ], there exists a constant
Cν such that

|η|∥∥(ηI – L)–
∥∥ ≤ Cν , η /∈ S̃θ .

For ν ∈ (,π ], let

H∞
(
Sμ

)
=

{
f : Sθ → C : f is holomorphic and ‖f ‖L∞ <∞}

,

where ‖f ‖L∞ = sup{|f (z)| : z ∈ Sμ}. Set

�
(
Sμ

)
=

{
g ∈H∞

(
Sμ

)
: ∃s > ,∃c >  such that

∣∣g(z)∣∣ ≤ c
|z|s

 + |z|s
}
.

If L is of type θ and g ∈H∞(Sμ), we define g(L) ∈ L(E) by

g(L) = –(π i)–
∫

�

(ηI – L)–g(η)dη,

where � is the contour {ξ = re±iφ : r ≥ } parameterized clockwise around Sθ with
θ < φ < μ. If, in addition, L is one-to-one and has a dense range, then, for f ∈ H∞(Sμ),

f (L) =
[
h(L)

]–(fh)(L),

where h(z) = z( + z)–. L is said to have a bounded holomorphic functional calculus on
the sector Sμ if

∥∥g(L)∥∥ ≤ N‖g‖L∞

for some N >  and for all g ∈H∞(Sμ).
Now, let L be a linear operator on L(Rn) with θ < π/ so that (–L) generates a holo-

morphic semigroup e–zL,  ≤ | arg(z)| < π/ – θ . Applying Theorem  of [], we get the
following.

Theorem  Assume the following conditions are satisfied:
(i) The holomorphic semigroup e–zL,  ≤ | arg(z)| < π/ – θ is represented by the kernels

az(x, y) which satisfy, for all ν > θ , an upper bound

∣∣az(x, y)∣∣ ≤ cνh|z|(x, y)

for x, y ∈ Rn, and  ≤ | arg(z)| < π/–θ ,where ht(x, y) = Ct–n/s(|x–y|/t) and s is a positive,
bounded and decreasing function satisfying

lim
r→∞ rn+εs

(
r

)
= .

http://www.journalofinequalitiesandapplications.com/content/2013/1/439
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(ii) The operator L has a bounded holomorphic functional calculus in L(Rn), that is, for
all ν > θ and g ∈H∞(Sμ), the operator g(L) satisfies

∥∥g(L)(f )∥∥L ≤ cν‖g‖L∞‖f ‖L .

Then, for Dαbj ∈ BMO(Rn) for all α with |α| =mj and j = , . . . , l, the multilinear operator
g(L)b associated to g(L) and bj satisfies:
(a) For  < r <  and x̃ ∈ Rn,

M#
A
(
g(L)b(f )

)
r(x̃) ≤ C

l∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
Ml+(f )(x̃);

(b) g(L)b is bounded on Lp(w) for any  < p < ∞ and w ∈ Ap, that is,

∥∥g(L)b(f )∥∥Lp(w) ≤ C
l∏
j=

( ∑
|αj|=mj

∥∥Dαj bj
∥∥
BMO

)
‖f ‖Lp(w);

(c) There exists a constant C >  such that for all λ >  and w ∈ A,

w
({
x ∈ Rn :

∣∣g(L)b(f )(x)∣∣ > λ
}) ≤ C

∫
Rn

|f (x)|
λ

[
 + log+

( |f (x)|
λ

)]l

w(x)dx.
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