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Abstract. We propose a Statistical-Mechanics inspired framework for
modeling economic systems. Each agent composing the economic sys-
tem is characterized by a few variables of distinct nature (e.g. saving
ratio, expectations, etc.). The agents interact locally by their individual
variables: for example, people working in the same office may influence
their peers’ expectations (optimism/pessimism are contagious) , while
people living in the same neighborhood may influence their peers’ sav-
ing patterns (stinginess/largeness are contagious). Thus, for each type of
variable there exists a different underlying social network, which we refer
to as a “layer”. Each layer connects the same set of agents by a different
set of links defining a different topology. In different layers, the nature
of the variables and their dynamics may be different (Ising, Heisenberg,
matrix models, etc). The different variables belonging to the same agent
interact (the level of optimism of an agent may influence its saving level),
thus coupling the various layers. We present a simple instance of such
a network, where a one-dimensional Ising chain (representing the inter-
action between the optimist-pessimist expectations) is coupled through
a random site-to-site mapping to a one-dimensional generalized Blume-
Capel chain (representing the dynamics of the agents’ saving ratios). In
the absence of coupling between the layers, the one-dimensional systems
describing respectively the expectations and the saving ratios do not fea-
ture any ordered phase (herding). Yet, such a herding phase emerges in
the coupled system, highlighting the non-trivial nature of the present
framework.
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1 Introduction

Statistical Mechanics provides a universal framework to model and analyze
large systems with interacting components, even beyond the traditional realm
of physics. Many techniques of Statistical Mechanics are applied today in di-
verse areas of scientific research, such as biology, sociology and economics[1]. A
decade ago, the economist Jean-Michel Grandmont[2] coined the term Statistical

Economics, pointing to the analogy between large economic systems and large
physical systems, and suggested that large economic systems can be appropri-
ately modeled using techniques developed in Statistical Mechanics[3].

For Statistical Economics to benefit from the vast knowledge that accumu-
lated in Statistical Mechanics, it is crucial to establish which structures are
shared by physical and economic systems, and which are essentially different.
Economic systems, like physical systems, involve local interactions of both at-
tractive and repulsive type. To formalize such interactions, a Boltzmann-Gibbs
measure derived from a Hamiltonian function is an appropriate formal object.
However, a proper interpretation of the Hamiltonian is still an open issue in
economics. While in the present paper we work within the Hamiltonian formal-
ism, the ideas herein apply also to dynamical systems[4,5] that do not admit an
energy function, i.e. the interactions may be asymmetric.

The locality of the interactions raises the issue of the structure of the under-
lying network. In physics, a regular lattice is often an adequate approximation
of the graph structure underlying the interaction in the real world. In contrast,
economic dynamics involve social networks, for which a regular graph topology
is usually a very rough and often unjustifiable approximation. Scale-free graphs
are presumably more appropriate, yet empirical evidence on the actual struc-
ture of communication and social networks is only beginning to emerge[6]. For
theoretical and empirical results in this emerging field we refer the reader to
[7,8].

Lately agent-based economic models have been introduced that take into
account the inhomogeneous character of the various agent variables . However,
the connections/ interactions between the agents were usually represented by a
single network. In the present paper we address a different aspect of economic
systems: their multi-layered structure (Figure 1).

Isolating the economic interactions of one type (e.g. wealth exchange) from
the wider economic context of the agents’ interactions (e.g. exchange of convic-
tions, preferences, expectations, risk attitudes, assets etc.) is often unrealistic.
In general, individual economic decisions result from an interplay of such dis-
tinct variables. In fact, it is a pillar of classical economics that diverse individual
variables interrelatedly determine decisions. Yet, such systems have found so far
little attention in Statistical Economics models1.

In the present paper we aim at formulating a general framework for modeling
economic systems, where each agent is characterized by multiple variables of

1 Multi-layered models of a different nature were considered in other areas of physics-
inspired research, like neural networks[9] and opinion formation[10].



distinct nature. Each type of variable constitutes a layer with a particular graph
structure, with only the set of nodes (agents) common to all layers. In addition
to local interaction of neighboring variables within a layer, variables associated
with the same agent in different layers interact. This introduces coupling between
the layers, which qualitatively changes the dynamical pattern of every layer. We
call a system with the above properties a “Solomon Network” (SN) 2.

At first glance, the dynamics of each layer in a SN may look similar to a sin-
gle variable system in some external field provided by the rest of the variables.
Yet, SN models are unique in the sense that the interaction between layers is bi-
directional, allowing for feedback between each layer and its “external” field. The
dramatic effect that this feedback can have on the system behavior is demon-
strated already at the level of the simplest model described below. This is a step
toward substituting the usual closed system and stationary/quenched environ-
ment paradigm with economics models that provide a wider and interactive (and
reactive) representation of the environment.

The topology of the coupling between the layers in a SN is formally char-
acterized by the mapping between the nodes of the different layers. In physical
systems the graph structure is often formalizing physical proximity, and therefore
if a physical system would be under investigation, we would expect such a map-
ping to be isometric (preserving distance). In contrast, social networks formalize
communication links rather than physical proximity. Therefore, preserving dis-
tance is not a natural property of a mapping between different social networks.
It may well be the case that an agent’s reference group for a certain social or
economic interaction is entirely different from her reference group for another
type of interaction. For example, we may think of a scenario where, for certain
people, consumption and saving patterns are formed by comparing themselves to
people who live in their residential neighborhood, while their expectation of the
general state of the market is formed through discussions with their colleagues at
work. These two reference groups may be totally distinct, or have any degree of
correlation (overlap). In general, the graph structures associated with different
layers may differ: for example, a random graph may be coupled with a regular
graph. Moreover, one may extend the above definition of SN to include cases in
which the site correspondence between the layers is not one-to-one (e.g. people
that do not go to work, or people who work in more then one place).

As a first step toward an understanding of such models and the properties of
corresponding economic systems, we formulate in Section 2 a simple model with
only two layers. In section 3 we discuss the theoretically expected properties of
the model and in section 4 we study the model by using Monte Carlo simula-
tions. We return to the general paradigm and discuss its possible ramifications
in Section 5.

2 This nomenclature has been introduced by Dietrich Stauffer with reference to the
biblical dilemma of an agent being “claimed” by (i.e. is part of) different social
networks.



2 The model

Let A denote a set consisting of N economic agents. Each agent i ∈ A is char-
acterized by two random variables. First, the variable Xi represents the agent’s
saving ratio, i.e. the proportion of the individual budget which is saved, rather
than consumed. Each variable Xi takes values in the set Sx = {1, 2, . . . , Q} with
some natural number Q. To interpret Xi as a savings ratio, one considers 1

Q
Xi

rather than Xi.
Second, the variable Sj represents the agent’s expectation about the prospects

of the economy. For simplicity, we allow only two individual states, called “op-
timism” and “pessimism”. Accordingly, each variable Sj takes values in the set
Ss = {−1, 1}, and we arbitrarily interpret 1 as “optimism”, and −1 as “pes-
simism”.

Thus we define two layers for the model consisting respectively of the vari-
ables (Xi)i∈A and (Sj)j∈A. Both layers are modeled as spin systems with nearest-
neighbor interaction, with respect to the graph structure underlying each layer.
In addition, there is interaction between those pairs of variables from differ-
ent layers, which correspond to the same agent. Thereby the two spin-fields are
coupled.

In the present simple SN model, we confine ourselves to one-dimensional
layers with periodic boundary conditions (chains). Thus, the agent i’s neighbors
in the X-layer are (i + 1)modN and (i − 1)modN . The neighborhood relation
on the S-layer is specified through a permutation r of the elements of A. More
precisely, the agent i is represented on the layer S by the site r(i). Accordingly,
the two variables associated with agent i ∈ A are Xi and Sr(i). The neighbors
of r(i) in S are (r(i) + 1)modN and (r(i)− 1)modN . Thus the agent i interacts
directly with four agents: i+1, i− 1, r−1(r(i) + 1), r−1(r(i)− 1). Note that the
interaction with the first pair is of a different nature (and in fact parametrized
by different variables) than the interaction with the other pair. Note also that in
this model we have chosen a one-to-one, totally random correspondence between
the layers.

We denote by S = {−1, 1} × {1, 2, . . . , Q} the individual spin-space of the
composite system. A configuration assigns to each agent i ∈ A values from S. The
configuration space, denoted as usual by SA, consists of (2Q)N configurations.

The dynamics is defined by introducing the Hamiltonian function H that
assigns to each configuration ω ∈ SA some real number H(ω), such that the
probability of ω is given by the Boltzmann distribution associated with H

Pr(ω) = 1/ZT exp(−H(ω)/T ). (1)

with T denoting the temperature parameter of the Boltzmann distribution, and
ZT being the normalizing constant given by ZT =

∑
ω∈SA exp(−H(ω)/T ). The

ratio H/T measures the relative strength of the social interaction of the system
against other random perturbations. For T = 0 the peer pressure is absolute,
and basically the individual has no freedom. for T = ∞, there is no influence
between any of the variables and all states of the system are equally probable.



In our model, there are three components of interaction: 1) the nearest-
neighbor interaction among different agents on the X-layer, 2) the nearest-
neighbor interaction among different agents on the S-layer, and 3) interaction
between the variables corresponding to the same agent in the two layers.

The term in the Hamiltonian representing the interaction within the X-layer
is specified as

HX(ω) = Jx
∑

<i,j>X

(Xi(ω)−Xj(ω))
2. (2)

with < i, j >X denoting the summation over pairs of nearest neighbors accord-
ing to the X-layer topology. The basic economic content of this specification is
the notion of herding behavior [11,12]. That notion stands in economics for a
variety of effects where market actors, such as stock traders, consumers, man-
agers etc., tend to align their opinions and/or actions with those in their social
neighborhood. In our case, if the current state Xi of the agent i is very different
from the typical opinions Xj of its neighbors j, Eq. 2 indicates a strong energy
preference for the next moves to bring Xi and Xj closer. This specification is in
accordance with experimental results from social psychology [6,13,14] suggesting
that the likelihood of realignment of one’s own actions and beliefs (i.e. the saving
behavior, in the present model) with those observed in the reference group, will
increase with the perceived difference in those actions and beliefs. In physics, a
Hamiltonian of the above type have been used, for instance, in the Blume-Capel
model[15,16].

A similar herding behavior is observed for the agents’ expectations: the ex-
pectations of the individuals, with respect to the future market behavior, will
tend to conform with the opinion of their social surrounding. Thus the interac-
tion between the agents’ expectations has a similar form as Eq. 2. Since we use
a rougher characterization of expectations (−1 corresponds to a pessimist view,
and +1 corresponds to an optimist view), the interaction on the S-layer reduces
to the classical Ising-model Hamiltonian:

HS(ω) = Js
∑

<i,j>S

(Si(ω)− Sj(ω))
2. (3)

If Q = 2, the X-layer is also an Ising chain, and the model reduces to a classical
Ising model on a peculiar SN graph structure. This special case was discussed
in [17]. However, a key property of the SN framework is, in our view, the dis-
tinct character of the respective layers, both in terms of the spin-space and the
underlying graph structure.

To complete the definition of the system, one has to specify the interaction
between variables corresponding to the same agent in the two layers, i.e. Xi and
Sr(i). This interaction expresses the prominent economic behavioral regularity
that an optimistic agent is likely to save less than a pessimistic agent[18]. Thus
we introduce a term that couples the variables corresponding to the same agent:

HC(ω) = Jc
∑

i

(Xi(ω)− C(Sr(i)(ω)))
2. (4)



The function C(·) goes from Ss to the real numbers, with C(−1) > C(1). Obvi-
ously, when Jc = 0, the system breaks down to two independent chains.

Finally, the Hamiltonian of the system is obtained by adding the three com-
ponents:

H(ω) = HX(ω) +HS(ω) +HC(ω). (5)

Since (cf. Eq. 1) the parameters of the model appear dynamically in the combi-
nation H/T , we will often consider the coupling parameters J as constants and
study the behavior of the system under the variation of T . Thus in the following
we use the parameter β = 1/T as a measure of interaction-to-noise ratio in the
economic system.

In the next two sections we will discuss this system from the theoretical and
respectively simulation point of view.

3 Discussion of the Expected Model Properties

For complete characterization of the phases of the model, one may have to per-
form numerical simulations of the type we present in the next section. However,
the experience accumulated in the last 30 years in Statistical Mechanics can be
used to extract quite a number of predictions and intuitions about the model,
and especially its herding (order-disorder transition) properties.

While the SN model was not studied before, the properties of each layer
in separate are covered by rigorous general theorems [19]. To understand the
import of the theorems let us start with the behavior of the decoupled layers at
T=0. In this case, both layers are in a “ground state”, i.e. the state of minimal
energy.

The case of the S layer is easier to analyze. The minimal energy is realized
for Si = S0 ∀i, with S0 = ±1. In general, for dimensions larger then one, there
exists a critical value T = Tc such that for the entire range T < Tc the system
remains ordered. Indeed, for Tc > T > 0, the configurations are not exactly
uniform, but the Si’s across the entire system remain “herded” around one of
the values +1 or −1. The degree of herding of each configuration ω is measured
by the magnetization M defined as the average of the Si(ω) over the entire range
i ∈ A:

M =
∑

i

Si/N (6)

The transition at Tc between the ordered (M 6= 0) and disordered (M = 0)
phases is called , following the Statistical Mechanics conventions, a Phase Tran-
sition. In the present article we will use interchangeably the words “magnetiza-
tion” and “herding” to denote M .

Interestingly enough, in one-dimensional systems the order-disorder phase
transition is absent (Tc = 0)[19]. Thus, theory predicts the absence of herd-
ing in the absence of coupling between the “expectations” layer and the “sav-
ings/consumption” layer of our model. In fact, rigorous theorems insure that



ANY system with local interactions in one dimension is in the disordered phase
for any T > 0. Thus, even the coupled system will not present herding, as
long as the two layers have a roughly similar metric (i.e. |r(i) − i| << N ∀i).
Only when the two layers have significantly different neighborhood assignments
a herding phase can emerge at finite T . This is because such a system would not
be amenable to the format of a one-dimensional model with local interactions.
Moreover, the transition between the herding and disordered phase will have a
character that is not necessarily the one characteristic to any of the higher di-
mension Ising (or Blume -Capel) models. The Mote Carlo simulations we report
in the next section confirm these predictions.

In higher dimensions each of the layers, when taken independently, may dis-
play quite different critical parameters TX

c 6= T S
c . As one brings the layers “in

contact” by making them interact, the composite system might preserve two
independent phase transitions (if the inter-layer interaction is weak) or change
its behavior qualitatively.

One may ask how relevant is the phase transition analysis for an actual
system. After all, it is a priori probable that the parameters of the system realized
in nature are far from the critical ones. Thus the system would spend its entire
life span in just one phase and ignore the other. The answer is that it falls upon
the shoulders of the modeler to identify the interactions and parameters that
DO matter qualitatively in the real system. Modeling interactions that do not
matter is of course useless (nobody would model the current financial markets
in terms of the issue of whether the dollar is or not going to be devaluated by
100% during the current trading day or whether the side of the road on which
the cars drive would spontaneously flip). Thus pessimism and optimism, and
in general the values that the dynamical variables can take, should be and are
usually chosen such as to reflect operative possibilities so that the system may
very well be in either phase.

Given that a phase transition (say herding-disorder) exists, one may won-
der whether establishing its type (universality class) in detail is of interest in
economics. The difference between a discontinuous (first order) phase transition
and a continuous one may give precious indications on whether to expect large
fluctuations or rather a plain collapse. Even if the transition is continuous, it is
often important to know which of the layers has the dominating role in triggering
it.

4 Monte Carlo Study of the Model

We simulated the above-defined model using standard Monte Carlo simulation
methods[20]. In particular, we update the agents’ state in a random order. Each
Monte Carlo Step (MCS) is composed of N such random selections. In each
computational step, after an agent i is chosen at random, we run a Heat-Bath
algorithm [21] to generate the next state. The new values for the selected Xi and
Si are sampled according to the Boltzmann distribution (Eq. 1) with respect to
the potentialH (cf. Eq. 5): given a particular configuration of the system ω ∈ SA,



let us denote ωi
x,s the configuration of the system which is identical to ω, except

for the variables associated with agent i, where Xi = x and Sr(i) = s. The
probability to move from ω to ωx,s is given by the following equation:

P (x, s) = 1/Zi
T exp(−H(ωi

x,s)/T ) (7)

where Zi
T =

∑
(x,s)∈S

exp(−H(ωi
x,s)/T ) i.e. the sum over all possible values for

Xi and Sr(i).
In the present investigation, we simulated a system with N = 106 agents and

Q = 10 saving ratios. Our simulations around the Tc consisted of 6.4 ∗ 105 MCS,
and the results were averaged over the last 3.2 ∗ 105 MCS. Less iterations were
needed for the T ranges outside the critical slowing-down zone, where 2 ∗ 104

MCS were sufficient, and the results were averaged over the last 104 MCS in
that case. Unless stated otherwise, simulations were run with Js = Jx = Jc =

1
3 ,

C(−1) = 8 and C(1) = 3. The initial conditions were set to either the ordered
configuration (Sj = −1 and Xi = 8) or to a totally random one. We obtained the
randomly generated permutations r by mapping every X-layer site to a S-layer
site chosen from the entire lattice with equal probability.

We found a phase transition occurring at a critical value of approximately
Tc = 2.79. Both layers become ordered below Tc. Figures 2 and 3 depict the
herding of each of the two layer as a function of T . The functional dependence
of the herding M on T close to Tc appears to be: (cf. Figures 2b and 3b)

M ∝ 1/log(Tc − T ). (8)

In contrast, [17] measured the critical exponent β of the SN model with two Ising
layers to be 1/2 (i.e. in the Ising universality class). Therefore this feature of the
model is attributed to the coupling of two layers carrying different dynamics,
and not merely a result of the particular topology.

The two ordered states (M < 0 and M > 0) for T < Tc can be called
“pessimistic economy” and “optimistic economy” respectively. The transition
between them is a first order one similar to the transition when crossing the
line of zero magnetic field H = 0 below the critical Ising temperature. Thus our
model is capable of capturing empirical results describing dramatic swings in the
market mood[22]. Moreover the model predicts that in the herding phase, the
transition between an optimistic and pessimistic mood in the S-layer induces a
transition between the “saving” and “spending” modes in the X-layer.

A variable of major interest for economics is the empirical distribution of
the X-layer, since it characterizes the aggregate saving in the economy. Figure
4 depict empirical distributions of the X-layer at different T ’s. The distribution
is symmetric above Tc, i.e. in the disordered state. Below Tc, the distribution
is skewed, reflecting symmetry breaking in the herded state. If C(−1) and C(1)
are further apart, the empirical distribution of the X-layer for T > Tc becomes
bimodal (Figure 5).

In accordance with the theoretical prediction, no phase transition was found
in simulations where r(·) was the identity permutation (results not shown), since
the system is essentially one-dimensional. Also, when the layers are defined on



similar lattices (as is the case in our simulations), one may construct the r-
transformation to be bound (i.e. |r(i) − i| < C0 ∀i). In this case as well, no
ordered phase emerges (results not shown). According to the theory, the ordered
phase shrinks to T = 0 as one lowers Jc → 0 (Figure 6).

In order to connect the model to the actual economic reality, one can calibrate
the model by comparing it to empirically measurable data. In particular one can
measure the size of the various groups as defined by their expectations and saving
patterns. From this, one can infer by inverse engineering the realistic values for
the coupling constants in the model. We studied the relation between the sizes
of the groups and the values of the J ’s as described below. In the “pessimistic”
phase, the agents i ∈ A with sr(i) = −1 and xi ∈ {6, . . . , 10} constitutes the
majority. In contrast, we can arbitrarily define three different minority groups.
First, the set of agents with sr(i) = 1 and xi ∈ {6, . . . , 10} is called S-minority;
second, the set of agents with sr(i) = −1 and xi ∈ {1, . . . , 5} is calledX-minority;
and the set of agents with sr(i) = 1 and xi ∈ {1, . . . , 5} is called SX-minority.
The values chosen for the coupling constants J determine the balance between
the different minority groups. Figure 7 shows the distribution of the different
minority groups for various ratios of the interaction constants. If a certain inter-
action constant increases, the proportion of the corresponding minority group
will decline for every T < Tc. For example, when Js = 0.6 and Jx = 0.2, the
X-minority group is downsized considerably (Figure 7). This is because every
agent “prefers” conforming to its neighbors on the S-layer (i.e. having the same
S value), even at the “price” of non-conformity with its neighbors on the X-layer
(i.e. having a different X value). Also, this figure shows certain symmetry of the
J’s. Both layers respond equally to increased preference, at least in the aspect of
minority ratios - the same preference imbalance results in the same bias in the
distribution between minority groups.

5 Conclusions and Outlook

In the present paper we have presented one of the simplest instances of an
application of the SN framework to economic systems modeling. Already at this
level one obtains interesting results, underlying the importance of the coupling
of the various types of economic variables in determining the order-disorder
dynamics of the global system.

Using representative agents, population averages or differential equations
governing the global (macro-economic) system variables, one might have guessed
that by coupling weakly two types of economic variables that do not present
herding the resulting system will be in the disordered phase, i.e. the coupled
system would behave somewhat as the average of the respective behaviors of its
components. Instead, using theoretical and simulation tools adapted from Statis-
tical Mechanics one finds that the coupling of two disordered economic variables
has a dramatic herding effect on both variables. This shows the importance of
the further study of SN models in uncovering the subtle effects of feedback in
systems with multiple economic variables.



The study of SN models can be developed in quite a few directions. First, in-
stead of the completely random mapping r(i) between the positions of the nodes
in different layers, one may consider less extreme alternatives: after all, there
is often some correlation between the work place of people and their residence
districts. For instance, one may consider mappings in which for a significant
number of of i’s one has r(i) = i, or mappings which preserve the topology of
the neighborhoods but not their metric. This might elucidate which properties of
the SN model can be traced to the mere coupling between layers (and thus pos-
sibly detectable by standard macro-economic methods), and which are a result
of the particular inter-layer projection afforded by the SN framework.

Second, one should consider inhomogeneous layers, e.g. scale-free or small-
world, and study projections r(i) of different tyes (e.g. preserving rank or not
etc.). Of course the various layers may differ in their properties, such as their
scaling exponent, clustering coefficient or K-core structure[23].

The SN modeling framework can also be extended to include global feedback
schemes, which are particularly relevant in economic applications[24]. We intend
to pursue this direction of research elsewhere[25].

To make contact with reality, one should find and use the parameter values
that represent faithfully and realistically the empirics of the modeled economic
phenomenon. For example, by looking at relative sizes of the herding groups with
respect to various variables, one may receive hints as to the relative strength
of the couplings governing each variable. This would require the use of cross-
correlational micro-data. Such data exists, for instance, for savings and consumer
confidence[26].

In summary, we believe that the framework of Solomon Networks addresses
a key property of large economic systems - the cross-interaction between the
dynamics of economic variables of different types. Further investigation of such
models may shed light on the mechanisms governing economic dynamics, and
increase our understanding of the complex system called Economy.
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Fig. 1. A schematic representation of the Solomon Network architecture. Each
agent is represented by two variables, one on each layer, connected by a curved
line, while thick lines represent nearest-neighbor relations on each layer. Not all
the intra-layer neighbors of the agents are depicted. Two elements are of special
interest: the variables on each layer are of a different type, and the neighbors of
an agent on one layer are not her neighbors on the other layer.
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Fig. 2. Herding of the expectations as a function of T. Figure 2a dispalys the
main feature of the model: as opposed to the behavior of the separate expec-
tations and savings layers, the composite system present 2 distinct phases: one
without herding M = 0 for T > Tc and one with M > 0 for T < Tc Figure
2b demonstartes the dramatic nature of the vanishing of the herding M of the
expectations as one approches Tc by showing that M ∝ 1/log(Tc − T ), i.e. all
the derivatives are infinite at the vanishing point.
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Fig. 3. Similar results as in Figure 2, this time for the herding of the savings
ratios. SinceXi ranges between 1 and 10, 5.5 is the average value in the unordered
phase.
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Fig. 4. Empirical distribution of individual saving ratios (Xi) at different values
of T. Figure 4a depicts the distribution of Xi’s at various T ’s in the non-herding
phase. At T = ∞, the distribution is uniform (not shown). Note how all distri-
butions are symmetric in the non-herding phase. Figure 4b depicts the empirical
distribution of Xi at various values of T in the herding phase. In the particular
shown case, the herding pattern is in the“saving” mode and the distribution is
skewed towards high Xi values. Not shown, is the corresponding distribution of
the S-layer which was in the herding “pessimistic” phase.
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Fig. 5. Empirical distribution of individual savings (Xi) in the unordered phase
for different values of C(·). If C(1) and C(−1) are far enough from each other,
a bimodal distribution emerges, since most Xi are in correlation with Sr(i), and
the S variables are distributed equally between 1 and -1 at the unordered phase.
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Fig. 6. Dependence of the Tc on Jc. Jx and Js are both held fixed at a value
of 1

3 . As Jc vanishes the system effectively decouples into two independent one-
dimensional chains, and Tc approaches 0.
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Fig. 7. Comparing ratios of various minority groups, out of the total number
of agents not in the majority group, at different values of coupling parameters.
Note that for each set of bars, the ratios sum to 1. The effect of increasing the
relative importance of one layer over the other is symmetric. When Jx = Js, the
minority groups are symmetrical independently of Jc.
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