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Abstract
We show a functional inequality of some products of xp – 1 as an application of an
operator inequality. Furthermore, we will show it can be deduced from a classical
theorem on majorization and convex functions.
MSC: Primary 26D07; secondary 26A09; 26A51; 39B62; 47A63

Keywords: inequalities; fractional powers; convex functions; majorization; matrix
inequalities; Furuta inequality

1 Introduction
It is easy to see the inequalities


(
x – 

)(
x – 

)(x – 
) ≤ 

(
x – 

)(
x – 

)(
x – 

)(
x – 

)

or


(
x – 

)(
x – 

)(
x – 

)(
x – 

)(
x – 

) ≤ (x – )
(
x – 

)(x – 
)

for arbitrary  < x if they are provided as the matter to be proved. However, if we would
like to estimate functions of the form

∏(
xpj – 

)

by simpler ones, how can we guess what forms and coefficients are possible?

Example The following inequality does not hold on an interval contained in  < x.


(
x – 

)(x – 
) ≤ (x – )

(
x – 

)(x – 
)
.

In Section , we prove a certain functional inequality as mentioned above, although
the efficiency and possible applications to other branches of mathematics are still to be
clarified.

© 2013 Watanabe; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193730868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2013/1/137
mailto:wtnbk@math.sc.niigata-u.ac.jp
http://creativecommons.org/licenses/by/2.0


Watanabe Journal of Inequalities and Applications 2013, 2013:137 Page 2 of 7
http://www.journalofinequalitiesandapplications.com/content/2013/1/137

In Section , we show that the functional inequality derived in Section  can be easily
deduced from Schur, Hardy-Littlewood-Pólya and Karamata’s theorem on majorization
and convex functions. Although the proof presented in Section  looks like a detour, one
should note that it naturally arises as a byproduct of the Furuta inequality, which is an
epochmaking extension of the celebrated Löwner-Heinz inequality [, ]. It seems wor-
thy to compare various ways to derive fundamental functional inequalities, for it might
contribute to clarify relations between their background theories and to suggest further
developments.

2 An inequality of some products of xp – 1
The proof of the following theorem is based on an operator inequality by Furuta [] and
an argument related to the best possibility of that by Tanahashi []. The main feature of
the argument is applying an order-preserving operator inequality to matrices which con-
tain variables as their entries. It might be a new method to obtain functional inequalities
systematically.

Theorem . [] Let  ≤ p,  ≤ q and  ≤ r with p + r ≤ ( + r)q. If  < x, then

x
+r– p+r

q
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q
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)
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Proposition . Let  ≤ p,  ≤ r. Then, for arbitrary  < x,
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)
(x – ). ()

Proof Put q = p+r
+r . Since  ≤ p, we have  ≤ q, and hence Proposition . immediately

follows from Theorem .. �

Theorem . Let  < p ≤ p,  < q ≤ q, p +p = q +q and p ≤ q. Then, for arbitrary
 < x,
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Proof For a moment, we add  ≤ p,p,q and q =  to the assumption. Apply Proposi-
tion . with p = p, r = p – , then the inequality () implies
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In general, note that q ≤ p. Dividing by q, we have
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By the first part of the proof,
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for arbitrary  < x. By substituting xq to x in the above inequality, it is immediate to see
the inequality (). �
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Definition . For a finite sequence p, . . . ,pn of real numbers, we denote its decreasing
rearrangement by p[] ≥ · · · ≥ p[n].
For two vectors p = (p, . . . ,pn) and q = (q, . . . ,qn), p is said to be majorized by q and

denoted by (p, . . . ,pn) ≺ (q, . . . ,qn) if the following inequalities are satisfied:

k∑
i=

p[i] ≤
k∑
i=

q[i], k = , . . . ,n – ,

n∑
i=

p[i] =
n∑
i=

q[i].

Theorem . Let n be a natural number. Suppose  < pj,qj, j = , . . . ,n and (p, . . . ,pn) ≺
(q, . . . ,qn). Then, for arbitrary  < x,

n∏
j=

qj
(
xpj – 

) ≤
n∏
j=

pj
(
xqj – 

)
. ()

If n is even, the inequality () holds for arbitrary  < x < . If n is odd, the reverse inequality
of () holds for arbitrary  < x < .

Proof The case n =  is exactly Theorem .. Suppose that the case n is valid. We may
assume  < pn+ ≤ pn ≤ · · · ≤ p,  < qn+ ≤ qn ≤ · · · ≤ q and

k∑
i=

pi ≤
k∑
i=

qi (k = , . . . ,n) and
n+∑
i=

pi =
n+∑
i=

qi.

There exists a number k such that  ≤ k ≤ n and

qn+ ≤ · · · ≤ qk+ ≤ pn+ ≤ qk ≤ · · · ≤ q.

Take a real number q′ which is determined by qk + qk+ = pn+ + q′. Then

qk+ ≤ q′ = qk + qk+ – pn+ ≤ qk .

By the case n = ,

qkqk+
(
xpn+ – 

)(
xq

′
– 

) ≤ pn+q′(xqk – 
)(
xqk+ – 

)
. ()

Since

p + · · · + pn+ = q + · · · + qn+ = pn+ + q′ +
∑

j �=k,k+
qj,

we have

p + · · · + pn = q′ +
∑

j �=k,k+
qj ()
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and

qn+ ≤ · · · ≤ qk+ ≤ q′ ≤ qk ≤ · · · ≤ q.

Note that

p + · · · + pn– ≤ q + · · · + qn–,

...

p ≤ q

by the assumption of the induction.
If k = n, then the n-tuples {p, . . . ,pn} and {q, . . . ,qn–,q′} satisfy the assumption of the

case n, so we may assume k �= n by using the inequality ().
Equality () and qn+ ≤ pn yield

p + · · · + pn– ≤ q′ +
∑

j �=k,k+,n+
qj.

If k = n – , then the n-tuples {p, . . . ,pn} and {q, . . . ,qn–,q′,qn+} satisfy the assumption
of the case n, so we may assume k �= n,n – . For k ≤ n – , we have

p + · · · + pn– ≤ q + · · · + qn–

= pn+ + q′ +
∑

j≤n–,j �=k,k+
qj ≤ pn– + q′ +

∑
j≤n–,j �=k,k+

qj,

and hence

p + · · · + pn– ≤ q′ +
∑

j≤n–,j �=k,k+
qj.

Similarly, we have

p + · · · + pn– ≤ q′ +
∑

j≤n–,j �=k,k+
qj,

...

p + · · · + pk ≤ q′ +
k–∑
j=

qj,

p + · · · + pk– ≤ q + · · · + qk–,

...

p + p ≤ q + q,

p ≤ q.
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Therefore, n-tuples {p, . . . ,pn}, {q, . . . ,qk–,q′,qk+, . . . ,qn+} satisfy the assumption of
the case n, and so we can obtain

q′ ∏
j �=k,k+

qj
n∏
j=

(
xpj – 

) ≤
n∏
j=

pj
(
xq

′
– 

) ∏
j �=k,k+

(
xqj – 

)
()

for arbitrary  < x.
From () and (), it is immediate to see that

n+∏
j=

qj
n+∏
j=

(
xpj – 

) ≤
n+∏
j=

pj
n+∏
j=

(
xqj – 

)

for  < x.
The last assertion of the theorem can be easily seen by substituting 

x for  < x <  and
multiplying xp+···+pn to both sides.
This completes the proof. �

Remark . Each following example of the case n =  does not satisfy one of the condi-
tions for parameters in the assumption of Theorem ., and the inequality does not hold
for all  < x.

(i) p > q
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(iv) p + p + p + p > q + q + q + q

 · (x – )
(
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) ≤ 
(
x – 

)(x – 
)
.

Remark . There exists an example of the case n =  such that p > q, but the inequality
holds for  < x.

 · (
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) ≤  ·  · (x – )
(
x – 

)(
x – 

)
.

Indeed,
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3 A proof by Schur, Hardy-Littlewood-Pólya and Karamata’s theorem
Theorem . is a special case of amore general theorem onmajorization and convex func-
tions.

Theorem. (C.. Proposition in [], Theorem in [], Karamata []) Let n be a natural
number and pj, qj be real numbers from an interval (α,β). If (p, . . . ,pn) ≺ (q, . . . ,qn), then

n∑
j=

f (pj) ≤
n∑
j=

f (qj)

for every real-valued convex function f on (α,β).

Proposition . Let  < x be a fixed real number. Then

f (t) = log

(
xt – 
t

)

is convex on the interval (,∞).

Although it is definitely elementary to prove this proposition, we will give it for the sake
of completeness.

Proof One can calculate the derivatives of f with respect to t,

f ′(t) =
xt(logx)t – xt + 

t(xt – )
,

f ′′(t) =
–xt(logx)t + xt – xt + 

t(xt – )
.

The signature of f ′′ is the same as g , where

g(t) = –xt(logx)t + xt – xt + .

It is easy to see

g ′(t) = xt(logx)
(
–t(logx) – t logx + xt – 

)
.

The signature of g ′ is the same as g, where

g(t) = –t(logx) – t logx + xt – .

It is also easy to see

g ′
(t) = (logx)

(
–t logx –  + xt

)
.

The signature of g ′
 is the same as g, where

g(t) = –t logx –  + xt .
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Now we have

g ′
(t) = – logx + xt logx =

(
xt – 

)
logx >  ( < t).

Therefore, g is increasing on  < t and g() =  so that  < g(t) ( < t), and hence  < g ′
(t)

( < t).
Again, therefore, g is increasing on  < t and g() =  so that  < g(t) ( < t), and hence

 < g ′(t) ( < t).
Once again, therefore, g is increasing on  < t and g() =  so that  < g(t) ( < t), and

hence  < f ′′(t) ( < t), namely, f is convex on the interval (,∞). This completes the proof
of Proposition .. �

The completion of the proof of Theorem . by using Schur, Hardy-Littlewood-Pólya
and Karamata’s theorem.
For arbitrary  < x, f (t) = log( xt–t ) is a convex function on the interval (,∞), so we can

apply Theorem . to obtain

n∑
j=

log

(
xpj – 
pj

)
≤

n∑
j=

log

(
xqj – 
qj

)
,

and hence we have

n∏
j=

qj
(
xpj – 

) ≤
n∏
j=

pj
(
xqj – 

)
.

The rest is identical to the proof of Theorem .. This completes the proof.
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