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Abstract

In this paper, we obtain some new exponential inequalities for partial sums and their
finite maximum of acceptable random variables by the results of Sung et al.
(J. Korean Stat. Soc., 40, 109-114, 2011) and in different ways from theirs.
The inequalities we obtained improve the existing corresponding results and, in
some sense, are optimal. In addition, we introduce some concepts and examples of
widely acceptable random variables to extend our results mentioned above.
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1 Introduction
It is well known that the exponential inequality for the random variables is very useful

in several probabilistic derivations. Recently, Sung et al. [1] obtained an exponential

inequality for identically distributed and acceptable random variables, and their result

improved the corresponding ones of Kim and Kim [2], Nooghabi and Azarnoosh [3],

Sung [4], Xing [5], Xing et al. [6], and Xing and Yang [7].

Let {Xi : i ≥ 1} be a sequence of random variables defined on a fixed probability

space (Ω, F, P). We say that {Xi : i ≥ 1} are acceptable if there exists δ > 0, such that

for any real l satisfying | l | ≤ δ,

E exp

{
λ

n∑
i=1

Xi

}
≤

n∏
i=1

E exp{λXi}, for all n ≥ 1. (1:1)

The concept of acceptable random variables was firstly proposed by Giuliano Anto-

nini et al. [8], but the inequality (1.1) is required to hold for all l Î{-∞, ∞}. Sung et al.

[1] then introduced a weaker definition as above. This acceptable structure can reflect

not only some common negative dependence structures (see [9,10], and so on) but

also some other dependent structures. We will also extend the concept above in

Section 4.

The main results of Sung et al. [1] are the following.

Theorem 1.A Let {Xi : i ≥ 1} be a sequence of identically distributed and acceptable

random variables with E exp{δ | X1 |} < ∞ for some δ > 0, then for any 0 <ε ≤ Kδ,
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P

(∣∣∣∣∣
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ > nε

)
≤ 2 exp

{
−nε2

4K

}
, (1:2)

where K = 2(E|X1|4)
1
2 E exp{δ|X1|} .

Inspired by the above theorem, we present the following three problems.

Problem 1.1 Sung et al. [1] show that the upper bound of Theorem 1.A is less than

those of Kim and Kim [2], Nooghabi and Azarnoosch [3], Sung [4], Xing [5], Xing et

al. [6], and Xing and Yang [7], but they did not illustrate their upper bound is optimal

in some sense. Hence, we wonder whether there exists a upper bound, which is opti-

mal in some sense.

Problem 1.2 It is well known that the exponential inequality of the finite maximum

of partial sum max1≤k≤n
∑k

i=1(Xi − EXi) is more valuable than that of partial sum∑n
i=1(Xi − EXi) in many fields. Thus, we wonder whether there is a exponential

inequality of max1≤k≤n
∑k

i=1(Xi − EXi) , which is optimal in some sense.

Problem 1.3 For much weaker random variables than acceptable random variables,

we wonder whether there are also some results similar to that of acceptable random

variables.

This paper is organized as follows: in Section 2, we will state our main results, which

answer Problems 1.1 and 1.2 above positively; in Section 3, we will prove our results;

and in Section 4, we will discuss Problem 1.3.

2 Main results
For the sake of simplicity, we only prove the results of one-sided inequality, that is,

because we can achieve the corresponding results of two-sided inequality by using the

standard method, it is not to go into details. Firstly, we introduce some notions, nota-

tions, and some preparing results. It can be seen from the following paper that the

methods we used are different from that of the references mentioned above.

For a random variable X, we write δ0 = sup {l ≥ 0: E exp {l (X - EX)} < ∞},

Obviously, 0 ≤ δ0 ≤ ∞. Let {ai : i ≥ 1} be a sequence of positive numbers such that an
↑ ∞ as n ® ∞. If δ0 > 0, then for any fixed n ≥ 2, 1 ≤ k ≤ n and 0 <l <δ0, write

fk(λ) = fk(λ,n) ≡ λ − k
an

log E exp{λ(X − EX)}. (2:1)

We now propose a proposition that plays a key role for the main results of this

paper.

Proposition 2.1. Let X be non-degenerated random variable with δ0 > 0. Then, for

any fixed n ≥ 2, 1 ≤ k ≤ n, there exists a unique finite constant 0 <lk0 = lk0(n) ≤ δ0,

such that

fk(λk0) = max
λ∈[0,δ0]

fk(λ) > 0. (2:2)

Furthermore, we have

λk0 = min{δ0,λk1}, (2:3)
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where lk1 is the solution of the equation

E
(
X − EX − an

k

)
exp{λ(X − EX)} = 0;

if lk1 does not exist, define lk1 = ∞, then δ0 < ∞ and E exp {δ0X} < ∞. Finally, we

have

0 < λk0 ≤ λk−1,0 ≤ δ0, for all2 ≤ k ≤ n.

Remark 2.1. Since lk1 is also the solution of the Petrov equation

hk(λ) = hk(λ,n) ≡ d
dλ

E exp
{
λ

(
X − EX − an

k

)}
= E

(
X − EX − an

k

)
exp

{
λ

(
X − EX − an

k

)}
= 0,

so, we call lk1 is the Petrov-exponent of X − EX − an
k for 1 ≤ k ≤ n and n ≥ 2.

According to the above proposition, we obtain our first result for the partial sums∑n
i=1(Xi − EXi) for each fixed n ≥ 2, as Theorem 1.A.

Theorem 2.1. Let {X, Xi : i ≥ 1} be a sequence of identically distributed, non-degenerated,

and acceptable random variables for δ0 > 0, that is, (1.1) holds for any 0 ≤ l ≤ δ0. Assume

that {ai : i ≥ 1} is a sequence of positive real numbers such that an ↑ ∞ as n ® ∞. Then

there exists a unique finite positive constant lk0, which satisfies (2.2) and (2.3), and for

each fixed n ≥ 2 and 1 ≤ k ≤ n,

P

(
k∑
i=1

(Xi − EXi) > an

)
≤ exp{−anfk(λk0)} (2:4)

and

exp{−anfk(λk0)} = min
λ∈[0,δ0]

exp{−anfk(λ)}

= min
λ∈[0,δ0]

exp{−λan}(E exp{λ(X − EX)})n. (2:5)

Remark 2.2. Especially, if we take an = nε for any ε > 0 and k = n, then (2.4) will

change into

P

(
n∑
i=1

(Xi − EXi) > nε

)
≤ exp{−n(λn0ε − log E exp{λn0(X − EX)})}, (2:6)

where ln0 is respective of ε. We remark that our results remove the condition ε ≤ Kδ,

which is required in Theorem 1.A.

Furthermore, we give two propositions below to state the meanings of Theorems 2.1

and 2.2, respectively.

Proposition 2.2. Under the conditions of Theorem 1.A, we have λn0 �= ε
2K , and then

for each n ≥ 2,

exp{−n(λn0ε − log E exp{λn0(X − EX)})} < exp
{
nε2

4K

}
. (2:7)

Wang et al. Journal of Inequalities and Applications 2011, 2011:40
http://www.journalofinequalitiesandapplications.com/content/2011/1/40

Page 3 of 10



Proposition 2.3. Let X be random variable with positive δ0 and define a function g(l)
≡ E exp {l(X - EX)}. Then g is a strictly increasing function and g (l) > 1 for all l > 0.

Subsequently, we get an exponential inequality for max1≤k≤n
∑k

i=1(Xi − EXi).

Theorem 2.2. Let the conditions of Theorem 2.1 be true, then for each fixed n ≥ 2,

there exists a positive constant l0, such that ln0 ≤ l0 ≤ l10,

P

(
max
1≤k≤n

k∑
i=1

(Xi − EXi) > an

)
≤ bn(λ0) exp{−anfn(λ0)} (2:8)

and

bn(λ0) exp{−anfn(λ0)} = min
λ∈[0,δ0]

bn(λ) exp{−anfn(λ)}

= min
λ∈[0,δ0]

exp{−λan}
n∑

k=1

(E exp{λ(X − EX)})k,
(2:9)

where

bn(λ0) ≡ (E exp{λ0(X − EX)})n+1 − E exp{λ0(X − EX)}
(E exp{λ0(X − EX)} − 1)(E exp{λ0(X − EX)})n .

Remark 2.3. By Proposition 2.3, it follows that

0 < bn(λ0) ≤ E exp{λ0(X − EX)}
E exp{λ0(X − EX)} − 1

< ∞,

where the right expression can be irrespective of n.

3 Proofs of theorems and propositions
Proof of Proposition 2.1. For convenience, we set Y = X - EX, Yi = Xi - EXi, and 1 ≤ i

≤ n. For 0 ≤ l <δ0 and 1 ≤ k ≤ n, by the definition of δ0 and the non-degeneration of

Y, it is clear that fk(l) (see (2.1)) has arbitrary order continues derivatives, fk(0) = 0,

f ′
k(λ) = 1 − k

an

EY exp{λY}
E exp{λY} , f ′

k(0) = 1 > 0,

and

f
′′
k (λ) = − k

an

EY2 exp{λY}E exp{λY} − (EY exp{λY})2
(E exp{λY})2 ,

f
′′
k (0) = − k

an
EY2 < 0.

By Cauchy inequality and the non-degeneration of Y, we get

(EY exp{λY})2 =
(
EY exp

{
1
2

λY
}
exp

{
1
2

λY
})2

< EY2 exp{λY}E exp{λY},

which derives f
′′
k (λ) < 0 .

We can get from the above conclusions that f ′
k(λ) is strictly decreasing in [0, δ0).
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Next, we will divide two cases to discuss below.

Case 1: 0 <lk1 < ∞, which means that the equation f ′
k(λ) = 0 has a finite solution

lk1. Clearly, lk1 is unique and

f ′
k(λ) > 0 for 0 ≤ l ≤ lk1, and f ′

k(λ) < 0 for lk1 <l ≤ δ0 or lk1 = δ0.

Taking lk0 = lk1, obviously (2.2) holds, that is,

fk(λk0) = max
λ∈[0,δ0]

fk(λ) > 0.

Case 2: lk1 = ∞, which means that the equation f ′
k(λ) = 0 does not have finite solu-

tions. Then fk(l) strictly increases from 0 to fk(δ0) > 0. By lk1 = ∞, hk(0) < 0, and hk(∞)

= ∞, we have δ0 < ∞. Further, we have E exp {δ0X} < ∞, or else fk(δ0) = - ∞ < 0. Now

we take lk0 = δ0, it is obvious that (2.2) still holds.

Finally, we write s(λ) = EY exp{λY}
E exp{λY} on [0, δ0], then it is easy to find that

s(0) = 0, s′(λ) =
EY2 exp{λY}E exp{λY} − (EY exp{λY})2

(EY exp{λY})2 > 0.

Thus, s is a non-negative and strictly increasing function. So, from the identity

f ′
k(λk0) = 0, that is,

an
k

=
EY exp{λk0Y}
E exp{λk0Y} ,

we know that 0 <lk0≤ lk-1,0 ≤ δ0 for all 2 ≤ k ≤ n.

Proof of Theorem 2.1. As the proof of Proposition 2.1, we also set Y = X - EX, Yi =

Xi - EXi, and 1 ≤ i ≤ n. For each fixed n ≥ 2, 1 ≤ k ≤ n and any 0 <l <δ0, it holds that

P(
k∑
i=1

Yi > an) ≤ exp{−λan}E exp
{

λ

k∑
i=1

Yi

}

≤ exp{−λan}(E exp{λY})k

= exp
{
−an

(
λ − k

an
log E exp{λY}

)}
= exp{−anfk(λ)},

(3:1)

From (3.1) and Proposition 2.1, we have that there exists a unique 0 <lk0≤ δ0, such

that (2.2), (2.3), (2.4), and (2.5) hold.

Proof of Proposition 2.2. In the proof of Theorem 2.1 of Sung et al. [1], they ampli-

fied the inequality (3.1) by their Lemma 2.1, which is proved by using the Hölder

inequality, the Cr-inequality, and Jensen inequality, respectively. Similarly to Sung et al.

[1], we take λ = ε
2k and an = nε, since X is a non-degenerated random variable, then is

strictly amplified, and thus (2.7) holds.

Proof of Proposition 2.3. Write Y = X - EX and g(l) = E exp{lY}, l Î [0, δ0), thus

g(0) = 1, g′(λ) = EY exp{λY}, g′(0) = EY = 0

Wang et al. Journal of Inequalities and Applications 2011, 2011:40
http://www.journalofinequalitiesandapplications.com/content/2011/1/40

Page 5 of 10



and

g′′(λ) = EY2 exp{λY} > 0, g′′(0) = EY2 > 0.

Therefore, g’(l) is strictly increasing from 0. Combining g’(0) = 0 and g(0) = 1, we

have g’(l) > 0 and g(l) > 1, and thus g is a strictly increasing function and g(l) > 1 for

all l > 0.

Proof of Theorem 2.2. For every fixed n ≥ 2 and any 0 < l <δ, from the standard

method and Proposition 2.3, it follows that

P

(
max
1≤k≤n

k∑
i=1

Yi > an

)
≤

n∑
k=1

P

(
k∑
i=1

Yi > an

)

≤ exp{−λan}
n∑

k=1

(E exp{λY})k

= exp{−λan} (E exp{λY})n+1 − E exp{λY}
E exp{λY} − 1

= exp{−anfn(λ)} (E exp{λY})n+1 − E exp{λY}
(E exp{λY} − 1)(E exp{λY})n

≡ P(λ).

(3:2)

By (3.2), Proposition 2.1, and Theorem 2.1, we know that, when l Î [0, ln0], the
function P (l) is strictly decreasing; when l Î [ln1, δ0], the function P (l) is strictly

increasing. In addition, the function P (l) is a continuous function. Hence, there exists

some ln0 ≤ l0 ≤ l10, such that (2.9) holds.

Taking l = l0 in (3.2), we get (2.8).

4 Furthermore discussions
In this section, we will introduce the concept of widely acceptable random variables in

order to extend the results in the previous sections. It is easy to see that the family of

acceptable random variables is initiated on the basis of the properties of negatively

dependent random variables, and then is also one kind of families of negatively depen-

dent random variables. As everyone knows, in practice, there are also some positively

dependent random variables. Therefore, some researchers have been constructing

some structures that cover not only common negatively dependent random variables

but also positively dependent ones to extend the concept of negative dependence.

Wang et al. [11] introduced the concept of widely dependent random variables.

Say that the random variables {Xi : i ≥ 1} are widely upper orthant dependent

(WUOD), if there exists a finite real number sequence {gU(n): n ≥ 1}, such that for

each n ≥ 1 and for all xi Î (-∞, ∞), 1 ≤ i ≤ n,

P

(
n⋂
i=1

{Xi > xi}
)

≤ gU(n)
n∏
i=1

P(Xi > xi).

Say that the random variables {Xi : i ≥ 1} are widely lower orthant dependent

(WLOD), if there exists a finite real number sequence {gL(n): n ≥ 1}, such that for each

n ≥ 1 and for all xi Î (-∞, ∞), 1 ≤ i ≤ n,

Wang et al. Journal of Inequalities and Applications 2011, 2011:40
http://www.journalofinequalitiesandapplications.com/content/2011/1/40

Page 6 of 10



P

(
n⋂
i=1

{Xi ≤ xi}
)

≤ gL(n)
n∏
i=1

P(Xi ≤ xi).

If the r.v.s {Xi : i ≥ 1} are both WUOD and WLOD, we call the random variables are

widely orthant dependent(WOD).

If gU (n) = gL(n) = M (≥ 1), then the random variables are called extended negatively

upper dependent(ENUOD), extended negatively lower dependent(ENLOD), and

extended orthant dependent(ENOD), respectively (see [12]). Especially if M = 1, the

random variables are called negatively upper orthant dependent (NUOD), negatively

lower orthant dependent (NLOD), and negatively orthant dependent (NOD), respec-

tively (see, for example, [10,13,14]).

Wang et al. [11] also presented some properties and examples of widely dependent

random variables. Chen et al. [15] obtained the strong law of large numbers for END

random variables. Wang and Cheng [16] got some basic renewal theorems for WOD

random variables. During the references, Wang et al. [11] pointed out that if the r.v.s

{Xi : i ≥ 1} are identical distributed and WUOD random variables, then

E exp

{
λ

n∑
i=1

Xi

}
≤ gU(n)

n∏
i=1

E exp{λXi} for all n ≥ 1. (4:1)

Now, we naturally hope that the family of acceptable random variables can be

extended by (4.1).

Say that the random variables {Xi : i ≥ 1} are widely acceptable(WA) for δ0 > 0, if for

any real 0 <l ≤ δ0, there exist positive numbers g(n), n ≥ 1, such that

E exp

{
λ

n∑
i=1

Xi

}
≤ g(n)

n∏
i=1

E exp{λXi} for all n ≥ 1. (4:2)

Especially, if in (4.2), g(n) ≡ M (≥ 1), the r.v.s {Xi : i ≥ 1} are extended acceptable

(EA).

For WA random variables {Xi : i ≥ 1}, obviously, we can get the similar exponential

inequalities as that of Theorems 2.1 and 2.2 as long as we add a factor g(n) in the

right sides of (2.4) and (2.8). So, we dot not need to mention them one by one.

The following example constructed by Wang et al. [10] can illustrate that widely

acceptable random variables properly include acceptable random variables.

Example 4.1. Assume that the random vectors (X2i-1, X2i), and i ≥ 1 are independent,

and for each i ≥ 1, the random variables X2i-1 and X2i are dependent according to

Farlie-Gumbel-Morgenstern copula with the parameter θi Î [-1, 1],

Cθi(u, ν) = uν + θiuν(1 − u)(1 − ν), (u, ν) ∈ [0, 1]2,

which is absolutely continuous with density

cθ (u, ν) =
∂2Cθi(u, ν)

∂u∂θ

(see Example 3.12 of Nelsen [17]).

Denote the common distribution and density of {Xi : i ≥ 1} by F and f, respectively.

Hence, by Sklar’s theorem (see, for example, Chap. 2 of Nelsen [17]), for each i ≥ 1
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and any xi, yi Î (-∞, ∞), it holds that

F(x2i−1, x2i) = P(X2i−1 ≤ x2i−1,X2i ≤ x2i)

= Cθν
(F(x2i−1), F(x2i))

= F(x2i−1)F(x2i)(1 + θiF(x2i−1)F(x2i))

and

f (x2i−1, x2i) =
∂2F(x2i−1, x2i)

∂x2i−1∂x2i
= f (x2i−1, x2i)f (x2i)(1 + θi(1 − 2F(x2i−1)(1 − F(x2i))).

If E exp{lX1} < ∞, let a = E exp{lX1}, b =
∫ ∞
−∞ eλxF(x)dF(x) and c = (1 − 2b

a
)2 ,

then by simple calculation, we have

E exp{λ(X2i−1 + X2i)} = a2(1 + cθi).

Hence, for n = 2m, m ≥ 1,

E exp

{
λ

n∑
i=1

Xi

}
= an

n
2∏
i=1

(1 + cθi).
(4:3)

Write
g(n) =

∏n

2
i=1(1 + cθi)

, obviously the above random variables {Xi : i ≥ 1} are

widely acceptable, but are not acceptable when θi > 0, which is resulted from that tak-

ing different values for θi, i ≥ 1 can lead to the corresponding different values for g(n).

So, we first give the range of c.

Proposition 4.1 Let the random variable × be non-degenerated, and there exists

some l > 0, such that E exp{lX} <∞. Then b <a < 2b and 0 <c < 1, where a, b, c is as

above.

Proof. Firstly, we prove a < 2b. Let a random variable Y has distribution G satisfying

G(x) = F2 (x), x Î (-∞, ∞). Then, we obtain from integration by parts that

2b = 2

∞∫
−∞

eλyF(y)dF(y)

=

∞∫
−∞

eλydG(y)

= 1 + λ

∞∫
−∞

eλyF2(λ−1 log y)dy

(4:4)
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and

a = E exp{λX}

= 1 + λ

∞∫
0

eλyF(λ−1 log y)dy.
(4:5)

Hence, the non-degeneration of X, (4.4), and (4.5) can imply that a < 2b immedi-

ately. Subsequently, we show that b <a holds. In fact,

2b − a = λ

∞∫
0

eλy(F(λ−1 log y) − F2(λ−1 log y))dy

= λ

∞∫
0

eλyF(λ−1 log y)F(λ−1 log y)dy

≤ λ

∞∫
0

eλyF(λ−1 log y)dy < a.

Finally, by 0 < 2b - a <a, we get 0 <c < 1.

Now, we assume that θi =
1
i2
, 1 ≤ i ≤ m, , then M =

∑∞
i=1(1 +

1
i2
) < ∞ , and owing to

0 <c < 1, we have

g(n) =
m∏
i=1

(
1 +

c

i2

)
< M.

If taking θi =
1
i
, 1 ≤ i ≤ m , then

g(n)=
m∏
i=1

(
1 +

c
i

)
≤ m + 1

=
n
2
+ 1

If taking θi Î [-1, 0], then g(n) ≤ 1, that is, the r.v.s {Xi : i ≥ 1} are acceptable.

Obviously, if we take different values for θi, 1 ≤ i ≤ m, we will get different values for

g(n), and then different kinds of exponential inequalities are obtained, so we do not

mention them one by one.
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