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Abstract

In this paper, the minimum-length scheduling problem in wireless networks is studied, where each source of traffic
has a finite amount of data to deliver to its corresponding destination. Our objective is to obtain a joint scheduling
and rate control policy to minimize the total time required to deliver this finite amount of data from all sources.
First, networks with time-invariant channels are considered. An optimal solution is provided by formulating the
minimum-length scheduling problem as finding a shortest path on a single-source directed acyclic graph.
However, finding the shortest paths is computationally hard since the number of vertices and edges of the graph
increases exponentially in the number of network nodes, as well as in the initial traffic demand values. Toward this
end, a simplified version of the problem is considered for which we explicitly characterize the optimal solution.
Next, our results are generalized to time-varying channels. First, it is shown that in case of time-varying channels,
the minimum-length scheduling problem can be formulated as a stochastic shortest path problem and then an
optimal policy is provided that is based on stochastic control. Finally, our analytical results are illustrated with a set
of numerical examples.
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I. Introduction
The problem of minimum-length scheduling involves
obtaining a sequence of activations of wireless nodes so
that a finite amount of data residing at a subset of the
nodes in the network reaches its intended destinations
in minimum time. It is closely related to the problems
of network throughput or stable throughput maximiza-
tion, since minimizing the time to deliver a fixed
amount of data can be seen as maximizing the effective
rate at which data traverse the network. However, it also
differs from them in that some network resources
become available to heavily loaded nodes when the
lightly loaded ones become relieved. Furthermore, it can
be introduced as a useful alternative metric that charac-
terizes the traffic-carrying capabilities of wireless net-
works with non-stationary and non-ergodic channel
variations, where the commonly used performance cri-
teria of stable throughput and network capacity are not
well defined. Although in this paper we focus on net-
works with stationary and ergodic channel behavior, we

expect our analysis to yield valuable insights regarding
the more general case of non-ergodic and non-station-
ary wireless channels.
The topic of obtaining schedules of minimum length

has attracted the attention of the research community,
as in [1-10] to sample a few. The first formulations of
the problem of scheduling for efficient access to a
shared channel, which we are aware of, appeared in
[1,2]. A simple collision channel model had been con-
sidered but with the possibility of spatial reuse. That is,
an “interference map” was assumed in terms of a graph
that described all the independent sets of nodes in the
graph, namely those sets of nodes that do not include
“adjacent” nodes. The objective was to determine the
shortest length of a frame of slots that would allow all
nodes to transmit once in the frame without violating
the “interference” constraint imposed by the interference
rules on the graph. It was shown that the problem is
NP-complete, and a distributed heuristic was developed
that showed decent performance compared to the opti-
mum that was computable in “small” instances of the
problem.
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This problem was revisited in more generality through
a continuous approximation of the structure of the
frame schedule in [3], where the authors obtain a cen-
tralized, polynomial time algorithm for static networks
that finds a schedule of minimum length satisfying a set
of link-traffic requirements. However, in [3], modeling
of the physical layer is overly simplified as it is assumed
that any two links can be successfully activated simulta-
neously as long as they do not share any common ver-
tices. This simplification relates the minimum-length
scheduling problem to the problem of obtaining a maxi-
mal matching in a non-bipartite graph [11]. However,
due to the broadcast nature of the wireless medium all,
concurrent transmissions can potentially contribute to
the total amount of interference at each receiver and,
thus, cause a reception to fail.
A commonly accepted model for capturing the effects

of interference is the Signal to Interference plus Noise
Ratio (SINR) criterion under which the outcome of a
transmission depends on the ratio of the signal power at
a receiver to the noise and the total interference. If this
ratio exceeds a certain threshold, then the transmission
is assumed to be successful. Although still an approxi-
mation, this model is reasonable and captures the over-
all interference generated by the simultaneous
transmissions in the network. A variation of this pro-
blem formulation that incorporated some physical layer
attributes was studied in [4,5].
In [5], the authors consider the problem of obtaining a

schedule of minimum length under the SINR interfer-
ence model. They assume that the transmission rates
are fixed and that each transmitting node selects opti-
mally its transmission power. In [5], the minimum-
length scheduling problem is formulated as a linear pro-
gram [12] that can possibly have a prohibitively large
number of variables and thus is hard to solve. In [6-9],
the authors consider the minimum-length scheduling
problem for different sets of optimization parameters.
Specifically, they consider the cases where (1) both the
transmission powers and rates are fixed, (2) the trans-
mission powers can be optimized, but the transmission
rates are fixed, and (3) the transmission powers are
fixed and each transmitter is allowed to choose its rate
from a predetermined, finite set of rates, common to all
transmitters. In [6-9], the minimum-length scheduling
problem is also formulated as a complex linear program,
with a relatively small number of constraints and a large
number of variables. To address the high complexity,
the authors employ the technique of column generation
[12], whose running time is faster, on average, than that
of the original linear program.
Most of the prior work on the minimum-length sche-

duling problem assumes that the transmission rates are
fixed. However, due to the broadcast nature of the

wireless medium, the parameters of the physical layer,
such as the transmission powers and rates, are coupled
with the scheduling decisions that can be made at the
medium access control. In the recent years, there is
ample evidence of how the variables associated with a
particular layer depend on variables associated with
other layers. Exploiting the links and dependencies
between such variables usually yields superior solutions
(see e.g., [13-17]). This is similar, if not equivalent, to
maximizing a function of multiple variables by consider-
ing its dependence on all the variables rather than on a
subset of them alone. Therefore, due to this coupling
between the physical layer and the medium access con-
trol in wireless systems, it is clear that a joint optimiza-
tion of link activation and rate control will yield a better
performance, which is the focus of this paper.
In [10], the authors consider a cross-layer view of the

minimum-length scheduling problem for static, single-
hop networks through rate control and formulate the
problem as a shortest path on a directed acyclic graph
(DAG). In the first part of this paper, we consider static
networks where the channel effect is due to pure path
loss. We first assume a slotted-time model and formu-
late the minimum-length scheduling problem as a short-
est path between a given source-destination pair on a
DAG. We obtain an optimal joint scheduling and rate
control solution that provides a shortest path. Although
finding a shortest path on a DAG has a polynomial
complexity in the number of vertices and edges, this
number grows exponentially as the size of the network
and initial data traffic load increase. For this reason, we
make the following simplifications. We first map the
discrete-time problem to a continuous-time equivalent,
where slots are eliminated. We then restrict the possible
scheduling and rate control decisions to either commu-
nication “one at a time”, in a Time Division Multiple
Access (TDMA) fashion, or “all together” for all time. A
similar approach for the problems of sum-rate maximi-
zation and proportional fairness was considered in [18].
We explicitly characterize the optimal solution of this
reduced problem. Understanding the behavior of the
optimal policy, even for the reduced problem, is signifi-
cant since it provides valuable intuition about when
scheduling and rate control actions for one or the other
extreme are preferable. This intuition, for example, can
improve the performance of the column generation
technique in [6-9] by providing the algorithm with those
scheduling and rate control actions that are expected to
be employed by an optimal policy in the reduced pro-
blem and thus improve that heuristic.
However, the cited work (i.e., [1-10]) studies the mini-

mum-length scheduling problem only for time-invariant
wireless networks. Since the wireless channel in reality
is time-varying, in the second part of this paper, we
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consider the time-varying case. Our goal then becomes
to find an optimal policy that minimizes the expected
time required to deliver all the traffic to its respective
destinations. We solve the minimum-length scheduling
problem by formulating it as a stochastic shortest path,
which is a special case of a Markov Decision Process
(MDP) [19]. We obtain an optimal scheduling and rate
control policy through stochastic control methods. Our
approach is similar to the works in [20] and [21] where
the minimum-length scheduling problem is formulated
as an MDP under exact and statistical knowledge of the
underlying channel conditions, respectively. For time-
invariant channel processes, this model reduces to find-
ing a shortest path on a DAG and methods described in
the first part of this paper are applicable to compute the
optimal solution.
Our work differs from [1-3] since we model the inter-

ference more accurately through the SINR interference
model. We follow a different approach from [4-9] since
we formulate the minimum-length scheduling problem
as finding a shortest path on a single-source DAG, and
we give an optimal graph-theoretic algorithm. Further-
more, we provide an explicit characterization of an opti-
mal policy for a simplified, continuous-time model that
is obtained by reducing the set of feasible scheduling
and rate control decisions to either transmission in the
“one at a time” fashion, as in TDMA, or in the “all
together” mode. Our results are different from [4,5]
since we consider joint scheduling and rate control deci-
sions. Finally, and more importantly, we generalize exist-
ing work by considering the more realistic case of time-
varying channels.
The rest of this paper is organized as follows. In Sec-

tion II, we present the network model. In Section III, we
consider static wireless networks. In particular, in Sec-
tion III-A, we present a graph-theoretic formulation of
the minimum-length scheduling problem as a shortest
path problem on a single-source directed acyclic graph.
In Section III-B, we first map the problem to a continu-
ous-time model and we then restrict the set of feasible
scheduling and rate control actions that can be
employed. By doing so, we are able to explicitly charac-
terize an optimal policy that finds a schedule of mini-
mum length. Then, in Section IV, we consider time-
varying wireless networks. In Section IV-A, we formu-
late the minimum-length scheduling problem as a sto-
chastic shortest path, and in Section IV-B, we provide
an optimal solution by employing the principles of sto-
chastic control theory. Specifically, we use the value
iteration method [19] to find a stochastic shortest path.
In Section V, we complement our analytical results with
some numerical experiments, and finally, in Section VI,
we conclude the paper. In Appendix 1, a table of

variables is provided to make the notation comprehen-
sively clearer to those who prefer to see the full nota-
tional picture. An optimal algorithm that computes a
shortest path on a DAG is given in Appendix 2. The
proofs of our results appear in Appendices 3-4.

II. Model formulation
We consider a slotted-time, single-hop, wireless network
consisting of K transmitter and receiver pairs. Without
loss of generality, we assume that the slot duration is
equal to 1 sec. Each transmitter has a finite amount of
data units, e.g., a file of packets or bits to deliver to its
corresponding receiver. The objective is to activate the
transmitters so that the time to deliver all the traffic to
the intended receivers is minimized. The single-hop net-
work assumption, albeit simplifying, is interesting and
highly non-trivial since it captures the fundamental pro-
blems that arise due to interference, when multiple
nodes attempt simultaneous channel access. We denote
by K = {1, . . . ,K} the set of all transmitter and receiver
pairs in the network. At every time slot, each transmit-
ter k ∈ K can either transmit at its maximum transmis-
sion power Pmax

k or remain silent. We denote the
transmission power level of the kth transmitter at time
slot t by Pk(t), where Pk(t) ∈ {0,Pmax

k }.
It is assumed that each transmitter k has a fixed

amount of dk bits to deliver to its corresponding desti-
nation. We denote by d = (d1, ..., dK) the vector of initial
data traffic at each transmitter. We also denote by Xk(t)
the queue size at transmitter k at time slot t and by X(t)
= (X1(t), ..., XK(t)) the corresponding vector of queue
sizes at all transmitters in the network. The queue size
of each transmitter at time slot 0 is equal to its initial
data traffic, i.e., X(0) = d. The state space of the process
{X(t)}∞t=0 is denoted by X.
We also consider a channel process {G(t)}∞t=0 that

takes values from a finite set G. For every time slot t, the
channel state G(t) = (G(k,j)(t),∀k, j ∈ K ) gives the chan-
nel quality between every transmitter k and receiver j in
the network. This model captures the effects of channel
variations due to e.g., node mobility, fading, or fixed
path loss. It is assumed that the channel follows a block
fading model with block length equal to the duration of
a time slot. Hence, the channel conditions change only
at the beginning of each time slot and remain constant
throughout the slot duration. The network model under
consideration is depicted in Figure 1.
We include the physical layer effects by adopting the

Signal to Interference plus Noise Ratio (SINR) criterion.
Specifically, a transmission from transmitter k to recei-
ver k is successful if the ratio of the received signal
power to the sum of the thermal noise and the total
interference exceeds a certain threshold. The exact value

Pantelidou and Ephremides EURASIP Journal on Wireless Communications and Networking 2011, 2011:115
http://jwcn.eurasipjournals.com/content/2011/1/115

Page 3 of 15



of the SINR threshold depends on various factors, such
as the transmission rate, the target probability of bit
error, the coding and modulation techniques employed
at the transmission, etc. In this paper, we focus on the
dependence of this threshold on the transmission rate
and assume that the rest of the parameters affecting it
are fixed. We denote by gt,k(rk(t)) the SINR threshold
value at receiver k that must be met or exceeded in
order to receive successfully from transmitter k at rate
rk(t) at time slot t. Consequently, we say that at slot t
transmitter k transmits successfully to receiver k at rate
rk(t) if

SINRk(t) =
Pk(t)G(k,k)(t)

Nk +
∑K

j=1,j�=k Pj(t)G(j,k)(t)
≥ γ t,k(rk(t)), (1)

where Nk is the thermal noise power at receiver k.
It is known that the maximum transmission rate is an

increasing function of the SINR threshold (see e.g., [22]).
This gives rise to the following trade-off: By increasing
the transmission rate, the number of transmitters that
can successfully satisfy the SINR criterion concurrently
decreases. On the other hand, by decreasing the trans-
mission rate, a higher number of transmitters can jointly
satisfy the SINR criterion. Thus, it is not clear whether
allowing more concurrent transmissions (less time shar-
ing) at lower rates is preferable to allowing fewer concur-
rent transmissions (more time sharing) at higher rates.
The answer is tightly dependent on the performance
objective and on the network parameters, such as the
transmission powers, channel conditions, etc.
A joint scheduling and rate control policy at any given

time needs to decide (a) which transmitters to activate
and (b) their respective transmission rates. This

information can be captured by the K-dimensional rate
vector r(t) = (r1(t), ..., rK(t)), where rk(t) is the rate of
transmitter k at slot t. If a transmitter is assigned a zero
rate, then it is not activated by the policy. In other
words, a transmission rate vector implicitly specifies the
scheduling decisions. We define the set of all feasible
rate vectors to contain those that are obtained by the
following two-step procedure: We first identify all possi-
ble subsets of activated transmitters (by assigning to
each transmitter k either power 0 or Pmax

k ), and then, we
assign them the maximum rates that allow all activated
transmitters to jointly satisfy the SINR criterion. Thus,
there exist 2K - 1 such K-dimensional transmission
power vectors, each of which corresponds to an achiev-
able rate vector. Clearly, the set of achievable rates
depends on the current channel state g ∈ G. Hence, for
every channel state g, we denote by R (g) the finite, dis-
crete set of feasible K-dimensional rate vectors. Then,
the cardinality of R (g), i.e., R (g), is equal to 2K - 1 for
every channel state g ∈ G.
In this paper, we are interested in obtaining optimal

policies that take joint scheduling and rate control deci-
sions under the objective of minimizing the (expected)
time to deliver all data to the intended destinations. The
policies we consider are aware of the network queue
sizes at all times. Furthermore, unlike in [21], they are
assumed to know the current channel conditions in
order to make accurate scheduling decisions. For every
slot t, the pair of the channel state G(t) and queue sizes
X(t) constitutes the system state S(t). We denote by S
the state space of the system state process {S(t)}∞t=0,
which is given by

S = {(x, g) : x ∈ X , g ∈ G}. (2)

We restrict our attention to stationary policies that
take decisions merely based on the current system state
information. Consider a state s = (x, g) ∈ S, and let the
system state at time slot t satisfies S(t) = s. Let us also
define the set A(s) to be a subset of the overall feasible
scheduling and rate control decisions corresponding to
state s = (x, g), i.e., A(s) ⊆ R (g). Then, the policies we
consider are given by the mapping

r(t) = π(s), π : X × G → A(s) ⊆ R (g). (3)

That is, we allow for the possibility of restricting the
space of actions by limiting the range of allowable poli-
cies. If A(s) is a strict subset of the overall feasible sche-
duling and rate control decisions, then scheduling will
be suboptimal in general at the benefit of decreased
complexity. Furthermore, by selectively choosing the ele-
ments of the set A(s), it is possible to obtain perfor-
mance close to optimal while achieving considerable
reduction in computational complexity.

Figure 1 A network of K transmitter/receiver pairs.
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We assume that every admissible policy uses the chan-
nel state information rationally so that a scheduled
transmission must always be successful. Naturally, as
reflected by the cardinality of the set R (g), the policies
we consider are non-idling, i.e., they always activate at
least one transmitter that has a non-empty queue until
all the queues in the network are empty. We call the
class of stationary, non-idling policies given by the map-
ping (3) as admissible, and denote them by Π.
The queue size process evolves according to

X(t + 1) =
[
X(t) − r(t)

]+, t ≥ 0, (4)

where the rate control and scheduling vectors r(t) are
given according to the mapping in (3) and where [z]+ =
max{z, 0}.
Clearly, the queue size at each transmitter k takes its

maximum value at time slot 0, when it is equal to the
initial demand dk and, due to the absence of external
arrivals, it keeps decreasing over time until it reaches
zero. Under the above model, we proceed to formulate
the minimum-length scheduling problem for static and
time-varying networks.

III. Static networks
In this section, we restrict our attention to static net-
works, where the channel qualities G(k, j)(t) are equal for
every time slot t, i.e., we ignore effects of fading or user
mobility. Thus, the cardinality of the set G is equal to
one. To simplify notation, in this section, we denote the
channel quality G(k, j)(t) as G(k, j). We will drop this
assumption in Section IV where we will consider time-
varying channel processes. Furthermore, since there is a
single channel state g, to simplify notation, we will write
R to denote R (g) for g ∈ G and A to denote A(s) for s =
(x, g), g ∈ G. At every time slot t, the scheduling and
rate control policy identifies a rate vector
r(t) = (r1(t), . . . , rK(t)) ∈ A ⊆ R that specifies which
transmitters are activated and their respective rates.
We can formulate the minimum-length scheduling

problem as follows:

minimize: T (5)

subject to : X(T) = 0, X(0) = d, (6)

T ∈ N. (7)

In the specific case of pure TDMA scheduling, com-
bined with rate control, where only a single transmitter
can be active at any given time, the solution of the
above problem becomes trivial. Specifically, each trans-
mitter must be active for as many time slots as needed
to empty its queue. The required number of such time

slots for each transmitter k is equal to the ratio of its
initial demand dk divided by its corresponding rate
when it accesses the channel individually, rounded
upwards to the closest integer value. Then, the mini-
mum total time that is needed until all the queues are
empty is equal to the sum of the time slots required by
each transmitter. The order in which the transmitters
must be activated is immaterial; they can be chosen in a
round-robin or random fashion.
However, the solution of the optimization problem

given by (5)-(7) is, in general, a non-trivial discrete opti-
mization problem. In the following subsections, we pro-
vide an optimal graph-theoretic algorithm by mapping it
to a shortest path problem on a DAG, and in the sequel,
we give an explicit characterization of the optimal policy
for a reduced version of this problem.

A. The equivalent DAG representation
We construct the weighted DAG Ḡ = (V,E) as follows:
We assume that every vertex u ÎV of the DAG represents
a queue size vector that can be obtained, starting from a
vector of queues X(t), by employing some scheduling and
rate control action chosen from the set A. Furthermore,
every directed edge (u, v) Î E represents one such action
in A. We say that the edge (u, v) is incident from u and
incident to v. Hence, from every vertex xi, we can have |A|
edges that are incident from xi, each corresponding to a
different rate vector rj, i = 1, . . . , |R |. Each such edge is
incident to a graph node yi = [xi - r

i]+. We disallow those
edges that correspond to rate vectors, which activate
transmitters with empty queues. Therefore, the actual
number of edges that are incident from a vertex can be
less than |A|. The weight of each edge is equal to one.
From now on, we will refer to action ri by means of the
edge (xi, yi). The unique source node x0 of the DAG corre-
sponds to the vector of initial demands, X(0).
In Figure 2, we give an example of such a graph for a

network of two transmitter and two receiver pairs. We
assume that the initial demands are d1 = 4 bits and d2 =
6 bits and that we have three possible scheduling and
rate control actions, namely (1) only transmitter 1
accesses the channel at a rate of 3 bits/sec, (2) only
transmitter 2 accesses the channel at a rate of 3 bits/sec,
and (3) both transmitters concurrently transmit at a rate
of 2 bits/sec each. Figure 2 depicts the DAG that is
obtained by these three actions. Note that from each
vertex all the three rate control actions are allowed, as
long as each action schedules transmitters with non-
empty queues. For example, in Figure 2, the only viable
rate control action for the queue size vector [4,0] is to
activate transmitter 1 individually.
As we observe from Figure 2 for any path of vertices

<x0, x1, x2, ..., xm >, the queue size vector of each vertex
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in the path has to be component-wise larger or equal to
the queue size of any other vertex that succeeds it in
the path and the queue size vectors of any two vertices
on the graph cannot be the same. As a result, the overall
graph of the different queues is directed and acyclic.
Finally, it is clear that every path starting at the source
x0 ends at the 0-vector. Moreover, the weight of any
sub-path <x0, x1, x2, ..., xm > is equal to its length m,
which is effectively the number of time slots required to
go from vertex x0 to vertex xm along the specified path,
since by construction of this DAG the weight of each
edge is equal to one time slot. Thus, the initial problem
given by (5)-(7) is transformed into a shortest path pro-
blem on a weighted single-source DAG. A shortest path
on the DAG G = (V, E) can be obtained through the
DAG-SHORTEST-PATHS(Ḡ, x0) algorithm. The exact
algorithm, taken from [11], is given in Appendix 2.
For the example given in Figure 2, the shortest path

algorithm selects the sequence of actions r3, r3, r2, and
the minimum schedule length is equal to 3 sec (slots).
Note that the sequences of actions r2, r3, r3 and r3, r2,
r3 are also optimal as the order in which the actions are
taken is immaterial in terms of minimizing the time
needed to empty the queues, under the assumption of
static channels. Also, it is worth mentioning that the
length of the optimal schedule obtained through rate
control is, naturally, no longer than that of TDMA
(employing only actions r1 and r2), which, in this

example, has length 4. Furthermore, it is reasonable to
expect that the difference in the schedule lengths under
the two schemes can become significant when the num-
ber of transmitter/receiver pairs in the network
increases or when the values of initial demands are
large. This will also be illustrated through a set of
numerical results in Section V.
The optimality of DAG-SHORTEST-PATHS(Ḡ, x0)

can easily be verified (see e.g., [11], Theorem 24.5).
Also, it is easy to see that its overall running time is Θ(|
V | + |E|). Hence, the number of operations needed to
compute a shortest path on a single-source DAG is of
polynomial complexity in the number of vertices and
edges. However, in our DAG construction, this number
grows exponentially (1) in the number of transmitters
when A = R since from every vertex there exist 2K - 1
potential edges that are incident from it and (2) as the
initial demands increase. Therefore, the overall complex-
ity of the algorithm becomes exponential, and despite its
theoretical merit, it is rendered impractical.

B. Continuous-time model
To decrease the complexity that stems from the discrete
nature of the minimum-length scheduling problem, we
can map the problem given by (5)-(7) to a continuous-
time one. Therefore, instead of seeking the minimum
number of time slots required to deliver all data traffic
to its respective destinations, we will be interested to

Figure 2 A DAG construction corresponding to initial demands d1 = 4 bits and d2 = 6 bits and three rate control actions r1 = [3,0], r2

= [0,3], and r3 = [2,2].
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obtain the minimum duration or period of time that has
to elapse until all network queues empty. In this way,
the minimum-length scheduling problem becomes a lin-
ear program with a relatively small number of con-
straints and a large number of variables as in the
formulations of [5], [6], and [7]. In order to solve this
linear program, we follow a different approach than [5],
[6], and [7]. In particular, we reduce the number of vari-
ables involved, i.e., the scheduling and rate control deci-
sions that the policy employs, and then obtain an
optimal solution for this reduced problem.
As is commonly done, to understand the essential fea-

tures of a difficult problem, one needs to consider a
simplified version that inherits and keeps the key fea-
tures of the problem. Specifically, here, we restrict the
set A to contain only feasible rate vectors obtained by
two simple schemes, namely scheduling a single trans-
mitter at a time (in a TDMA fashion) or concurrently
activating all the transmitters, as considered in [23,24].
By doing so, we decrease the cardinality of A to K + 1.
Clearly, such a reduction is expected to yield suboptimal
results. However, this simplification focuses attention on
the trade-off between transmitting more frequently (at a
reduced rate) and transmitting less frequently (at a
higher rate). We expect that this approach will help us
gain valuable insights regarding the nature of optimal
scheduling and rate control for the general problem.
We define Action k for k ∈ K to consist of individu-

ally activating transmitter k and Action 0 to be the
corresponding action when all K transmitters are acti-
vated simultaneously. Let the rate of transmitter k
under individual operation be rkk and the corresponding

rate under concurrent operation be r0k . Furthermore,
let us denote by τi for i Î {0, ..., K} the period of time
that Action i is utilized. The above are illustrated in
Figure 3.
Then, the continuous-time equivalent of the problem

given in (5)-(7) under the reduced space of actions is:

minimize :
K∑
i=0

τi (8)

subject to: dk ≤ τkr
k
k + τ0r

0
k , ∀k ∈ K (9)

τi ≥ 0, i ∈ {0, . . . ,K}. (10)

The following theorem characterizes an optimal sche-
duling and rate control policy that solves (8)-(10).
Theorem 1: A minimum-length scheduling and rate

control policy solving (8)-(10) takes actions according to
the following:
1) If it is true that

K∑
k=1

r0k
rkk

≤ 1, (11)

then Action k is chosen (k = 1, ..., K) for a duration of

τk =
dk
rkk
, (12)

while Action 0 is never employed, i.e.,

τ0 = 0. (13)

Figure 3 The K + 1 possible actions obtained by either scheduling K transmitters “one-at-a-time” or “all-at-once”. The rate of source k
under Action j is denoted by rjk.
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2) If it is true that

K∑
k=1

r0k
rkk

≥ 1, (14)

then a subset of transmitters J, where J ⊆ K, is chosen
such that for every k ∈ J, Action k is chosen for a dura-
tion of

τk =
dk − τ0r0k

rkk
, (15)

and Action 0 is selected for a period of

τ0 = max
i∈K \J

di
r0i
, (16)

where for any two sets K, J the operation\is the set
difference operation defined as

K \J = {x : x ∈ K and x /∈ J} . (17)

The proof appears in Appendix 3. To completely char-
acterize the policy, we need to specify the set J, which
results from the following lemma.
Lemma 1: Consider an ordering of the transmitters in

decreasing order of the values dk/r0k for every k ∈ K. Let
the corresponding indexing of the transmitters be
{�k}Kk=1, that is d�1 /r

0
�1

≥ · · · ≥ d�K /r
0
�K
. Then, the set J

contains those transmitters with the highest ratios dk/r0k
and the cardinality |J| of the set J is given by

|J| = argmin
k∈{0,...,K}

{(
max

i∈K \{0,...,k}
d�i

r0�i

)

+
∑

{j:j≥1,j≤k}

d�j

r
�j
�j

−
(

max
i∈K \{0,...,k}

d�i

r0�i

) ∑
{j:j≥1j≤k}

r0�j

r
�j
�j

⎫⎬
⎭ .

(18)

The proof of the lemma appears in Appendix 4.
From the above, we conclude that the set J contains

the transmitters with the highest |J| values of dk/r0k,
where |J| is given by Lemma 1. Hence, an optimal sche-
duling and rate control policy individually activates the
transmitters that either have a very high initial demand
or whose rates under concurrent operation are very low,
e.g., due to excessive amounts of interference caused by
other concurrent transmissions. Those transmitters
must be further assisted toward emptying their queues
by being granted individual access to the channel.

IV. Time-varying networks
In the previous section, we focused on time-invariant
channels. However, in reality, the wireless channel is
time-varying, due to the effects of fading, node mobility,
etc. In this section, we extend our model by considering

time-varying channels. We make the following assump-
tion on the wireless channel process {G(t)}∞t=0.
Assumption 1: The channel process {G(t)}∞t=0 varies

according to a stationary Markov Chain with transition
probability from some channel state g ∈ G to another
channel state g’ ∈ G given by

pG(g, g’) = Prob[G(t + 1) = g’|G(t) = g], ∀g, g’ ∈ G. (19)

Due to the time variability of the channel process, the
length of the schedule T is a random variable and thus
“minimum-length” is meant “in the expected sense”.
This can be formula ted as follows:

minimize : E[T] (20)

subject to : X(T) = 0, X(0) = d, (21)

T ∈ N, (22)

where the expectation is with respect to the stationary
probability distribution of the channel process.
We proceed to present a solution to the problem of

(20)-(22) through stochastic control methods by consid-
ering admissible policies in the class Π.

A. Stochastic shortest path formulation
Since the wireless channel process {G(t)}∞t=0 is Markov
and since the process of the queue sizes evolves accord-
ing to (4), for every admissible policy, it is easy to show
that the system process {S(t)}∞t=0 is also a Markov Chain,
with state space S given by (2). The Markovianness of
the system process is shown and verified in Appendix 5.
We further define a subset Sterm of the state space S to
be the set of terminating states that correspond to
empty queues, i.e.,

Sterm = {(x, g) : x = 0, g ∈ G}. (23)

Evidently, from (4), this Markov Chain is absorbing
and from every non-terminating state a terminating
state is reached with probability one in finite time under
all admissible policies. Furthermore, once the system
reaches any state in Sterm, it remains there forever.
Hence, the objective becomes to reach a terminating
state in minimum expected time by choosing the next
state. This will yield a schedule of minimum expected
length. This is a stochastic shortest path problem, which
is a special case of an MDP. If there is no randomness
in the channel state, i.e., the entire wireless channel rea-
lization is known at priori at the very first time slot, our
results of Sect ion III follow from this model as a special
case.
The set of feasible scheduling and rate control actions

corresponding to each system state s = (x, g) ∈ S is the
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set A(s) ⊆ R (g). The system is driven by the time-vary-
ing channel process {G(t)}∞t=0. Taking an action leads to
different states with different probabilities depending on
the evolution of the channel process unless the system
has already reached a terminating state.
Let pr(s, s’) be the transition probability from system

state s = (x, g) to state s’ = (x’, g’) by taking action
r = π(x, g) ∈ A(s). Then we have

pr(s, s’) = Prob[X(t + 1) = x’, G(t + 1) = g’

|X(t) = x, G(t) = g, π(x, g) = r].
(24)

From (4) and Assumption 1, it is easy to see that pr(s,
s’) can be written as

pr(s, s’) =
{
pG(g, g’), if (x − r)+ = x’, s, s’ ∈ S
0, otherwise.

(25)

Note that from the Markovianess of the channel pro-
cess and the admissibility of the policy π, the transition
probability pr(s, s’) is time invariant and does not
depend on the previous system states.
We define the cost of taking action r and going from

state s to state s’ as c̃r(s, s’). For every system state s,
action r ∈ A(s) and system state s’ such that pr(s, s’) >
0, we assume that c̃r(s, s’) = 1. This represents the fact
that in order to go from state s to state s’ by taking this
action one needs to spend one time slot. Let us further
define the cost per stage cr(s) to be the expected cost
when, being at state s ∈ S\Sterm, control action r ∈ A(s)
is chosen. It is clear that

cr(s) =
∑

s’∈S pr(s, s’)c̃r(s, s’) = 1, ∀s ∈ S\Sterm. Once a

terminal state s ∈ Sterm is reached, no more cost is
incurred and the system remains there forever, i.e., cr(s)
= 0, ∀r ∈ A(s), s ∈ Sterm. Having said the above, the
minimum-length scheduling problem can be formulated
as a stochastic shortest path. Next, we provide an opti-
mal policy that is obtained through Dynamic Program-
ming [19].

B. An optimal policy
Let T π(s) be the expected time to empty the queues in
the network starting from state s under a policy π Î Π.
Clearly, T π(s) = 0 under any policy π Î Π for every ter-
minating state s ∈ Sterm. Then, the minimum expected
schedule length T �(s) is given by

T �(s) = min
π∈�

T π(s), ∀s ∈ S\Sterm. (26)

A policy π’ is optimal if it achieves the minimum
T �(s) for every non-terminating state s ∈ S\Sterm, i.e.,

T π�(s) = T �(s), ∀s ∈ S\Sterm. (27)

To solve the above shortest path problem, two com-
monly used methods are the policy iteration and the
value iteration [19]. Due to the large state space of the
problem, value iteration is easier to compute and, hence,
will be used here. Consider the value iteration algorithm
and the corresponding “expected “ time Tk(s) to empty
the queues starting from state s at the kth iteration.
Assume that T0(s) = ∞ for all states s ∈ S. We borrow
the following properties from [19].
Lemma 2: The value iteration method converges to

the optimal cost function, i.e.,

T �(s) = lim
k→∞

Tk(s), ∀s ∈ S\Sterm, (28)

where

Tk+1(s) = 1 + min
r∈A(s)

∑
s’∈S

pr(s, s’)Tk(s’),

s ∈ S\Sterm.
(29)

Lemma 29, borrowed from [19], shows the optimality
of the value iteration method to solve problems of sto-
chastic control. Therefore, by employing the value itera-
tion method, we can obtain a solution to the minimum-
length scheduling problem in time-varying networks.
Lemma 3: The optimal solution to a stochastic short-

est path problem must satisfy Bellman’s equation, i.e.,
for every non-terminating state s ∈ S\Sterm, it must be
true that

T �(s) = 1 + min
r∈A(s)

{∑
s’∈S

pr(s, s’)T �(s’)

}
. (30)

Hence, the optimal scheduling and rate control policy
π’ for every state s ∈ S\Sterm is given by

π�(s) = argmin
r∈A(s)

{∑
s’∈S

pr(s, s’)T �(s’)

}
, ∀s ∈ S\Sterm. (31)

Although the value iteration method optimally solves
the aforementioned stochastic shortest path problem, in
general it may require an infinite number of iterations
until it converges. However, if the Markov Chain of the
system evolution is acyclic, then it was shown in [19]
that the value iteration method for each state converges
in a finite number of iterations (at most as many as the
number of non-terminating states of the Markov Chain).
It is easy to see that the Markov Chain driving our sys-
tem is acyclic. This is because starting from one of the
states whose queue size satisfies X(0) = d, the queue
sizes in the network are non-increasing with time as
given in (4) under any admissible policy.
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V. Numerical results
In this section, we consider slotted-time, static and
time-varying single-hop wireless networks and illustrate
our analytical results with a few numerical calculations.
We did not find it essential to provide numerical results
on the continuous-time reduced problem since for that
case we explicitly characterize the corresponding policy.
Thus, we only provide numerical results for the value
iteration method in the discrete-time case for static and
time-varying networks. We consider a network of two
transmitter/receiver pairs as in Figure 1 with K = 2. The
channel process {G(t)}∞t=0 is Markov and switches
between two states, namely a good state, G, and a bad
state, B. When the channel is in the good state, both
transmitters have channels of good quality to their
receivers; otherwise, both channels are bad. The transi-
tion probabilities of this Markov Chain are shown in
Figure 4.
Since we have 2 transmitter/receiver pairs, there exist

3 possible rate vectors corresponding to each channel
state, denoted by rk(g), k = 1, 2, when only the kth
transmitter is activated and by r3(g), when both trans-
mitters are activated, under channel state g Î {B, G}.
We first assume that the initial demands are d1 = 4

bits and d2 = 6 bits, which is the case discussed in Sec-
tion III. We consider 3 scenarios associated with differ-
ent achievable rates for each channel state.

• Scenario 1: When the kth transmitter is activated
alone, its achievable rate is 3 bits/sec, and when
both transmitters are activated simultaneously, the
corresponding rate is 2 bits/sec for each. Under this
scenario, the channel realization is immaterial and
the minimum expected time to empty the queues is
3 sec (slots), i.e., equal to the result of the static net-
work example of Section III.
• Scenario 2: Under the good channel state, G, the
achievable rates are equal to the case of Scenario 1,
i.e., when the kth transmitter is activated alone, its
achievable rate is 3 bits/sec and when both transmit-
ters are activated simultaneously, the corresponding
rate is 2 bits/sec for each. However, under the bad
channel, B, the achievable rates are strictly worse (2

bits/sec for individual transmission and 1 bit/sec for
each transmitter under concurrent transmission).
Naturally, we anticipate that the expected time
required to empty the queues is more than 3 sec
(slots).
• Scenario 3: We assume that under the bad chan-
nel state, B, the achievable rates are equal to the
ones in Scenario 1, but the good channel is better
and thus allows higher rates (4 bits/sec when a
transmitter is activated individually and 3 bits/sec
when they are both activated simultaneously). Natu-
rally, the expected time to empty the queues will
decrease to a value less than 3 sec (slots).

The above 3 scenarios and the corresponding mini-
mum expected schedule lengths are shown in Table 1,
where we have assumed that the channel starts from a
good channel state. Similar results were observed for
higher initial demands (d1 = d2 = 100 bits), which are
also given in Table 1. Note that the above values of
initial demands and transmission rates can be scaled
accordingly to give meaningful values for real systems.
Note also that although time is measured in terms of
time slots, the average minimum expected length takes
fractional values since it is computed by taking the
expectation with respect to the channel state probability
distribution.
In Figure 5, we illustrate the performance comparison

between the optimal policy and a pure TDMA scheme
that activates only a single transmitter at a time. Specifi-
cally, we consider the same single-hop network of two

Figure 4 A two-state Markovian channel process.

Table 1 Expected time required to empty the queues for
different values of initial demands, under Scenarios 1-3,
assuming that t he channel starts from a good state.

Demands Good Channel Bad Channel E[T]
r1(G) r2(G) r3(G) r1(B) r2(B) r3(B)

[
4
6

] [
3
0

] [
0
3

] [
2
2

] [
3
0

] [
0
3

] [
2
2

] 3.00

[
3
0

] [
0
3

] [
2
2

] [
2
0

] [
0
2

] [
1
1

] 3.62

[
4
0

] [
0
4

] [
3
3

] [
3
0

] [
0
3

] [
2
2

] 2.79

[
100
100

] [
3
0

] [
0
3

] [
2
2

] [
3
0

] [
0
3

] [
2
2

] 50.00

[
3
0

] [
0
3

] [
2
2

] [
2
0

] [
0
2

] [
1
1

] 66.86

[
4
0

] [
0
4

] [
3
3

] [
3
0

] [
0
3

] [
2
2

] 40.25
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transmitter/receiver pairs discussed above under Sce-
nario 2. We plot the expected schedule length for the
above two schemes as a function of the values of the
initial data traffic, where slots are in units of seconds
and queue sizes are in bits. For simplicity, the initial
queue sizes at each transmitter are assumed to be equal.
As expected, we observe that the difference between the
expected time to empty the queues under the optimal
policy and under the TDMA scheme increases as the
initial queue sizes increase. This result illustrates the
fact that permitting concurrent transmissions through
rate control can provide considerable gains.

VI. Conclusions
In this paper, we focused on the problem of joint sche-
duling and rate control in single-hop wireless networks
under the objective of minimizing the required time to
deliver all data traffic to the intended destinations. First,
we focused on networks with time-invariant links. We
presented a graph-theoretic formulation for the mini-
mum-length scheduling problem as a shortest path on a
single-source directed acyclic graph. Motivated by the
combinatorial nature of the minimum-length scheduling
problem, and we then mapped it to a continuous-time
formulation and restricted the set of feasible scheduling
and rate control actions. By doing so, we were able to
explicitly characterize an optimal policy for the reduced
problem that finds a schedule of minimum length.
Finally, we considered time-varying wireless networks.
We formulated the minimum-length scheduling pro-
blem as a stochastic shortest path and presented an

optimal policy by employing the principles of stochastic
control theory.

Appendix 1: Table 2 table of variables
Here, we give a list with the most commonly appearing
variables in the paper to facilitate the reader. The vari-
ables are listed in the order they appear in Table 2
below.

Appendix 2: Finding a shortest path on a dag
Shortest path problems on single-source DAGs can be
solved optimally in polynomial time [11]. Below, we pro-
vide an optimal algorithm, taken from [11], that finds a
shortest path on a DAG.
In order to compute a shortest path, we first need to

sort the DAG in topological order and then use a
sequence of edge relaxations until we obtain a shortest
path from the source x0 to the vertex corresponding to
the 0 vector. Topological order is a linear ordering of all
the vertices of the DAG so that for every edge (xi, xj),
the vertex xi appears before xj in the ordering. The pro-
cess of edge relaxation verifies whether the current best-
known path from the source x0 to a vertex y can be
improved by passing through a different vertex x.
We proceed with a few definitions that will be useful

in the rest of this appendix. We define the distance of a
vertex x to be the minimum distance in terms of edges
that must be traversed from the source to reach x. We
also denote by δ[x] an upper bound on the distance of
vertex x. For every edge (x, y), we say that x is the pre-
decessor of y and we write x = Pred[y]. We denote by
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Figure 5 Performance comparison of the optimal policy with respect to TDMA scheduling.
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Table 2 Table of variables

Variable Explanation

K Number of transmitter and receiver pairs

K Set of transmitter and receiver pairs

Pmax
k Maximum instantaneous transmission power of transmitter k

Pk(t) Transmission power level of transmitter k at time slot t

dk Initial data traffic at transmitter k

d Vector of initial traffic at all transmitters

Xk(t) Queue size of transmitter k at time slot t

X(t) Queue size vector of all transmitters in the network at slot t

{X(t)}∞t=0 Process of queue sizes of all transmitters

X State space of the process {X(t)}∞t=0
G(k, j)(t) Channel quality between transmitter k and receiver j at slot t

G(t) Channel state at time slot t

{G(t)}∞t=0 Channel process

G State space of the channel process

gt,k (rk(t)) SINR threshold at receiver k at slot t to receive at rate rk(t)

rk(t) Transmission rate of transmitter k at time slot t

Nk Thermal noise power at receiver k

r(t) Vector of transmission rates of all transmitters at time slot t

R (g) Set of all achievable rates under channel state g

{S(t)}∞t=0 System process

S State space of the system process

A(s) Subset of the total rate control actions corresponding to state s = (x, g)

π Admissible policy

Π Class of admissible policies

G(k, j) Channel between transmitter k and receiver j in static networks

R Set of all achievable rates under static networks

A Subset of the total rate control actions in static networks

T Timeslot number

Ḡ = (V,E) Graph G with V vertices and E edges

(u, v) Edge that is incident from vertex u and incident to vertex v

m Path length on a DAG

Action k Action activating only transmitter k

Action 0 Action activating all transmitters concurrently

rkk Rate of transmitter k under Action k

r0k Rate of transmitter k under Action 0

τi Time duration that Action i Î {0, ..., K} is used

J Set of transmitters to be activated individually

pG(g, g’) Transition probability from channel state g to g’

Sterm Set of terminating states

pr(s, s’) Transition probability from system state s to s’ under action r

c̃r(s, s’) Cost of taking action r and going from state s to state s’

cr(s) Expected cost when being at state s action r is chosen

T π(s) Expected time to empty the queues starting from s under policy π

T �(s) Minimum expected time to empty the queues starting from state s

Tk(s) Expected time to empty the queues starting from s at the kth iteration

π’ Optimal rate control policy
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Adj[x] a list that contains all the vertices y that are adja-
cent to x, i.e., such that there exists an edge (x, y) Î E.
The pseudo-code of the algorithm is provided below:
DAG-SHORTEST-PATHS(Ḡ, x0)
1 topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE(Ḡ, x0)
3 for each vertex x taken in topologically sorted

order
4 do for each vertex y Î Adj[x]
5 do RELAX(x,y)
The topological sorting of the first line of the algo-

rithm can be completed in Θ(|V| + |E|) time, by run-
ning a Depth-First Search (DFS) [11]. The second line
of the algorithm involves the initialization of various
variables as shown next:
INITIALIZE-SINGLE-SOURCE(Ḡ, x0)
1 for each vertex x Î V
2 do δ[x] ¬ ∞
3 Pred[x] ¬ NIL
4 δ[x0] ¬ 0
This process requires time order Θ(|V|). Finally, in

lines 3-5 of the DAG-SHORTEST PATHS(Ḡ, x0) algo-
rithm, at each time step, the next vertex in the topologi-
cal order is selected and a sequence of relaxations over
all edges that are incident from this vertex is performed.
The procedure RELAX(x,y), given next, verifies whether
the current shortest path from x0 to y can be improved
by passing through x.
RELAX(x,y)
1 if δ[y] > δ[x] + 1
2 then δ[y] ¬ δ[x]+1
3 Pred[y]¬x

Appendix 3: Proof of Theorem 1
We can write the Lagrangian of the problem described
by (8)-(10) as:

L(τ,μ,λ) = −
K∑
i=0

τi +
K∑
k=1

μk(τkrkk + τ0r0k − dk) +
K∑
i=0

λiτi,

where μ and l represent the Lagrange multipliers. The
Karush-Kuhn-Tucker (KKT) conditions yield:
1) For every Action k ∈ K we have

∂L(τ,μ,λ)
∂τk

= −1 + μkrkk + λk = 0. (32)

2) For Action 0 we have

∂L(τ,μ,λ)
∂τ0

= −1 +
K∑
k=1

μkr0k + λ0 = 0. (33)

3) For every Action k ∈ Kit must be true that

μk

(
τkr

k
k + τ0r

0
k − dk

)
= 0 ⇒

μk ≥ 0, τkr
k
k + τ0r

0
k ≥ dk.

(34)

4) For all actions i Î {0, ...,K} we have

λiτi = 0 ⇒ λi ≥ 0, τi ≥ 0. (35)

Consider the following cases:
Case 1: Assume that Action 0 is never employed, i.e.,

τ0 = 0. Since the traffic demands of every transmitter
must be met, we have that τk > 0 for every k ∈ K.
Hence, from (35), it follows that l0 ≥ 0 and lk = 0 for
everyk ∈ K. From (32), we obtain,

μk =
1

rkk
. (36)

Furthermore, since μk > 0 and τ0 = 0, (34) yields

dk = τkrkk ,

i.e., for every k ∈ K we obtain

τk =
dk
rkk
. (37)

Finally, from (33) and (36) it follows that

K∑
k=1

r0k
rkk

≤ 1. (38)

Case 2: Assume that Action 0 is employed for a non-
negative amount of time and that also a subset J of the
transmitters is further selected to transmit individually.
This implies that τ0 > 0, τj > 0 for every j ∈ Jand τi = 0
for every i ∈ K \J. Hence, (35) yields l0 = 0, lj = 0 for
every j ∈ J and li ≥ 0 for every i ∈ K \J. Also, for every
j ∈ J, (32) yields

μj =
1

rjj
, (39)

and for every i ∈ K \J, it follows that

μi ≤ 1

rii
. (40)

Moreover, from (34) and (39), for every j ∈ J, we
obtain

τj =
dj − τ0r0j

rjj
, (41)

Pantelidou and Ephremides EURASIP Journal on Wireless Communications and Networking 2011, 2011:115
http://jwcn.eurasipjournals.com/content/2011/1/115

Page 13 of 15



and from (34) and (40), for every i ∈ K \J, we have

di ≤ τ0r
0
i , (42)

or equivalently

τ0 ≥ max
i∈K \J

di
r0i
. (43)

Finally, from (33), (39), and (40), it follows that

K∑
k=1

r0k
rkk

≥ 1. (44)

■

Appendix 4: Proof of Lemma 1
From (41), (42), and the fact that τj > 0 for every j ∈ J,
for i ∈ K \J, it follows that

0 < τj ≤
djr0i − r0j di

rjj r
0
i

,

which yields that

di
r0i

<
dj
r0j
. (45)

Consider now a new ordering {�k}Kk=1 of the transmit-

ters in decreasing order of the values dk/r0k for every

k ∈ K, i.e.,d�1 /r
0
�1

≥ · · · ≥ d�K /r
0
�K
. Hence, from (45), it

follows that there exists a threshold, i.e., a transmitter
index value in the new ordering, below which all the
transmitters must belong to the set J and above which
(that is, the remaining ones), they must belong to the
set K \J.
Since the objective is to minimize τ0 +

∑
j∈J τj, from

(41) and (43), it follows that

|J| = argmin
k∈{0,...,K}

⎧⎨
⎩τ0 +

∑
{j:j≥1,j≤k}

τ�j

⎫⎬
⎭

= argmin
k∈{0,...,K}

⎧⎨
⎩τ0 +

∑
{j:j≥1,≤k}

d�j − τ0r0�j

r
�j
�j

⎫⎬
⎭

= argmin
k∈{0,...,K}

⎧⎨
⎩

(
max

i∈K \{0,...,K}
d�i

r0�i

)
+

∑
{j:j≥1,j≤k}

d�j

r
�j
�j

−
(

max
i∈K \{0,...,K}

d�i

r0�i

) ∑
{j:j≥1,j≤k}

r0�j

r
�j
�j

⎫⎬
⎭ .

■

Appendix 5: Markovian property of the system
process
To show that the process {S(t)}∞t=0 is Markov, we need
to prove that for any values that the system state can
take s0 = (x0, g0), ..., st+ 1 = (xt+1, gt+1) it is true that

Prob[S(t + 1) = st+1|S(t) = st,S(t − 1) = st−1, . . . ,S(0) = s0]

= Prob[S(t + 1) = st+1|S(t) = st].
(46)

Then, we have the following:

Prob[X(t + 1) = xt+1,G(t + 1) = gt+1|X(t) = xt,G(t) = gt,

X(t − 1) = xt−1,G(t − 1) = gt−1, . . . ,X(0) = x0,G(0) = g0] =

Prob[X(t) − π(X(t),G(t)) = xt+1,G(t + 1) = gt+1|X(t) = xt,G(t) = gt,

X(t − 1) = xt−1,G(t − 1) = gt−1, . . . ,X(0) = x0, G(0) = g0] =

(47)

Prob[xt − π(xt, gt) = xt+1,G(t + 1) = gt+1|X(t) = xt,G(t) = gt,

X(t − 1) = xt−1,G(t − 1) = gt−1, . . . ,X(0) = x0,G(0) = g0] =

Prob[xt − π(xt, gt) = xt+1,G(t + 1) = gt+1|X(t) = xt,G(t) = gt] =

Prob[X(t + 1) = xt+1,G(t + 1) = gt+1|X(t) = xt,G(t) = gt]

(48)

where (47) follows from (3) and (4) and where (48)
follows from Assumption 1 on the markovian property
of the channel process. This completes the proof.
■
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