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1 Introduction
In 1948, Leslie considered the following differential equation (see [1]):

#(0) = %(0) @ — bx(0)] - px)y (o),
5(0) = y(0)le—29],

where x(¢) and y(¢) stand for the population (the density) of the prey and the predator at
time ¢, respectively, and p(x) is the so-called predator functional response to prey.

Recently, more and more obvious evidences of biology and physiology show that in many
conditions, especially when the predators have to search for food (consequently, have to
share or compete for food), a more realistic and general predator-prey system should rely
on the theory of ratio-dependence, this theory is confirmed by lots of experimental re-
sults (see [2, 3]). A ratio-dependent Leslie system with the functional response of Holling-
Tanner type is as follows:

&(8) = x(0)]a — bx(0)] - pC)y(®),
3(6) = y()le - 2431,

where p(x) has the same means as before. In particular, Wang et al. [3] considered a ratio-
dependent Leslie predator-prey model with feedback controls as follows:

1 (t) = 2 (Ob(E) — al®m(6) - 7T — d(Em 0)
i () = 2:(0)[g(0) (O 5 - PO (), (L1)

1;(t) = ay(t) — Bi®)ui(t) + vi(£)xi(1),
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where x;(£) and x;(¢) stand for the population (the density) of the prey and the predator
at time ¢, respectively, u;(¢) (i = 1,2) are control variables, the prey grows logistically with
growth rate a(¢) and carries capacity 7 in the absence of predation. The parameter f(¢) is
a measure of food quality that the prey provides, which is converted to the predator birth.
Under the assumption that the coefficients of the above system are all T-periodic func-
tions, by applying Mawhin’s continuation theorem and constructing a suitable Lyapunov
function, they obtained sufficient conditions which guarantee the existence of a unique
globally attractive positive T-periodic solution to system (1.1).

Feedback control is the basic mechanism by which systems, whether mechanical, elec-
trical, or biological, maintain their equilibrium or homeostasis. During the last decade, a
series of mathematical systems have been established to describe the dynamics of feedback
control systems, we refer to [4—9]. Furthermore, in recent research on species, dynamics
of the Leslie system has important significance, see [1-3, 5, 6, 10-16] and the references
therein for details. Moreover, since the discrete time models can also provide efficient
computational models of continuous models for numerical simulations, it is reasonable
to study discrete time models governed by difference equations. Motivated by the above
idea, we consider a discrete ratio-dependent Leslie system with feedback control:

21(n +1) = 21 (n) explb(n) — almn(n) - ZEB20 — d(mu (),

1
)x% (n) +x% (n

x2(n +1) = xy(n) explg(n) —f(n)fcféZ; —p(muy(n)}, (1.2)
Aui(n) = —a;j(mu;(n) + Bi(m)xi(n), i=1,2,

where x;(n) (i = 1,2) denote the density of the prey and the predator at time », respectively.
u;(n), i = 1,2 are control variables, b(n), a(n), c(n), d(n), g(n), f(n), p(n), K*(n), a;(n), Bi(n),
vi(n) (i = 1,2) are all almost w-periodic functions of #; #%(n) denotes the constant of cap-
turing half-saturation. For more biological background of system (1.2), one could refer to
[3] and the references cited therein.

To the best of our knowledge, though many works have been done for population dy-
namic systems with feedback controls, most of the works deal with continuous time mod-
els. For more results about the existence of almost periodic solutions of a continuous time
system, we can refer to [5] and the references cited therein. There are few works that con-
sider the existence of almost periodic solutions for a discrete time population dynamic
model with feedback controls. On the other hand, in fact, it is more realistic to consider
almost periodic systems than periodic systems. On the existence and stability of almost
periodic sequence solutions for the discrete biological models, some results are found in
the literature, we refer to [8, 9, 17, 18]. Therefore, our main purpose of this paper is to
study the existence and uniqueness of almost periodic solutions for model (1.2).

Throughout this paper, we assume that

(Hi) fa(m}, {b(m)}, {c(m)}, {d(m)}, {h(n)}, {g(m)}, {f (m)}, {p(n)}, {ei(n)} and {B;(n)} for i = 1,2
are bounded nonnegative almost periodic sequences such that
0<al<a(n) <aM,0<b* <bn) <b™,0<ct<c(n) <M,
0<dl<d(n)<d™, 0<ht <h(n)<h™, 0<gl <g(n) <g",
0<pl<pn) <pM, 0<fr<f(n)<fM 0<al <ai(n)<aM (i=1,2),
0< BF<Biln) <M (i=1,2).

Here, for any bounded sequence {#(n)}, 6™ = sup, . {6 (1)} and 6 = inf,cn{6(n)}. Further-
more, we need the following assumptions:


http://www.advancesindifferenceequations.com/content/2014/1/214

Li Advances in Difference Equations 2014, 2014:214 Page 3 of 19
http://www.advancesindifferenceequations.com/content/2014/1/214

(Ha) gt —pMus > 0;
(Hz) bt —dMu; >o0.

By the biological meaning, we focus our discussion on the positive solution of model (1.2).
So it is assumed that the initial conditions of model (1.2) are of the form

xi(0) >0, ui(0)>0, i=12. 1.3)

One can easily show that all the solutions of model (1.2) with the initial condition (1.3) are
defined and remain positive for all n € Z*.

The organization of this paper is as follows. In Section 2, we give some basic definitions
and necessary lemmas which will be used in later sections. In Section 3, the persistence
of model (1.2) is established. In Section 4, based on the persistence result, we show the
existence and uniform asymptotic stability of an almost periodic solution to model (1.2).
An example is given in Section 5.

2 Definitions and lemmas
Now let us state several definitions and lemmas which will be useful in proving the main
result of this section.

Definition 2.1 [17] A sequence x:Z — R is called an almost periodic sequence if the

e-translation number set of x,
Ele,x} = {t el: |x(n +71) —x(n)| <€, Vne Z},

is a relatively dense set in Z for all € > 0; that is, for any given € > 0, there exists an integer
I(€) > 0 such that each interval of length I(¢) contains an integer t € E{e, x} such that

|x(n+ 1) —x(n)| <€, VneZ,
7 is called the e-translation number of x(#).

Definition 2.2 [17] Let f : Z x D — R, where DD is an open set in R, f(n,x) is said to
be almost periodic in # uniformly for x € D, or uniformly almost periodic for short, if for
any € > 0 and any compact set S in D, there exists a positive integer /(¢,S) such that any
interval of length (¢, S) contains an integer 7 for which

V(n +T,%) —f(n,x)| <€, VneZ,xeS,
7 is called the e-translation number of f(n, x).

Lemma 2.1 (18] {x(n)} is an almost periodic sequence if and only if for any sequence {h,} C
Z there exists a subsequence {hy} C {h}} such that x(n + hy) converges uniformly on n € Z
as k — oo. Furthermore, the limit sequence is also an almost periodic sequence.

In [17], Zhang and Zheng consider the following almost periodic delay difference system

x(n+1)=f(n,x,), neZl, (2.1)
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where f : Z* x Cg > R, Cg = {¢p € C: ||¢|| < B}, C ={¢ : [-7,0]z — R} with |¢] =
SUPse(_7,01, |9(S), f(1,$) is almost periodic in 7 uniformly for ¢ € Cp and is continuous
in ¢, while x,, € Cy is defined as x,,(s) = x(n + s) for all s € [-7,0]7.

The product system of (1.2) is in the form of

x(n+1) =f(n,x,), y(n+1) =f(n,y,) (2.2)

A discrete Lyapunov functional of (1.2) is a functional V : Z* x Cg x Cg — R* which is
continuous in its second and third variables. Define the difference of V along the solution
of system (1.2) by

AV (n,¢,¢) = V(” +Lx,11(1,0), Y (, 1/f)) = V(n, ¢, ),
where (x(n, ¢), y(n, ¥)) is a solution of system (1.2) through (», (¢, ¥)), ¢, ¥ € Cg.

Lemma 2.2 [17] Suppose that there exists a Lyapunov functional V (n, ¢, ) satisfying the
following conditions:

@) a(lg(0) =¥ (0)) = V(n, ¢, ¥) < b(l¢ — V), where a,b € P with

P ={a:[0,00) = [0,00) | a(0) = 0 and a(u) is continuous, increasing in u}.

(2) |V(n, 1, Y1) = V(n,¢2, ¥2)| < L(ll1 — a2l + |1 — ¥al), where L > 0 is a constant.

(3) AVuoy(m ¢, ) < -y V(n,¢,¥), where 0 <y <1 is a constant.
Moreover, if there exists a solution x(n) of (1.2) such that ||x,|| < B* < B foralln € Z*, then
there exists a unique uniformly asymptotically stable almost periodic solution p(n) of (1.2)
which satisfies |p(n)| < B* for all n € 1. In particular, if f (n, ) is periodic of period w, then
(1.2) has a unique uniformly asymptotically stable periodic solution of period w.

3 Persistence
In this section, we establish a persistence result for system (1.2).

Proposition 3.1 Assume that (H;) holds. For every solution (x1(n),x5(n), uy(n), us(n)) of
system (1.2),

limsupx;(n) < x§, limsupu;(n) <u; (i=1,2), (3.1)
n—00 n—00
M= i Iy
where x| = %, x5 = ’% exp(E” -1), u} = aiLx (i=1,2).

Proof We first present two cases to prove that

lim supx; (1) < %7 (3.2)

Hn— 00

Case 1. By the first equation of system (1.2), from (H;) and (1.3), we have
_cmm(mxa(n)
h2(n)x3(n) + x3(n)

< x1(n) exp{b(n) — a(m)x,(n) — d(n)uy (n) }

a(mxi(n)  d(n)uy(n)
:xl(n)exp{b(n)[l— b00) - b00) :“

31014+ 1) = 31(n) exp{b(m ~ alnn(n) d(n)ul(n)}

(3.3)
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Then there exists [, € N such that x; (/o +1) > x1(/y). So, 1 - “(1‘1’7)(2)(10) - d(l%)(’;;)(l") > 0. Hence,
x1(lo) < b* < bM, and

x1(lo +1) < xl(lo)exp{b(lo) —a(lo)x1(lo) - d(lo)ul(lo)}

I I}
< xl(zo>exp{bM[1 - %“
M -
S w » (3.4)

Here we used max,egxexp(r(l — x)) = exp(r — 1)/r for r > 0. We claim that x;(n) < x} for
n>l.

In fact, if there exists an integer m > ng + 2 such that x;(m) > x}, and letting m1, be the
least integer between ny and m such that x;(m) = max,,<,<mu-1{*1(n)}, then my > ny + 2
and x; (m;) > x1(m; — 1), which implies x;(m1;) < &} < %1 (m). This is impossible. The claim
is proved.

Case 2. x1(n) > x1(n + 1) for n € N. In particular, lim,_, x1(n) exists, denoted by Xx;.
We claim that X; < x]. By way of contradiction, assume that ¥; > x{. Taking lim,_, (1 —
amn(n) _ M) = 0. Noting that < x}, therefore

b(n) b(n)
a(mxi(n)  d(n)u(n) a(n)x (n) X
1- b(n) - b(n) fl—Wfl—W<0 (35)

for n € N, which is a contradiction. This proves the claim.
Similarly to the above analysis, next we prove limsup,,_, ., ¥2(7) < %3.
Case 1. By the second equation of system (1.2), from (H;) and (1.3), we can obtain

w2l +1) = 23() exp{g(n) _flmmtn) p(nm(n)}
xl(”)
_ S(mxz(n)  p(n)us(n)
= x1(n) exp{g(n) |:1 - 20000 - <01 ] } (3.6)

: _ fUo)xa(lo)  plo)ua(lo)
Then there exists [y € N such that x,(ly +1) > x,(ly). So, 1 2o lo) o) = 0. Hence,
x3(lp) <g* <gM, and

S lo)x2(lo)
x3(lp +1) < xz(lo)eXP[g(ZO) - M}
< x2(lo) exp {gM [1 B g(lo)x1(lo)] }
- X +e€ exp(gM _ 1) = x5 7

In fact, if there exists an integer m > ng + 2 such that x,(m) > x5, and letting m; be the
least integer between #y and m such that x,(m) = max,,<,<,-1{x2(n)}, then m; > ny + 2
and x,(m3) > x5 (m; — 1), which implies %y (712) < x5 < x5 (). This is impossible. The claim
is proved.

Case 2. x3(n) > x5(n + 1) for n € N. In particular, lim,_,  x2(#n) exists, denoted by x,.
We claim that X, < x5. By way of contradiction, assume that X, > x;. Taking lim,,_, oo (1 -

Page 5 of 19
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2 EZ;?;E:; - ';('L) 21 (0, Noting that g < x%, therefore

Sl _ponus(n) L fo)xe) | f'

gm(m)  gm)  — glmm) — gM(x ve)

(3.8)

for n € N, which is a contradiction. This proves the claim.

Similarly, by the third and fourth equations of system (1.2), for all i = 1,2, we can get

n-1 n-1
u;(n) = H(l o; l) |: )+ ﬂl(l)x,(z) i|

i=0 =0 1lj= [T — ()
no-1 ,B(l)x(l) n-1 n-1
— o' u; e M (% —a;j
s (1) [“’(O“gnjzou_aio»}ﬂ Heir9 2 110w

no-1

’ Bili)xi(i) \- nit
< (1-ab)"| w(0 —_ M (e 1-af .
_( al) |:u( )+;):]_[}0(1—0t,-(i)):|+'3 (x +e)Z( oz)

i=ng
Since 0 < af <1, we can find a positive number d; such that 1 — at = e™%. Using Stolz’s
theorem, we have

n=1 _d;(i+1
. n i-1 . Zz’:no € i+ 1 1
lim E (1 - a = lim = =—.

n—00 n—00 edi” 1- e—di aiL

i=ng

Hence

,BlM(x;‘ +€)

L
i

lim supu;(n) <
n—00 o

By the arbitrariness of €, lim,,_, o sup #;(n) < u is valid. So the proof of Proposition 3.1 is
complete. d

Proposition 3.2 Assume that (H,)-(H3) hold, where x} and u; (i = 1,2) are the same in
Proposition 3.1. Then

liminfx;(n) > %,  liminfu(n) > u, i=1,2, (3.9)
n— 00 n— 00

where

M M
dM * a + W
xl*zAlexp{bL[l— o xz]},

bt bt
X = " pMuz)xl exp| g 1—fo§ _PM@ Y = Bl
2% = f ngT gL ) % O(lM .

Proof Firstly, we also present two cases to prove that

liminfx; (1) > x14.

n—00

Page 6 of 19
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For any € > 0 which satisfies (b — d™u})/(a™ + M/(hM)2x3) > 0 and (gF — pMub)xf /M > 0,
according to Proposition 3.1, there exists ny € N such that

xi(n) <xf +¢, uin) <uj+e, i=12 (3.10)
for n > ny.

Case 1. There exists a positive integer [y > ng such that x; (/o + 1) < x;1(/o). Note that for
n > ng, we have

x1(n+1)
i (n)exp mm_ammam—zgggig%%%ﬁ—dmwum}
> x1(n) expy b(n) — a(n)xy (n) — % - d(n)ul(n)}
= x1(n) exp] b(n) [1 - “(’Z)(x;)(”) - d(’z) (”:)(”) e LW xl(n)]]

d * ﬂ(l’l) + %
Zxﬁhﬂexp{b@ﬂ[l—-uOﬂxﬂn);Ognxul+€)— Jo )1<)]} (3.11)

In particular, with n = /), we obtain

M M
- dM(uiF +6) B a’ + (hM)Z(x;%)x (l )< 0
b(lo) b(lo) =
_ M, %
which implies that x;(ly) > % := A1. Then
I ve)
2
M M
dM * a” + anx
xllo +1) > Ay exp{bL [1 - (bz?; ) _ 7o “ e (3.12)

We claim that x; (1) > %1 for n > [j.

By way of contradiction, assume that there exists py > /y such that x;(pg) < x1c. Then
po = ly+2,let p; > Iy +2 be the smallest integer such that x; (p;) < x1c. Then x(p; —1) < x(p1).
The above argument produces that x;(p;) > x1, a contradiction. This proves the claim.

Case 2. We assume that x;(n + 1) > x;(n) for all large n € N. Then lim,,_, o, x1(7) exists,
denoted by x,. We claim that x, > A;. By way of contradiction, assume that x;, < A;. Take

(Al s dmun)
Jim (1= - ) o

which is a contradiction since

c(n)

a(n) + 20n) d(n)uy(n)
li 1- n)xo (1) _ 1
;£&< O R P
M
al + M2 (xch 1e) 3 dM(lxtik +¢€)

A B

Page 7 of 19
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Noting that x} > DM > b, we see that A} > xy,, and lim,_, ¢ x1c = x1.. We can easily see
that lim,,_, o, infx; (#) > %1, holds.

The same as in the above equality analysis, we will obtain the result from the second
equation of system (1.2).

Case 1. By the second equation of system (1.2), (H;)-(Hs) and (1.3), we can obtain

satr+ 1) = 0 expletn =L oy
> xa(n) exp g(n) _% (4 €) }

Smxa(m) — pn)(us + 6)} }

= x,(n) exp{ g(n) [1 Cgmire)  gln)

fMra(n)  pMus +€)
S [l Tt g ] } (319)
In particular with n = [y, we have
fMrallo) M5 +e)
T gl S (314
which implies that
l _ * >k
wollo) = (g(lo) pMj‘LZO; Nai+e) _ A,
Then
M +e)  pMus+e)
x2(lg +1) > Ay exp|:gL (1 — @) ) - (o) )] (3.15)

Let %y = (g(lo) — pM(u5 + €))(x} + €)/f (lo) explgh(1 — (x5 + €)/g(lo) (] + €) — pM(uh +
€)/g(lp))]. We claim that x, (1) > x,, for n > ny.

By way of contradiction, assume that there exists go > Iy such that x,(go) < x2c. Then
qo = 1lo +2,let go > Iy + 2, let 1 > [y + 2 be the smallest integer such that x;(qo) < x.
Then x(q; — 1) < x(q1). The above argument produces that x,(q1) > xy., a contradiction.
This proves the claim.

Case 2. We assume that x» (7 + 1) > x,(#) for n € N. Then lim,,_, o, %, (1) exists, denoted

by x,. We claim that

. (g(lo) — pM(us + €))(x} +€)
S o)

Sfmxa(m) Py _

By way of contradiction, assume that x, < Ay. Take lim,,_, (1 — 260w ) 209

which is a contradiction, since

> 0. (3.16)

liminf (1 -

n—00

flobte) _ploiet) My, P+
g(n)x1(n) g(n) gt (x} +e) gt

Page 8 of 19
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Noting that x3 > gM > gl we see that Ay > xy,, and lim._, o X3¢ = x2,. We can easily see
that liminf,_, %3 (1) > x5, holds. Thus, for any € > 0 small enough, there exists a positive
integer 7o, such that x;(n) > x;, — € > 0 for n > ng.

The proof of liminf,,_, o u;(n) > u;s, i = 1,2, is very similar to that of Proposition 2 in [19].
Here we omit the details. O

Now the main result of this section is obtained as follows.

Theorem 3.1 Suppose that assumptions (H1)-(Hs) hold. Then system (1.2) is persistent.

4 Existence of a unique almost periodic solution
According to Lemma 2.2, we first prove that there exists a bounded solution of system
(1.2) and then construct an adaptive Lyapunov functional for system (1.2).

The next results tells that there exists a bounded solution of system (1.2).

Proposition 4.1 Assume that (H1)-(H3) hold, then (S) # 0.

Proof It is now possible to show by an inductive argument that system (1.2) leads to

31(n) = (0)exp Y15 (D) ~ al () - 754820 — d(Dus (),

xZ(”):xZ(O)eXle 0180 - F D)2 - phus ()}, (4-.1)
wi(n) = w(0) = Yo e Dui() - ﬂz(l)xl(l)}, i=1,2.

From Proposition 3.1 and Proposition 3.2, any solution X (n) = (x1(n), x2(n), u1(n), uz(n)) of
system (1.2) with initial condition (1.3) satisfies system (4.1). Hence, for any € > 0, there

exists ny. If ng is sufficiently large, we have
X — € <xi(n) <« +¢€, Ui —€ <ui(n) <ul+€, Vn>np,i=12. (4.2)

Let {£,} be any integer-valued sequence such that ¢, — oo as n — oo. We claim that
there exists a subsequence of {t,}, we still denote it by {¢,}, such that

xi(n +t,) = x7 (n) (4.3)

uniformly in # on any finite subset B of Z as n — oo, where B = {o1,a2,..., 0}, 0 € Z
(h=1,2,...,m) and m is a finite number.

In fact, for any finite subset B C Z, when « is large enough, ¢, + o > 1o, h=1,2,...,m.
So

X —€ <xi(m+t,) <xf +e, Ui —€ <ui(m+t,) <uj +e. (4.4)

That is, {x;(n + t,)}, {ui(n + t,)} are uniformly bounded for large enough #.

Similarly, for a; € B, we can choose a subsequence {2} of {}} such that {x;(ay + £2)},
{u;(az + £2)} uniformly converges on Z* for 1 large enough.

Repeating this procedure, for a,, € B, we obtain a subsequence {7} of {¢”~!} such that
{xi(am + )}, {uila,, + £)')} uniformly converges on Z* for u large enough.
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Now pick the sequence {£'} which is a subsequence of {z,,}, we still denote it by {z,}, then
for all n € B, we have x;(n + t,,) = x}(n), u;(n + t,) — u}(n) uniformlyin n € B as p — oo.

By the arbitrariness of B, the conclusion is valid.

Since a(n), b(n), c(n), d(n), h(n), g(n), p(n), f(n), «;(n) and B;(n) are almost periodic se-
quences, for the above sequence {1,}, 7, — 00 as p — 00, there exists a subsequence still
denoted by {7,} (if necessary, we take a subsequence) such that

a(n + t,) — a(n), b(n + t,) — b(n), c(n + 1,) = c(n),
dn+1t,)—>dn), gh+t)—>ghn),  fn+z,)—>f(n)
Pt > p),  alnin) > o, BlneT)— B0, =12,
as p — o0 uniformly on Z*. For any o € Z, we can assume that 7, + o > ny for p large

enough. Let # > 0 and # € Z*, an inductive argument of system (1.2) from 7, + o to n +
7, + 0 leads to

21+ 7, +0) =x1(5, + ) exp Xt b(l) - alDm () - ﬁ ~d(Dm (D),
x(n + T +0) = x2(T + 0) €Xp Z?ZZ’:: 1{g(l f(l)zf—(l; - p(Dus (D)} (4.5)
wi(n + 7+ 0) = (g, + 0) = ST Hauill) - BibsilD)}.
Then, for i =1,2, we have
nto-1

xi(n+t,+0)=x1(r, +0)exp) [0 (bl + 1) —all+ t,)x (L + 7))

c(l+rp)x1(l+rp)xz(l+rp _
W2ty (L) +a2 (1) dl+ i)l + 7)),

X+ 1, +0)=x2(t, +o)expd jo Ye(l + 7,) —fl+7 p)x2 l”" (4.6)
-pl+t)us(l + 1)},
un+1,+0)=u(t,+o) -y 7" 1{oz L+ t)uil + 1) = Bill + Tp)xi(l + 7))

Let p — oo, for any n > 0,

xi(n+0) = 2(0) exp 127 b - ax; () = 1 s - d(Dui (),
x5(n + o) = x5 a)z"+"1exp{g(l ~ g - pOus ), (4.7)

win+0)=ul(o) = Y Maui (1) - Bi(Dxr (D).

By the arbitrariness of o, X* = (x] (1), x5 (), uj (n), u}(n)) is a solution of system (1.2) on Z*.
It is clear that 0 < x; < %} (n) <}, 0 <uy <uf(n) <ul,forallmeZ*,i=1,2.So Q #0.

Proposition 4.1 is valid. d

The main results of the following theorem concern the existence of a uniformly asymp-
totically stable almost periodic sequence solution of system (1.2).

Theorem 4.1 Assume that (H;)-(Hs) hold. Suppose further that (Hs): 0 < © <1, here © =
min{®1, ©,, O3, B4}, where

2 ol 52 2
e TR e
[hl2x3, + xl*]4 [hl2x3, + %7, ]2

M2 %2
_ Mag(hPa? 1 47?)

(hl2x3, +x2,]2

@1 = ZaLxl* —

aMdMxr — aMxt



http://www.advancesindifferenceequations.com/content/2014/1/214

Li Advances in Difference Equations 2014, 2014:214
http://www.advancesindifferenceequations.com/content/2014/1/214

SaMCM2x*4' *2 8dMCM2x*4 *2 fM2 *Zx*Z fosz

nesn xl*] e xl*] x5, x,
2PM f sziﬂzxﬁz M L M2, 2
— — —BH xf = (1-of)xi B - aPx?,
xl*
0, = Utanan MR +a%)? Mg +a)
xikz [hL2x2* + xl*]4 [hL2x%* + x%*]Z
~ ZaMcM2x§2(hM2x2 + x12)2 2dM6M2x§2(hM2x2 + x*2)2 fMinkzx*Z
[hsz%* + xl*] [hsz%* + xl*]4 xéll*
2f fo@ 2pM sziax;z M L M
- 2 - - By x5~ (1 - az)xl‘ﬁz ’
xl* xl*

@3 =2af — g™ — @M _ gMgM _ of? — (1 —af)ﬁfw

and
O, = 2oz§ —pM2 - 2pM - a§2 - (1 —aé)ﬂéw,

then there exists a unique uniformly asymptotically stable almost periodic solution X(n) =
(01(n), %2 (), u1(n), ua (n)) of system (1.2) which is bounded by Q2 for all n € Z*.

Proof Let p;(n) = Inx;(n). From (1.2), we have

pr(n+1) = pi(n) + b(n) — a(n)e?r™

eb2(n)

~ln )h2 (n)e2r2() 4 g2p1(n) —d(n)u(n),

(4.8)
p2(n+1) =py(n) + gn) - f (n) — p(muy(n),

Aui(n) = —aj(m)uy(n) + Bi(n)eri™

where i = 1,2. From Proposition 4.1, we know that system (4.8) has a bounded solution
Y (n) = (p1(n), p2(n), u1(n), uy(n)) satisfying

Inx;, < pi(n) <Inxf, i <wu;(n) <uf, i=12,neZl". (4.9)

Hence, |p;(n)| <A, lu;i(n)| < B;, where A; = max{|Inx;|,Inx}}, B; = max{u;,, u}}, i =1,2.
For (X, U) € R**?, we define the norm ||(X, U)|| = "7, il + >0, |uil-
Consider the product system of system (4.8)

pr(n+1) = py(n) + b(n) — a(m)en ) — <DL gy (),

" hz(n)ezpz( ) +e201(n)
paln+1) = pa(n) + 8(n) ~f (1) Gy~ pluea (),
Aui(n) = —ot;(n)ui(n) + Bi(n)e?i™,

o (4.10)
1 +1) = qa(n) + b(n) — a(m)e ) — =LA — d(m)on (),

n)
g2 +1) = ga(n) + g(n) ~ () 220 ~ p(mwr (),

Awi(n) = —oti(n)a)i(n) + ﬂi(n)eqt("),
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Suppose that Z = (p1(n), p2(n), u1(n), uz(n)), W = (q1(n), q2(n), w1(n), w,(n)) are any two
solutions of system (4.10) defined on Z* x §* x §*, then ||Z|| < B, |W| < B, where

2
B=) [Ai+By),

i=1
§* = {(p1(n), pa(n), w1 (n), s (m)) | Inaxs < () < I, (4.11)

ui <ui(n) <uf,i=1,2,neZ*}.

Consider the Lyapunov function defined on Z* x §* x §* as follows:

2

Vi, Z, W)=Y {(piln) - qi(m)” + (uin) — wi(m))*}. (4.12)

i=1

It is easy to see that the norm || Z - W|| = Z?=1{|pi(n) —qi(n)| + |u;(n) — w;(n)|} and the norm
1Z = W = (X2 {@i(n) — qi(n))? + (wi(n) — w;(n))*}}V/2 are equivalent, that is, there exist
two constants C; > 0, C, > 0 such that

GlZ-W|=lZ-Wl]. <= GlZ-W|, (4.13)
then

2 2
(Clz-wI) <1Z-Wl. < (ClZ-W])". (4.14)
Leta € C(R*,R*), a(x) = C}x?, b € C(R*,R"), b(x) = C3x?, thus condition (1) in Lemma 2.2
is satisfied.

In addition,

\V(n,Z, W) - V(n,Z, W)

2
=13 {(pi0) — q:(m)” + (wiln) - wi(m))*)
i=1
2
> {(Bilm) - @) + () — ()}
i=1
2
| (i) — qi(m)” + (i) — i ())*| + D[ (Bilm) = i) * + (i) — ()|

1 i=1

M

=<

-

{|(pi(n) = qi(m) + (Bi(n) — @:()) || (pi(n) — qi(m)) = (Bi(n) — Gi(m)) |}

Il
—

i
2

X Z{ | (Mi(l’l) - wi(”)) + (ﬂi(n) - CZ)i(i’l)) ‘ ” (ui(”) - wi(”)) - (ﬂi(n) - d)i(n)) H }

i=1

2
<Y Al + |gim)] + [Betm)| +|@0m)|) (|pi0m) = Bilm)| + |qi(m) - G (m)])}
i=1

2
X Z{(’Mi(”l)‘ + ‘wi(”l)| + |ﬁi(”1)‘ + ‘5);‘(71)‘)(‘%5(71) - ﬁi(l’l” + |wi(n) _5)1‘(7’1)’)}

i=1
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LY Alpitn) = im)| + |us(n) — i(m) |} + > {]qin) = Gu(n)| + | i) — @i(m) |}
i=1 i=1
=L{IZ-Z|+ W - W]}, (4.15)
where L = max{A;,B;} (i = 1,2). Hence condition (2) of Lemma 2.2 is satisfied.
Finally, calculating AV of V(n) along the solutions of (4.10), we can obtain
A‘/(‘Ll())(n) Z’ W) = V(l’l + ]-)Z! W) - V(I’I,Z, W)
2
Z [pi(n +1) - gi(n + 1)] + (wi(n+1) — wi(n + 1))2}
2 2 2
- Z{[ i(n) = qi(n) ] + [wi(n) — wi(n)]”}
i=1
2 2 2
= {(pin+1) - qi(n+1))” = (pi(n) - qi())
i=1
+ (ui(n +1) —w;(n+ 1))2 - (ui(n) - a)i(n))z}
2
=3 {[pin +1) = qi(n+ D]’ = (pi(n) - q:(m))
i=1
+ (1= i(m) (s () = wi(m)) + Bi(m) (7 — e5:) ]
— (wa(m) — wi(m))°}. (4.16)
In view of system (4.1) and using the mean value theorem, we get
ebitn _ pai(n) _ &) (pin) — qi(m),  i=1,2, (4.17)

where &;(n) lies between e?™ and €%, i = 1,2,
2
[p1(n+1) = qr(n+1)]

=[(p1(n)—q1(n))—a(n)[e’”1( — ") — d(n)[u1(n) - w1(n)]

epZ(Vl) eqz (n) 2
—c(n) _
h2 (n)62192(n) + e2n1(n) hz(Vl)eZ‘D(”) 2

= [p) = am)] + W[ — DD 4 ()1 (1) - n(m)]°

eP2(n) e12(n) 2
+2(n) |: B ]

(n)eZm(Vl) + 32171( n) hz( )eZqz n) + 32q1(71)

= 2a(m)pa(n) - 1] [ = ] = 2a0) [ () - 41 (00| [11) — e, )]
P2 e22()
= 2¢(n)[pr(n) — qu(m)] [ - ]

hz(n)ezﬂZ(n) + 3217101) hz(n)QZLIZ(VI) + equ(”)

+2a(n)d(n) [ — 1] [u1(n) - o1 (n)]

ePZ(n) eq2(n)
+ 2a(n)c(n)[ep1(”) _ eq1(n)] |: ]

h2(n)62p2(n) + 2 () - hz(n)equ(”) a0
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ep2(n) e12(n
n)e2(n) 4+ e21(n) 2 (y)e2a2() 4 ezw)]

+ 2¢(n)d(n)[u1 (n) — w1 (n)] |:h2(

< [ =i + @22 [pr(n) = ()] + @ [wa (1) = n ()]

+ le(n) + Wa(n) + Wa(n) + Wy(n) + Ws(n) + Wes(n), (4.18)

where

ep2(n) e12(n)
hz(n)62p2(71) + e2p1(n) h hz(n)eZqZ(n) + equ(”)]
hz(n)ePZ(")equ(") + eP2(m) g2q1(n) hZ(n)eqz e202(n) _ oa2(m) g2p1(n)
[h2(n)e2P2(Vl) + eZPl(”)] [hZ(n)ez‘IZ( n 4 equ(Vl)]

- MPM2x3% + xTZ)Iem(”) — 2] 4 ZCMxi‘xyepl(”) — )|

Wi(n) = C(n)[

=c(n

[h2x3, + %712

M (WM x5% + x72)

[h2x3, +x2.]2

2cMi2 3
= g,

Wa(n) = —2a(n)[p1(n) — qu(n) ][ — 1] - 2d(n)[p1(n) - q1 () |[1 () — 01(n)]
< 2d"e.[pi(n) - @ )]* + dM[pr(n) = ()] + A [ur () — in ()],

Wi(n) = =2[p1(n) — q1(n) | Wi (n)

|p1(n) = qu(m)| + |pa(

ep2(n) ed2(m
hz(n)ezpz(") + e2m(n) - h2(n)e2qz(n) + 3241(")i|
eP2(n) e12(n)

hz(n)eZPZ(”) + e2171(”) B hz(n)equ(”) + e2q1(n)

= =2c(m)[pr(n) - q1(n)] [

< 2¢(n)|[pr(n) - q1(m)]|

4cMxi2x
TP, A
2cMay (W2x5% + x7%)
[h2x3, +x1,]2

4CM *2 ok
< ﬁ[pl(m —qam]
2%

Mg (hM2x3? + x32)
[h2x3, +x2.]2
Wa(n) = 2a(m)d(m)[e ) — 1] [uy () — an ()]
<ad"dMx [pi(n) - ()] + aMdM [u(n) - in ()],

eP2(n) e2()
h2 (;/[)62192(”) + 62171(”) - h2 (y[)ez‘h(”) + e2q1(”)}

[p01) - ()]

|p1(n) = qu(n)||p2(n) = q2(n)|

Mg (hM2x3? + x52)

[h2x3, +x2.]2

[2(01) - ()] + [p2(n) — 2],

Wi (n) = 2a(n)c(n)[ e — ern(n)][
[epl(n) Pl )] +aMW12

=a xl[Pl(Vl) 611(”!)]

M |: 2chf2x2
[hleZ*

CM hM2 *2 *2 2
HACRICIE U )|p2<n)—q2(n>|}
h 2* xl*]

<a"x{[pi(n) - q1(n)]
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—|py(n) — g ()|

*2
+ x1

[h2x3, +x7,]%

and

We(n) = 2c(n)d(n)[u(n) —wl(n)][

< dM[u(n) - ()]’ +

p2(n) - g2 ()|

eb2(n)

h2 (n)eZPZ (n)

e12(n)
+ 32171(”) - h2(;q)ez‘12(”) + e2q1(n):|

8ndM2x*4 *2
[ hi2 x2
2aM M2 x32(BM2532 4 x32)?

L x2 |P1(Vl) o]

2 2
[h2x3, + 1, 1%

Similarly, we also have
[p2(n + 1) = ga(n + DT’
_ ([pz(ﬂ) — ] -f <">[ZZ—EZ
-l s
= 2f(n)[p2(n) — q2(n) ] [Z:—E;

e72(n)

ep2(n)
+2f (n)p(n)[

< [p200) = 2] + P [112(1) = wn () * + K2 () + Ko (1) + K (1) + K (),

where

ep2(n)  pq2(n)
Ki(n) f(”l)|: W]

eP2(m) pq1(n) ep 1(1) pg2(n)

=f(n)

fM x1%5

1*

gpl e‘]l

(1) - 41(n)|

Kolo) = ~2f () () - q2<n)][em .

= 2 (n)[p2(n) - g2(m)]

* *
X1%o
<2

|172("1)—612(Vl)|2~

e?2 (n)

2
_ W} —P(H)[uz(n) - a)z(n)])

ed2 (n)

2
21 () ] +p*(n)[uz(n) - wz(n)]2

e?2 (n)

- | 200000 - [ - )]

W} [uz(”l) - 602(”1)]

(4.19)

|p2(n) - ga(

qu (n)
edi(n) :|

e71(n) (epz(n) _eh2 (n))

e72(n) (enr (n)

eP1(n) gq1(n)

_ epl(n))

- 2f(n)[p2(n) — g2(n)]

!
2f %1404
=T
X1

m[mn) pm] +

x

[p2(n) — q2(n )] +

eP1(n) gq1(n)

2f Mx1x2
1*

fM**

1*

|[p1(n) = q1()][p2(n) — q2(m)]|

2 ([0 = )] + [p2(m) — @2 (m)]*),
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Ks(n) = =2p(n)[pa(n) = ga2(n) | [u2(n) — ()]

= M([p2(n) - (D)) + [2(m) — 2 (W)]*)

and
p2 (1) q2 (1)
K300) = 2t S5~ 55 [l - )
= PMK2(n) + pM[us(n) — i ()]
2prM2 *2 *2

1*

MZ *2 *2
ZPMf LI A ) - qum)| + pM [ua(n) - ()]
1*

|P1(Vl) Q1(Vl)|

From system (4.10), we also obtain

[t +1) = i + D]’ = [ws(n) = wi(m)]*
= [(1 - ai(m)* = 1] (1) - wi(m))* + B2(m) (7 — i)
+2Bi(m) (1 - ai(n)) (i () — w;(m)) (¢ — %)
< (o = 20)) (i) — ()" + B (pil) = qi(m))” + Hi(n),

where

Hi(n) = 2B:(n)(1 - ati(n)) (us(n) — wy(m)) (e — €4
< (1-a})at B [pi(n) — i m)]* + (1 = &) BM [i () — i ()]

From (4.16), (4.17), (4.18) and (4.19), we have

CMZx*4x*2 4ch*2x*
AViaa0)(n) < [“szrz + 127124 —2alxy, +dM + 12241222
[h xZ* + xl*] [h xz* + xl*]
My (h2x3? + x7%) MM M BaM M2 gt 22
T+atal + ————
[h2x3, +x2,]2 [h2x2, + xl*]4
ndsz*4 *2 fMZx*Z *2 fo1x§
[hlzxz* + x1 ]4 xl* x%*
Zprszl xz ) o ,
7 + B + (L= a) % B[22 01) = a ()]
1*
|:CM2x§2(hM2x;2 +xi<2)2 Csz(thx;Z +x;<2)
[h23, + 1,14 (W22 + 22,2
2aMM232 (EM2532 + x72)?
[h23, + 7, 1*
24 M (W05 + %7%)? f M2y M 2 X1, %0

12,2 4 *2
[h Xox +x1*] xl* *1

2 ¥ t

(4.20)

* 2 M2 2 %2
xlx pM x1 Xy 4 BMyx (1—aé)x’gﬁé”][pz(n)—qz(n)]z

xl* xl*
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+[d 4 d™ 4 aMaM v (@ —200) + (1- o)) B[ (n) — ()]
+ [pM2 +2pM 4+ (otl2 - 20{5) + (1 — aé)ﬂéw] [ug(n) - a)2(11)]2

4cM2 it 32 o AMxx
[hl2 2* + x%*]4 [hle%* + xf*]z

~ chﬁ(hM2x§2+xi‘2) ~ MdM . Mx* 8dMCM2 4 *2
1

- [2a1xl* -

(23, + 7, 1% (123, + xl*l‘*

ndsz*4 *2 fMZx*Zx*Z foikxz

[hZZxZ* + xl ] x%* x%*
ZPM M2x*2x*2 2
LA it (- ad)at - a2 i) - )
1*
~ |:2flx1*x2* ~ M52 (M2 x52 + x72)? cz‘/[xz(h’mx2 +x}2) M
X2 [h2x3, +x3, 1% [h2x3, + 3,12
2ﬂMcM2x§2(hM2x2 + xfz 2 2dM6M2x§2(hM2x2 + x*2)2 szxf2x§2
[h2:2, + 22,14 [H2a3, +x7,]* Eo
szx*x* 2prM2x*2x*2 9
B P e - (RO T  CAO R RCY)
1x 1x

- [20:{ —d™ —d™ —aMad™ — o — (1~ a{)ﬂfw] [t (n) - a)l(n)]2

— [20d - pM* —2pM — a2 — (1 - &) B ][12 (1) — w2 ()]

2
-0 Y {(pilm) - qim)* + (i) - i)}

i=1

=-0V(nX,Y),

where © = min{®;, ©,, @3, ®,4}. That is, there exists a positive constant 0 < ® < 1 such that
A1), X,Y) <-0V(n,X,Y).From 0 < © < 1, condition (3) of Lemma 2.2 is satisfied. So,
from Lemma 2.2, there exists a unique uniformly asymptotically stable almost periodic
solution X (n) = (x1(n), x2(n), u1(n), uz2(n)) of system (4.10) which is bounded by S* for all
n € Z*, which means that there exists a unique uniformly asymptotically stable almost
periodic solution X(n) = (x1(n), x2(n), u1(n), uy(n)) of system (1.2) which is bounded by €2
for all n € Z*. This completes the proof. d

5 An example
In this section, we present an example to illustrate the feasibility of our results.

Example 5.1 Consider the following discrete ratio-dependent Leslie model:

xl(n+1)=x1<n>exp{b(n)—a(n>xl(n) P — dimm (),
xa(n+1) = x2(n) explg(m) —f () Pn)uz(l’l) (5.1)

Aui(n) = —a(m)u;(n) + ﬂi(”)xi(”l): =12,

where b(n) = 2.65 + 0.65sin#, a(n) = 0.455 + 0.045sinn, ¢(n) = 0.002 + 0.001 sin #, h(n) =
51 + 3.9sinn, d(n) = 0.002, g(n) = 0.5, f(n) = 4.175 — 0.225cosn, p(n) = 0.00005 —
0.00004 cosn, ay(n) = 8 + 4sinn, Bi(n) = 1.49 + 1.23sinn, ay(n) = 4 — 0.9cosn, Ba(n) =
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0.92 + 0.72cos n. Then system (5.1) is persistent and has a unique uniformly asymptoti-
cally stable almost periodic sequence solution.

Proof 1t is easy to see that {a(n)}, {b(n)}, {c(m)}, {d(n)}, {h(n)}, {g(m)}, {f (M)}, {p(m)}, {ei(m)}
and {8;(n)} for i = 1,2 are bounded nonnegative almost periodic sequences. By calculation
of Mathematica software, we get

xF=24.3273,  xy, =21.9004,
x5 =37355,  xy, =0.105256,
uf=16.5425,  u}=1.9762,

®, ~ 0372768,  ©,~ 0.78929,

03 ~ 0.156996, B4~ 0.03382.

Then g- —pMu} = 0.5-0.00009 x 1.9762 = 0.49982 > 0, b" —dMu; =2-0.002 x 16.5425 =
1.96691 > 0 and 0 < ® = min{®, ©,,BO3,0,4} = 0.03382 < 1. So we can see that all the
conditions of Theorem 4.1 hold. According to Theorem 4.1, system (5.1) has a unique
uniformly asymptotically stable almost periodic solution which is bounded by €2 for all
nezt. O
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