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Abstract
Background: In high throughput screening, such as differential gene expression screening, drug
sensitivity screening, and genome-wide RNAi screening, tens of thousands of tests need to be
conducted simultaneously. However, the number of replicate measurements per test is extremely
small, rarely exceeding 3. Several current approaches demonstrate that test statistics with shrinking
variance estimates have more power over the traditional t statistic.

Results: We propose a Bayesian hierarchical model to incorporate the shrinkage concept by
introducing a mixture structure on variance components. The estimates from the Bayesian model
are utilized in the optimal discovery procedure (ODP) proposed by Storey in 2007, which was
shown to have optimal performance in multiple significance tests. We compared the performance
of the Bayesian ODP with several competing test statistics.

Conclusion: We have conducted simulation studies with 2 to 6 replicates per gene. We have also
included test results from two real datasets. The Bayesian ODP outperforms the other methods
in our study, including the original ODP. The advantage of the Bayesian ODP becomes more
significant when there are few replicates per test. The improvement over the original ODP is based
on the fact that Bayesian model borrows strength across genes in estimating unknown parameters.
The proposed approach is efficient in computation due to the conjugate structure of the Bayesian
model. The R code (see Additional file 1) to calculate the Bayesian ODP is provided.

Background
High throughput screening (HTS) is a method for scien-
tific experimentation, which is widely used in drug discov-
ery. It allows researchers to effectively conduct thousands
or millions of biochemical or genetic tests simultane-
ously. Microarray experimentation is a special case of
HTS. While one microarray chip can be used to test thou-

sands of genes simultaneously, 96-well plates are typically
used in HTS, each well containing one compound. Hun-
dreds or thousands of 96-well plates are needed to test all
the compounds once. The number of replicates in HTS is
often less than that in microarray experiments, rarely
exceeding 3. Nevertheless, they all need to deal with the
scenario where the number of statistical comparisons far
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exceeds the number of biological replicates. To connect
with previous methods, we will use "hits" in HTS and "dif-
ferentially expressed genes" in microarray exchangeably.

Many statistical methods have been developed to identify
differentially expressed (DE) genes in microarray experi-
ments. There are variants of Student's t test statistic that
conduct a test on each individual biological entity and
then correct for multiple comparisons. The problem is
that, with a large number of tests and a small number of
replicates, the statistics are very unstable. For example, a
large difference in the measurements under different con-
ditions might be driven by an outlier. Also, a large t statis-
tic might arise because of a small variance, even with a
small difference in the sample means.

Cui and Churchill [1] used the average of gene-specific
variance and pooled variance to estimate variance compo-
nent. There are several alternative statistics which also
modify the estimator of variance. The SAM t statistic was
proposed in [2] where a suitable constant is added to
gene-specific variance estimates. A shrunken t statistic [3]
was developed with a variance estimator that borrows
information across genes using the James-Stein shrinkage
idea. In James-Stein estimation, the shrinkage estimate is
a linear combination of the original unbiased estimator
(sample variance in this case) and a target estimate to
minimize a certain loss function (e.g. the mean squared
error). This procedure is computationally simple, yet pro-
duces efficient estimates. Also in the framework of James-
Stein shrinkage, Opgen-Rhein and Strimmer [4] proposed
a "shrinkage t" approach, which requires no distributional
assumption. In general, these analytic shrinkage estima-
tors show a powerful and robust performance in testing
DE genes.

From the Bayesian perspective, the introduction of a prior
distribution on gene-specific variance naturally imple-
ments the shrinkage idea. Baldi and Long [5] proposed
the regularized t statistic to replace gene-specific variance
with a Bayesian estimator based on a hierarchical model.
Fox and Dimmic [6] extended Baldi and Long's approach
by explicitly calculating the marginal posterior distribu-
tion for the difference in mean expression levels. Lonnst-
edt and Speed [7] proposed an empirical Bayes approach
for replicated two-color mi-croarray experiment. Smyth
[8] extended the empirical Bayes approach for general
microarray experiments. Sartor et al. [9] further extended
Smyth's method by accounting for the dependence of var-
iance on gene expression intensity. Kendziorski et al. [10]
considered a hierarchical gamma-gamma model to test
DE genes.

Lonnstedt and Britton [11] proposed full Bayesian models
and compared them to several highly-used frequentist

methods and empirical Bayes methods. They found that
the full Bayesian models seem to have less power selecting
DE genes. This is because the frequentist test statistics and
the empirical Bayes methods, which are similar in per-
formance, put a stronger shrinkage on variance estimates.
When the number of replicates is extremely small, the
shrinkage becomes more useful in stabilizing the test sta-
tistics. In light of this study, we make a simple but impor-
tant modification by adding a point mass component in
the variance prior. It introduces adequate shrinkage in the
estimation of variance components so that the full Baye-
sian model could have equivalent or greater power com-
pared to those highly-used differential expression
methods.

The Bayesian model can be combined with frequentist
method to further enhance the performance. One of the
most current developments in this area is the optimal dis-
covery procedure (ODP) proposed by Storey [12]. Differ-
ent from the conventional practise of calculating test
statistic on each individual gene and then adjusting for
multiple comparison, the ODP statistic is calculated based
on the information across genes. The method has shown
significant gains in power relative to a number of leading
methods. To estimate the proportion of the true nulls,
Storey used an ad hoc method which is based on ranking
the tests by using a univariate statistic (e.g., a t statistic).
He also used gene-specific sample mean and sample vari-
ance to estimate the parameters in the hypothesized null
and alternative distributions. In this paper, we propose to
use the posterior probability of a gene being DE to esti-
mate the set of true nulls. By doing this, we don't need to
choose a cutoff to determine the null set. The uncertainty
in the estimation is accounted for in a probabilistic fash-
ion. Furthermore, the sample mean and variance are
replaced by the posterior mean and variance of gene
expression level. The Bayesian estimates can borrow
strength across genes. They may be more reliable than
sample mean and variance, which are computed sepa-
rately for each gene. Our study shows that the Bayesian
ODP has considerable improvement over the original
ODP, especially when there are few replicates per gene.

Methods
The Bayesian model
In this section, we build a full Bayesian hierarchical
model, and then we construct the Bayesian ODP statistic
to identify DE genes. Let xij be the expression measure-
ment from the ith gene on the jth array under the control
(i = 1,..., n and j = 1,..., n0i), and yik be the expression meas-
urement from the ith gene on the kth array under the treat-
ment (k = 1,..., n1i). Replicate number n0i and n1i can be
different among genes and between conditions, which
means that the Bayesian method can deal with missing
values and unbalanced experiment designs. Through a
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logarithm transformation (or some other transformation)
on the original measurements, xij and yik are modeled by
normal distributions. The first level of the Bayesian model
is

where μi is the baseline expression level under the control,

and Δi is the difference in expression levels between treat-

ment and control. We assume that variance  is the

same under the two conditions for the ith gene.

In Bayesian modeling, it is common to introduce a latent
variable to indicate the expression status of the ith gene
[5,7]. Here we use ri = 1/0 to denote differential/nondiffer-
ential expression for gene i. Specifically, we have

Thus Δi is modeled by a mixture of two components, one

being a point mass at 0 for non-DE genes, and another
being a normal distribution for DE genes. Hyper-parame-

ter  is specified as a constant. We further assume that ri

| pr ~ Bernoulli(pr), where pr is the mixing probability.

To introduce a shrinkage on variance component, we

impose a mixture structure on 

We assume that vi | pv ~ Bernoulli(pv), where pv serves as the
mixing probability. Thus vi = 0 indicates that gene i shares
a common variance with some other genes, and vi = 1 indi-
cates that it has a gene-specific variance arising from a
continuous inverse gamma distribution. We specify
hyper-parameters aσ and bσ as constants.

We complete the Bayesian model with prior specifications

for parameters (μi, , pr,pv),

where ( , a0, b0, ar, br, av, bv) are specified as constants.

Let X and Y be the collections of expression measurements
from all the genes under control and treatment, respec-
tively. Our primary interest is zi = E(ri | X, Y), the marginal
posterior probability that gene i is DE. We use zi as the test
statistic, i.e., a gene is flagged as DE if zi > λ, where λ is a
cutoff value.

Computing zi involves integration over all the other
parameters in the joint posterior distribution. This inte-
gration does not have a closed form. We implement a
Markov Chain Monte Carlo (MCMC) algorithm to make
posterior inference. All the full conditional distributions
are of standard forms such as normal, inverse gamma,
beta, and Bernoulli distributions, so it is efficient to run
the MCMC simulation.

The Bayesian ODP
Multiple testing methods are typically based on p-values
obtained from each hypothesis test, which only uses
information from individual tests. Because there is often a
strong biological structure among HTS tests, the measure-
ments from different tests can be related. Storey [12] pro-
posed the optimal discovery procedure (ODP) to
construct a test statistic using information across tests.
Denote the expected number of true positives as ETP and
the expected number of false positives as EFP. The ODP is
optimal in that it maximizes the ETP for each fixed EFP
level. The method has shown significant gains in power
relative to a number of current leading methods.

Here is the outline of the ODP. Suppose there are n tests,
and test i has null density fi and alternative density gi, for i
= 1,..., n. The observed data are x1, x2,..., xn, where xi corre-
sponds to test i. Then the ODP test statistic is

Because the true parameters in the null and alternative dis-
tributions are unknown, Storey et al. [13] proposed the
canonical plug-in estimate
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where  and  are the estimates of fi and gi,  = 1 if 

is to be included in the denominator, and  = 0 other-

wise. Specifically, the authors [13] assumed that the
expression measurements follow a normal distribution,
and they proposed to plug in the constrained maximum
likelihood estimates under fi and the unconstrained max-

imum likelihood estimates under gi. The estimates are the

sample mean and sample variance under the hypothe-
sized normal distribution. To estimate the null set, Storey
et al. suggested an ad hoc approach to estimate wi. First,

rank the tests using a univariate statistic (e.g., t statistic).
Second, decide a cutoff, and the tests with the univariate
statistic falling below the cutoff are classified into the null

set (  = 1). The cutoff is chosen where the proportion of

statistics not exceeding the cutoff equals the estimated
proportion of true nulls based on the method in [14].

Finally, a null hypothesis is rejected if (xi) exceeds

some cutoff chosen to attain a given EFP level.

The above ad hoc approach can be improved because the
distributional parameters are estimated only based on
information from individual tests. The posterior estimates
from the proposed Bayesian model allow borrowing
strength across all tests, which could provide more stable

estimates. We propose to use the posterior means of μi, μi

+ Δi, and  to estimate the parameters of fi and gi in the

ODP statistic.

One way to estimate wi is to decide a cutoff on the poste-

rior probability (zi) of a gene being DE, i.e.,  = 0 if zi is

greater than the cutoff (e.g., 0.5) and  = 1 otherwise.

Storey et al. [13] suggested that wi can be thought of as

weights estimating the true status of each hypothesis, and
they could take on a continuum of values. Then another

option is to set  = 1 - zi, the probability of the ith gene

being non-DE, which can also be interpreted as the prob-
ability of the ith null hypothesis being true. The natural
introduction of the posterior probability into the ODP
statistic overcomes the problem of choosing an arbitrary
cutoff value. It also accommodates the uncertainty in esti-
mating the true status of each test. In this paper, we imple-
ment this second option to construct the Bayesian ODP
statistic.

Results and discussion
We conducted simulation studies and data analysis based
on two experimental datasets to assess the performance of
the Bayesian ODP. It is compared to six methods in iden-
tifying DE genes: the original ODP, the posterior proba-
bility from the Bayesian mixture model, the shrunken t
[3], Fox and Dimmic's Bayesian t (Fox) [6], the moderated
t [8], and the intensity-based moderated t (IBMT) [9].

Simulation study

We simulated data based on the estimated parameters
from the HTS lung cancer data set described next. Specifi-
cally, we used an inverse gamma distribution to model the
gene variance components. Figure 1 plots the empirical
density curves of the observed sample variances and sim-
ulated sample variances based on the inverse gamma
model. The two curves are similar, except that the curve
based on the observed sample variances is relatively more
spiked in the center. The difference can be accommodated
by assuming that some genes have a common variance
around the mean of the gene-specific variances. In the
simulation, we used the inverse gamma model to generate

gene-specific variances ,
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ŵi

ŵi
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where we set the common variance  to be the mean of

the gene-specific variances. Without loss of generality, we
assumed that the mean expression level under control

equals 0 (μi = 0). The difference in expression levels

between treatment and control is specified as

We conducted simulation studies with 2 to 6 replicates per
gene. We considered two scenarios for a given number of
replicates. In Scenario 1, all gene variances are gene-spe-
cific; in Scenario 2, 80% of gene variances are gene-spe-
cific and 20% of genes have a common variance. One
hundred datasets were simulated under each scenario,
where each dataset contains 1000 genes with 100 genes
being DE.

We used noninformative priors so that posterior inference
is dominated by the information from data. Specifically,

we let  =  = 1.0 where 1.0 is sufficiently large for

the expression levels. To specify the hyper-parameters for
the inverse gamma priors, first we set aσ = a0 = 2.0 so that

the inverse gamma priors have an infinite variance. Then

we let the prior means,  and , equal to the aver-

age of the sample variances to solve for bσ and b0. Finally,

we choose ar = br = av = bv = 1, which corresponds to the

uniform priors for pr and pv. The computation is done by

Gibbs sampling with 11,000 cycles. The burn-in is 1,000.
We monitor two parallel chains with different starting
points to assess convergence.

Figures 2, 3, 4, 5, and 6 plot the false discovery rate (FDR)
versus the number of rejected genes with 2 to 6 replicates
per gene. The top panel is under Scenario 1 and the bot-
tom panel is under Scenario 2. In general, the two plots in
each figure show a similar pattern, indicating that the true
percentage of genes having a common variance does not
affect the results much. The introduction of the mixture
model on variance components is useful even when all
the variance components are gene-specific. In all the cases
considered, the Bayesian ODP significantly outperforms
the others, including the original ODP. The posterior
probability shows similar performance as the shrunken t,
the moderated t, Fox, and IBMT. The extra shrinkage intro-
duced by the mixture distribution on variance compo-
nents makes the full Bayesian model comparable to the
shrinkage and empirical Bayes statistics.

In [13], the ODP shows significant improvement over the
shrunken t statistic. However, in our simulation study, the
ODP has the worst performance with 2 replicates per
gene. It performs comparably to the shrunken t with 3 or
4 replicates per gene, and it outperforms the shrunken t
with 5 or 6 replicates. The reason might be that, in [13]
each gene was tested on a relatively large number of
arrays, i.e., with six, seven, and eight replicates under three
conditions, respectively. The sample mean and sample
variance, which are used in the ODP statistic defined in
(1), are much more stable compared to those based on
few replicates. As shown in [3], the fewer replicates there
are, the more the shrinkage is introduced in the shrunken
t statistic. In such cases, the ODP, which uses sample
mean and variance, might be outperformed by the shrink-
age method. As the number of replicates increases, sample
variance becomes more stable, the benefit of the shrink-
age becomes less significant, and the advantage of the
ODP statistic can be revealed.

The Bayesian ODP is constructed based on the ODP test
statistic, which has been shown to have optimal perform-
ance in multiple significance tests [12]. It also takes
advantage of the parameter estimates from the Bayesian
mixture model which are more reliable than those in the
original ODP. When the number of replicates is extremely
small, the Bayesian ODP might have a better performance
in identifying DE genes.

Experimental datasets
In this section, we applied the Bayesian ODP to two exper-
imental datasets. The first dataset is from a real HTS exper-
iment. Paclitaxel and related taxanes are routinely used in
the treatment of non-small cell lung cancer and other epi-
thelial malignancies. The goal of the experiment is to
identify gene targets that specifically reduce cell viability
in the presence of paclitaxel. Whitehurst et al. [15]
designed an HTS experiment which combined a high
throughput cell-based one-well/one-gene screening plat-
form with an arrayed genome-wide synthetic siRNA
library for systematic interrogation of the molecular
underpinnings of cancer cell chemoresponsiveness. The
information on the dataset can be accessed from the
Nature website http://www.nature.com/nature/journal/
v446/n7137/suppinfo/nature05697.html. The dataset
was generated under two conditions (in the presence and
absence of paclitaxel). Over 21,000 genes were measured,
each with 3 replicates. The measurements are the cell via-
bility scores based on Adenosine TriPhosphate (ATP) con-
centration.

The raw data were normalized to internal reference con-
trol samples on each plate to allow for plate-to-plate com-
parisons. After we ranked the genes according to the
Bayesian ODP statistic, we employed the Bayesian FDR to
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ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian model, the shrunken t, the moderated t, Fox, and IBMTFigure 2
ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian 
model, the shrunken t, the moderated t, Fox, and IBMT. The number of replicates per gene is 2. In Scenario 1, gene 
variances are gene-specific; in Scenario 2, 80% of gene variances are gene-specific and 20% of genes have a common variance.
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ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian model, the shrunken t, the moderated t, Fox, and IBMTFigure 3
ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian 
model, the shrunken t, the moderated t, Fox, and IBMT. The number of replicates per gene is 3. In Scenario 1, gene 
variances are gene-specific; in Scenario 2, 80% of gene variances are gene-specific and 20% of genes have a common variance.
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ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian model, the shrunken t, the moderated t, Fox, and IBMTFigure 4
ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian 
model, the shrunken t, the moderated t, Fox, and IBMT. The number of replicates per gene is 4. In Scenario 1, gene 
variances are gene-specific; in Scenario 2, 80% of gene variances are gene-specific and 20% of genes have a common variance.
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ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian model, the shrunken t, the moderated t, Fox, and IBMTFigure 5
ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian 
model, the shrunken t, the moderated t, Fox, and IBMT. The number of replicates per gene is 5. In Scenario 1, gene 
variances are gene-specific; in Scenario 2, 80% of gene variances are gene-specific and 20% of genes have a common variance.
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ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian model, the shrunken t, the moderated t, Fox, and IBMTFigure 6
ROC curves which compare the Bayesian ODP, the original ODP, the posterior probability from the Bayesian 
model, the shrunken t, the moderated t, Fox, and IBMT. The number of replicates per gene is 6. In Scenario 1, gene 
variances are gene-specific; in Scenario 2, 80% of gene variances are gene-specific and 20% of genes have a common variance.
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control multiple test errors. The posterior probability of a
gene being non-DE can be interpreted as a local FDR [16].
A direct estimator of FDR [17] can be computed based on
the posterior probability zi. Specifically, the posterior
expected FDR is

where D is the number of total rejections, indicator δi = 1
if the ith gene is identified as a hit (its Bayesian ODP sta-
tistic ranks among the top D), and δi = 0 otherwise. Plug-
ging in the posterior probability zi, we obtained an
estimated FDR. Controlling the Bayesian FDR at 5%, we
produced a list of 363 genes identified as hits.

Sixty eight genes from the list were retested using the same
reagent (Dhar-macon siRNA) as in the original experi-
ment, all of which turned out to be positive, showing a
remarkably high level of reproducibility. Through empiri-
cal testing, the gamma tubulin ring complex (γTURC) is
known to modulate paclitaxel sensitivity in a broad vari-
ety of non-small cell lung cancer cell lines. Thus selected
genes from the complex can be considered landmark hits.
The Bayesian ODP selected all the seven major compo-
nents of the γTURC (TUBGCP2, TUBA8, TUBGCP5, 76P,
TUBGCP3, TUBG2, TUBG1). Considering the same
number of selected genes (363), the original ODP pro-
duced 4 major components of the γTURC (TUBG1,
TUBA8, TUBG2, TUBGCP2), and the other five methods
produced at most 5 of the major components.

Without knowing the list of truly DE genes, we could not
compare the Bayesian ODP and other competing meth-
ods accurately based on the HTS lung cancer data. To over-
come this problem, we used the Golden Spike data [18] to
compare the Bayesian ODP with the other six methods
included in the simulation study.

The Golden Spike dataset includes two conditions, with 3
replicates per condition. Each array has 14,010 probesets
among which 3,866 probsets have spike-in RNAs. Among
these 3,866 spike-in probsets, 2,535 probsets have equal
concentrations of RNAs under the two conditions and
1,331 probsets are spiked in at different fold-change lev-
els, ranging from 1.2 to 4-fold. Compared to other spike
datasets, the Golden Spike dataset has a large number of
probsets that are known to be DE, which makes it very
popular for comparing differential expression methods.

There have been criticisms of the Golden Spike data set
[19-21]. One of the undesirable characteristics is that the
non-DE probesets have non-uniform p-value distribu-
tions. Irizarry et al. [20] identified a severe experimental

artifact, which is that "the feature intensities for genes
spiked-in to be at 1:1 ratios behave very differently from
the features from non-spiked-in genes". Pearson [22] sug-
gested that one can use the Golden Spike dataset as a valid
benchmark with the 2,535 equal fold-change probsets as
the true negatives instead of including the non-spiked-in
probsets. As such, there are 1,331 true positives and 2,535
true negatives. Opgen-Rhein and Strimmer [4] proposed
to remove the 2,535 equal fold-change probsets, leaving
in total 11,475 genes, and 1,331 known DE genes. In this
paper, we conducted the analysis in both cases, with the
former denoted as Scenario 1 and the latter Scenario 2. We
used the distribution free weighted method (DFW) [23] as
the expression summary measure.

In addition to comparing the power of the seven methods
given the same number of selected genes, we also compared
their ability to correctly estimate the FDR. Because the null
distributions of some of the test statistics (i.e., the Bayesian
ODP, the original ODP, the shrunken t) are unknown, the
Benjamini-Hochbergwe FDR procedure [24] can not be
applied. We estimated the FDR by permutation analysis
[3,13]. The upper panels of Figure 7 and Figure 8 plot the
true FDR versus the number of selected genes under the two
scenarios. In general, the Bayesian ODP outperforms the
other methods in both scenarios. In Scenario 2, the Bayesian
ODP has a 1% FDR when the total number of rejections is
less than 160, while the original ODP has a zero FDR. Note
that the difference is caused only by one gene that is a false
negative. As the total number of rejections increases, the
Bayesian ODP has a much smaller FDR than the original
ODP. Fox and IBMT have the second best performance
under Scenario 1 and Scenario 2, respectively. We provided
the list of the first 400 genes, along with their true expression
status, identified by the competing methods under each sce-
nario in Additional file 2 and 3.

The lower panel of Figure 7 and Figure 8 compare the esti-
mated FDR with the true proportion of false positives [9],
from which we can assess the ability of the methods to
correctly establish the statistical significance of DE genes.
We did not include the posterior probability because its
permutation-based FDR assessment is computationally
intractable (it requires MCMC simulation on thousands
of datasets, each generated by replacing a gene with a sim-
ulated null gene). All of methods in the comparison
underestimate the number of false positives, which is con-
sistent with the results reported in [9]. Correctly estimat-
ing FDR when the null distribution is unknown remains a
challenge.

Conclusion
One important feature of high throughput screening is
that the number of replicates is extremely small, rarely
exceeding 3. Full Bayesian hierarchical models were
shown to be less competitive compared with some exist-
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Results from the comparison based on the Golden Spike dataset under Scenario 1 where the total number of genes to com-pare is 3866Figure 7
Results from the comparison based on the Golden Spike dataset under Scenario 1 where the total number of 
genes to compare is 3866. The top figure plots the FDR versus the total number of rejected genes. The bottom figure plots 
the estimated FDR versus the true proportion of false positives.
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Results from the comparison based on the Golden Spike dataset under Scenario 2 where the total number of genes to com-pare is 11475Figure 8
Results from the comparison based on the Golden Spike dataset under Scenario 2 where the total number of 
genes to compare is 11475. The top figure plots the FDR versus the total number of rejected genes. The bottom figure 
plots the estimated FDR versus the true proportion of false positives.
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ing frequentist and empirical Bayes methods [9]. This is
because full Bayesian models usually employ nonin-
formative priors which do not provide suffcient shrinkage
in the estimation. In this paper, we demonstrate that the
full Bayesian model can be made a competitive approach
by simply adding a point mass component in the variance
prior. This modification introduces adequate shrinkage
which improves the performance of the full Bayesian
model considerably. The Bayesian computation is effi-
cient. It takes about 10 minutes to run the FOR-TRAN pro-
gram on a HP laptop (Pentium(R)4 CPU 3.20 GHz, 1 GB
RAM) to analyze the lung cancer data.

The optimal discovery procedure (ODP) is one of the cur-
rent developments in multiple testing. It has shown signif-
icant improvements over many leading methods. The full
Bayesian model can be further combined with the ODP
statistic. The Bayesian ODP can perform better than the
original ODP, especially when there are few replicates in
HTS. The Bayesian ODP employs the posterior probability
of a gene being DE which naturally accounts for the uncer-
tainty in the estimation of the null set. The parameter esti-
mates in the original ODP, which are the sample mean
and sample variance of individual test, are not reliable
with few replicates. By replacing those with the estimates
from the Bayesian model, the ODP is improved by a joint
force of shrinkage estimation and borrowing strength
across tests.

Authors' contributions
JC, XX, and SZ developed the methods. JC and XX imple-
mented and applied the methods. JC and SZ wrote the
manuscript. AW and MAW provided the lung cancer HTS
data and tested the analysis results.

Additional material

Acknowledgements
The authors thank the associate editor and the reviewers for their con-
structive comments and suggestions, which led to substantial improvement 
of the manuscript. This work was partly supported by NIH grant UL1 
RR024982.    

References
1. Cui X, Churchill GA: Statistical tests for differential expression

in cdna microarray experiments.  Genome Biology 2003, 4:210.
2. Tusher VG, Tibshirani R, Chu G: Significance analysis of microar-

rays applied to transcriptional responses to ionizing radia-
tion.  Proceedings of the National Academy of Sciences 2001,
98:5116-5121.

3. Cui X, Hwang JTG, Qiu J, Blades NJ, Churchill GA: Improved sta-
tistical tests for differential gene expression by shrinking var-
iance components estimates.  Biostatistics 2005, 6:59-75.

4. Opgen-Rhein R, Strimmer K: Accurate ranking of differentially
expressed genes by a distribution-free shrinkage approach.
Statistical Applications in Genetics and Molecular Biology 2007, 6(1):9.

5. Baldi P, Long AD: Bayesian framework for the analysis of mi-
croarray expression data: regularized t-test and statistical
inference of gene changes.  Bioinformatics 2001, 17:509-519.

6. Fox RJ, Dimmic MW: A two-sample Bayesian t-test for micro-
array data.  BMC Bioinformatics 2006, 7:126.

7. Lonnstedt I, Speed T: Replicated microarray data.  Statistica Sinica
2002, 12:31-46.

8. Smyth GK: Linear models and empirical Bayes methods for
assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol 2004, 3:Article3.

9. Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf
GD, Medvedovic M: Intensity-based hierarchical Bayes method
improves testing for differentially expressed genes in micro-
array experiments.  BMC Bioinformatics 2006, 7:538.

10. Kendziorski CM, Newton MA, Lan H, Gould MN: On parametric
empirical Bayes methods for comparing multiple groups
using replicated gene expression profiles.  Statistics in Medicine
2003, 22:3899-3914.

11. Lonnstedt I, Britton T: Hierarchical Bayes models for cDNA mi-
croarray gene expression.  Biostatistics 2005, 6:279-291.

12. Storey JD: The optimal discovery procedure: A new approach
to simultaneous significance testing.  Journal of the Royal Statisti-
cal Society, Series B 2007, 69:1-22.

13. Storey JD, Dai JY, Leek JT: The optimal discovery procedure for
large-scale significance testing, with applications to compar-
ative microarray experiments.  Biostatistics 2007, 8:414-432.

14. Storey JD: A direct approach to false discovery rate.  Journal of
the Royal Statistical Society, Series B 2002, 64:479-498.

15. Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L,
Pay-ton M, Minna JD, Michnoff C, Hao W, Roth MG, Xie X, White
MA: Synthetic lethal screen identification of chemosensitizer
loci in cancer cells.  Nature 2007, 446:815-819.

16. Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes analy-
sis of a microarray experiment.  Journal of the American Statistical
Association 2001, 96:1151-1160.

17. Newton MA, Noueiry A, Sarkar D, Ahlquist P: Detecting differen-
tial gene expression with a semiparametric hierarchical mix-
ture method.  Biostatistics 2004, 4:155-176.

18. Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS: Pre-
ferred analysis methods for Affymetrix GeneChips revealed

Additional file 1
Bayesian ODP R code. This file contains the R code to calculate the pos-
terior probability from the Bayesian model and the Bayesian ODP.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-5-S1.txt]

Additional file 2
List of selected DE genes under Scenario 1. This file contains the list of 
the DE genes, along with their true expression status, identified by the dif-
ferent methods from the Golden Spike dataset under Scenario 1 (exclud-
ing the 10144 non-spiked-in probsets).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-5-S2.xls]

Additional file 3
List of selected DE genes under Scenario 2. This file contains the list of 
the DE genes, along with their true expression status, identified by the dif-
ferent methods from the Golden Spike dataset under Scenario 2 (exclud-
ing the 2,535 equal fold-change probsets).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-5-S3.xls]
Page 14 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-5-S1.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-10-5-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-10-5-S3.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15618528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15618528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15618528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16529652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16529652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17177995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17177995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17177995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16928955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16928955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16928955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17429401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17429401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15693945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15693945


BMC Bioinformatics 2009, 10:5 http://www.biomedcentral.com/1471-2105/10/5
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

by a wholly defined control dataset.  Genome Biology 2005,
6(2):R16.

19. Dabney AR, Storey JD: A reanalysis of a published Affymetrix
GeneChip control dataset.  Genome Biology 2006, 7(3):401.

20. Irizarry RA, Cope LM, Wu Z: Feature-level exploration of a pub-
lished Affymetrix GeneChip control dataset.  Genome Biology
2006, 7(8):404.

21. Gaile DP, Miecznikowski JC: Putative null distributions corre-
sponding to tests of differential expression in the Golden
Spike dataset are intensity dependent.  BMC Genomics 2007,
8:105.

22. Pearson RD: A comprehensive re-analysis of the Golden Spike
data: Towards a benchmark for differential expression
methods.  BMC Bioinformatics 2008, 9:164.

23. Chen Z, McGee M, Liu Q, Scheuermann RH: A distribution free
summarization method for Affymetrix GeneChip arrays.
Bioinformatics 2007, 23(3):321-327.

24. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing.  Journal of
the Royal Statistical Society B 1995, 57:289-300.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15693945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16563185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16563185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16953902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16953902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17445265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17445265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17445265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18366762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18366762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18366762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148508
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	The Bayesian model
	The Bayesian ODP

	Results and discussion
	Simulation study
	Experimental datasets

	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

