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Abstract

Background: One of the fundamental problems in time course gene expression data analysis is to identify genes
associated with a biological process or a particular stimulus of interest, like a treatment or virus infection. Most of the
existing methods for this problem are designed for data with longitudinal replicates. But in reality, many time course
gene experiments have no replicates or only have a small number of independent replicates.

Results: We focus on the case without replicates and propose a new method for identifying differentially expressed
genes by incorporating the functional principal component analysis (FPCA) into a hypothesis testing framework. The
data-driven eigenfunctions allow a flexible and parsimonious representation of time course gene expression
trajectories, leaving more degrees of freedom for the inference compared to that using a prespecified basis. Moreover,
the information of all genes is borrowed for individual gene inferences.

Conclusion: The proposed approach turns out to be more powerful in identifying time course differentially
expressed genes compared to the existing methods. The improved performance is demonstrated through simulation
studies and a real data application to the Saccharomyces cerevisiae cell cycle data.

Keywords: Differentially expressed genes, Functional data analysis, Multiple group test, One group test, Time course
gene expression, Yeast cell cycle

Background
Time course microarray and RNA-seq experiments are
increasingly used to study biological phenomena that
evolve in a temporal fashion. Unlike the static experiment
which captures only a snapshot of the gene expression,
the time course experiment monitors the gene expres-
sion levels over several time points in a biological process,
allowing investigators to study dynamic behaviors of the
genes. One goal of such experiments is to identify genes
associated with a biological process of interest or a partic-
ular stimulus, like a therapeutic treatment or virus infec-
tion. The differentially expressed genes can be defined as
genes with expressions changed significantly with respect
to time or across multiple conditions.
The time course gene expression data typically exhibit

features such as high dimensionality, short time course,
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few or no replicates, missing values, large measurement
errors, correlations between observations over time, etc.
Many of the multivariate techniques for analyzing such
data, for example, SAM [1,2], ANOVA [3,4] and empiri-
cal Bayes [5], suffer from serious limitations when facing
missing data or non-uniformly sampled data. They also
fail to account for correlations between measurements
from the same gene and do not facilitate the removal of
noise from the measured data. In addition, the timing
information of when the measurements are taken is not
utilized and the inherent temporal structure of the time
course data is ignored. A hidden Markov model has been
proposed by [6] and [7], where the observed gene profiles
are considered to be influenced by an underlying Markov
process. The computation of this model involves a large
number of parameters, which can be difficult if there are
no replicated data, and it can not be applied if the obser-
vation time points are distinct for different experimental
groups.
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Functional data analysis approaches view the expression
profile of each gene as a smooth function of time, and the
time course measurements are collected as discrete obser-
vations from the function that are contaminated by noisy
signals [8,9]. A key step is to create an estimate of the
gene expression curve from the noisy functional data and
this usually involves representing the expression curve as
a linear combination of a finite number of basis functions,
such as polynomials [10] and B-splines [11-13]. Another
popular approach for representing functional curves is the
Functional Principal Component Analysis (FPCA) [14,15].
In the FPCA model, the basis functions are estimated
from the observed data and the data-adaptive basis has
the favorable property to flexibly characterize the major
modes of variation in the data. So fewer number of basis
functions are needed to capture the shape of gene expres-
sion patterns than that using the pre-specified basis.
Many of the existing functional methods are designed

for time course data with longitudinal replicates. [13]
used a functional hierarchical model and empirical Bayes
techniques to determine differentially expressed genes,
but the estimates of the model parameters can be very
unstable if the number of replicates is small. [16] pro-
posed a functional ANOVA model and [14] adopted the
FPCA model for identifying differentially expressed genes
across two conditions. In both methods, the model is
fitted for one gene at a time to estimate the gene-specific
group mean and the covariance structure, which is com-
putationally intensive and may result in overfitted models
for a small sample size. [15] adopted a similar approach as
[13] to impose a mixture distribution on the gene-specific
variation and employed an indicator to reflect whether
a gene is differentially expressed. All of these methods
require longitudinal replicates in data and only apply to
two group comparisons.
Time course data with longitudinal replicates are costly

and rather rare in reality. Many of the published time
course data have no replicates or only a small number
of independent replicates [17-19]. The EDGE method
proposed by [12] is a comprehensive approach that is
suitable for data with or without replicate, and for both
single group and multiple group tests. It represented gene
expression trajectories using natural cubic splines and
then compared the goodness-of-fit of the model under
the null hypothesis to that under the alternative hypoth-
esis. The null distribution of test statistics was approxi-
mated by bootstrap. [20] recently extended this method
under a permutation-based multiple testing framework.
Specifically for time course data without replicate, [21]
developed a statistics to measure the signal-to-noise ratio
by comparing the energies of the smoothing convolution
and differential convolution of the expression profiles. A
common problem to these existing methods is that the
test statistics are constructed for each gene separately. So

they may not be powerful enough to identify differen-
tially expressed genes for short time series data and data
without replicates.
In this work, we propose a unified approach to model

the gene profiles using the techniques of FPCA, and to
identify differentially expressed genes in both single group
test and multiple group test. Our methodology is moti-
vated by the gene expression data without replicate, so we
will focus on this case in this paper, although our method
can also be easily adapted to accommodate data with
replicates. We argue that our method can improve the
power in identifying differentially expressed genes com-
pared to existing methods. First, using the eigen-basis
enables a parsimonious modeling of the gene expression
curves, so we have more degrees of freedom for the infer-
ence than that using a pre-specified basis. Moreover, we
propose to estimate the expression curve of a gene by bor-
rowing strength across all the genes, which leads to amore
powerful inference than that using the information of one
gene only.
The remainder of the paper is organized as follows. We

first describe the FPCA model for representing the gene
expression curves and then elaborate a hypothesis testing
method based on random permutations to identify differ-
entially expressed genes in both single group and multiple
group scenarios. The proposed method is compared with
several existing methods via the analysis of the Saccha-
romyces cerevisiae cell cycle data from [17] and simulation
studies. Lastly, we summarize the proposed method and
discuss possible extensions.

Methods
FPCA for time course gene expression data
We adopt the point of view in functional data analysis
to consider the time course gene expression curves as a
sample of random functions. We further assume that the
expression profile X(t) of a single gene is a smooth func-
tion in the time interval [ a, b], with mean function μ(t) =
E(X(t)) and covariance functionG(s, t) = cov(X(s),X(t)).
Under mild conditions, we can assume that X possesses
Karhunen-Loéve representation [22] with representation

X(t) = μ(t) +
∞∑

l=1
ξlφl(t), (1)

where φl are sequences of orthonormal eigenfunctions
with non-increasing eigenvalues λl, satisfying

∑
l λl <

∞ and G(s, t) = ∑
l=1 λlφl(s)φl(t). These eigenfunc-

tions reflect the direction of major shape deviations from
the mean function and the random coefficient ξl, often
referred to as the functional principal component (FPC)
score, indicates how much a gene deviates from the mean
function in the direction of φl.
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The observed gene expression data are assumed to be
discrete observations from the true expression curves
which are further disrupted by noisy signals. For conve-
nience of presentation, we assume that there are no repli-
cates. The model for the observed data can be written as

Yijk =Xij(tijk)+εijk , i=1, . . . , n, j=1, . . . , J , k = 1, . . . ,Kij,
(2)

where n is the number of genes, J is the number of exper-
imental groups, and Kij is the number of sampling time
points for gene i in the j-th experimental group. The
noises εijk are assumed to be i.i.d. random variables with
mean 0 and variance σ 2. In this paper, we adopt the PACE
method – principal component analysis through con-
ditional expectation proposed by [23] to estimate X̂ij(t)
from the observed noisy data. This approach borrows
information across all the genes to predict individual
expression curves and is more efficient than the gene-
specific smoothing method when dealing with thousands
of genes simultaneously.
In real data analysis, some genes may share similar

expression patterns but with dramatically different mag-
nitude levels, for example, genes SUR7 and SPS4 in the
yeast cell cycle data shown in Figure 1. Using model (1),
this magnitude difference will be modeled as the random
variation around the population mean μ(t), which is not
efficient, as the magnitude difference may obscure some
other interesting variations. So we first subtract the mean
expression of each gene from the observed data and apply
FPCA to the centered data. The empirical covariances are
calculated from the aggregated data of all genes as

Cj(tk , tl) = 1
n

n∑

i=1
(Yijk − μ̂ij)(Yijl − μ̂ij), (3)

where μ̂ij = ∑Kij
k=1 Yijk/Kij. We then obtain the esti-

mate of the covariance function G(s, t) by applying two-
dimensional local linear smoothers to (3). Note that
the diagonal elements Cj(tk , tk) should not be used in
estimating G(s, t) because they are contaminated by the
noise signal. When replicates are present, we can apply
the above procedure to the averaged expression data
Ȳijk = 1

Mj

∑
m Yijkm, where Mj is the number of replicates

for group j.
The eigenfunctions and eigenvalues are estimated by

numerical spectral decomposition of Ĝ(s, t) for a suitably
discretized version. The FPC scores can be estimated by
approximating the integral ξijl = ∫ b

a (Xij(t) − μ(t))φl(t)dt
if the observed data are dense. Alternative shrinkage esti-
mators for sparse and irregular data are described in [23].
Analogous to the principal component analysis in mul-
tivariate analysis, the total variation in the data can be
largely explained by the first few functional principal com-
ponents. So we use the first L eigenfunctions to approxi-
mate X̂ij and L can be chosen by the information criteria
such as AIC, BIC, or by scree plot or fraction of variation
explained (FVE), similarly as in the PCA in multivariate
analysis. More details for the estimation procedure can be
found in [23]. With the estimates of all the model compo-
nents in hand, we can now represent the individual gene
expression trajectories as

X̂ij(t) = μ̂ij +
Lj∑

l=1
ξ̂ijlφ̂jl(t). (4)

Identifying differentially expressed genes
One group case
In the case of a single experimental group (J = 1), we
are often interested in discovering genes whose expression

100 150 200 250 300
12.5

13

13.5

14
SUR7

Lifeline position

lo
g2

ex
p

100 150 200 250 300
8

8.5

9

9.5
SPS4

Lifeline position

lo
g2

ex
p

Figure 1 Time course measurements (star) and the estimated expression curves (solid) for genes SUR7 and SPS4 in the yeast cell cycle
data, plotted in log2 scale.
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profiles are time-dependent. We want to test whether the
expression curve is constant for gene i, i = 1, . . . , n, i.e.

Hi0 : Xi(t) = μi, v.s.Hi1 : Xi(t) �= μi, for all t ∈[ a, b] .
(5)

UnderHi0, the constant is estimated as the sample mean
X̂0
i (t) = μ̂i = ∑Ki

k=1 Yik/Ki, and under Hi1, the curve
estimate X̂1

i (t) is obtained as (4). The test statistic is a
modified F-statistic, which compares the goodness-of-fit
of the null model to the alternative model:

Fi = RSS0i − RSS1i
RSS1i + δ

, (6)

where RSS0i and RSS1i are the residual sum of squares
under the null and the alternative models, respectively.
In a typical time course gene expression data, the num-
ber of time points is the same for all genes within one
experimental group. Since we use the same number of
eigen-basis functions to approximate the gene expression
curves, dividing the numerator and denominator of (6) by
the corresponding degrees of freedom will not change the
ordering of the test statistics. In case that there aremissing
values in the data, one could adjust (6) correspondingly.
This statistic can also be viewed as the signal-to-noise

ratio of each gene. For genes with a low signal level, vari-
ance in Fi can be high because of small values of RSS1i .
The small constant δ in the denominator can help stabi-
lize the variance of Fi. A similar idea has been adopted
in [1]. In this work, we set δ = σ̂ 2, the estimated vari-
ance of the noisy signal in (2). Since cov(Yik ,Yil) =
cov(Xi(tik),Xi(til)) + σ 2δkl, where δkl = 1 if k = l and
0 otherwise, we can estimate σ 2 by smoothing (3) with
and without the diagonals Cj(tk , tk). Specifically, σ 2 can
be estimated by the averaged difference between the local
linear smoother along the diagonal of the raw covari-
ance and a local quadratic smoother along the direction
perpendicular to the diagonal. See [23] for more details.
There is a sizable literature on the asymptotic distri-

bution of Fi, for example [24]. However, such methods
are generally not applicable to time course gene expres-
sion data, as the number of measurements for each gene
is usually very small. In order to generate the null dis-
tribution of (F1, . . . , Fn), we propose using a permutation
test. Each permutation sample is generated by randomly
matching the expression measurements of n genes with
their sampling times. If there are replicates available, the
expression measurements at the same time point are per-
muted as a group. For example, let Yikm be the m-th
measurements for gene i at time tk , m = 1, . . . ,M. The
permutation samples are obtained by randomly shuffling
the time index k. To facilitate the computing efficiency, we
use the eigenfunctions obtained from the observed data
for the permutation samples.

With the F-statistics of the permutation samples com-
puted from (6), the p-value for gene i can be defined as

pi =
B∑

b=1

I{F(b)
i ≥ Fi}
B

, (7)

where B is the number of permutation samples, I(·) is an
indicator function and F(b)

i is the statistic computed from
the b-th permutation. [12] proposed another definition of
the p-value by considering the permutation statistics from
all genes:

pi =
B∑

b=1

n∑

j=1

I{F(b)
j ≥ Fi}
n · B . (8)

This definition has the advantage that the ordering
of the test statistics is preserved in the ordering of the
p-values. We also find in our simulations that (8) leads to
fewer false positives than (7). Therefore, we adopt (8) in
the real data application.
When we apply the proposed procedure to identify dif-

ferentially expressed genes, it is necessary to consider
the multiple testing adjustment because n hypotheses are
tested simultaneously and the number of genes n is usu-
ally very large. A commonly used strategy is to control the
false discovery rate (FDR), which has been studied in vari-
ous literature, including [2,25] and [26]. We adopt the one
proposed in [25] since it is easy to compute and widely
accepted.

Multiple group case
In the multiple group setting, we want to identify genes
with different expression profiles in different experimental
groups. The hypothesis for gene i can be written as

Hi0 : Xi1(t)= . . .=XiJ (t), v.s. Hi1 : Xij(t) �=Xij′(t), j �= j′,
for all t ∈[ a, b] .

(9)

The estimates X̂1
ij(t) under Hi1 are obtained as (4) by

using the data from group j only. Under Hi0, the group-
free estimates X̂0

i (t) can be obtained using the pooled data
from J groups. The residual sum of squares under the
null and the alternative models are calculated as RSS0i =
∑J

j=1
∑Kj

k=1(Yijk − X̂0
i ) and RSS1i = ∑J

j=1
∑Kj

k=1(Yijk −
X̂1
ij), respectively, and the F-statistics are computed as (6),

where δ = max(σ̂ 2
j ) with σ̂ 2

j being the estimated variance
of the noisy signal for the j-th group.
We again use a permutation test to obtain the null dis-

tribution of (F1, . . . , Fn). Without loss of generality, we
assume that the measurement times are the same among
the J groups and at least one observation is available at
each time point for each group. A permutation sample
is generated by permuting the pooled gene expression
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data at each time point, i.e., the data {Yijk , 1 ≤ j ≤ J}
are randomly partitioned into J groups. If replicates are
available, i.e., {Yijkm, 1 ≤ m ≤ Mj, 1 ≤ j ≤ J}, the mea-
surements are randomly partitioned into J groups of sizes
M1, . . . ,MJ . The calculation of p-values and the multiple
testing adjustment are the same as described in the pre-
vious subsection. This approach can also be extended to
situations where the measurement time points vary across
different experimental groups. In this case, we can divide
the time interval [ a, b] into small bins so that at least one
observation falls into each bin for each group. We then
permute the gene expression data within each bin instead
of at each time point. This extended approach is further
illustrated with the yeast cell cycle data in the next section.

Results and discussion
Yeast cell cycle data
In this section, we applied the proposed method to Sac-
charomyces cerevisiae cell cycle gene expression data
reported in [17]. The dataset includes the gene expression
measurements of n = 10928 probe sets for both wild type
and cyclin mutant cells at 30 different time points. In the
following presentation, we refer to the probe sets as genes.
The clock time points are aligned to the corresponding
lifeline positions, covering about two cell cycles in the wild
type and about 1.5 cell cycles in the cyclin mutant. [17]
found that 1275 genes were transcribed periodically and
835 of these periodic genes showed changes in expression
behaviors in the cyclin mutant. In the following analysis,
we use the numerical lifeline positions as indicators for
time. The measurement times are irregular for both the
wild type and the cyclin mutant, and in addition the time

points are different among these two groups. We take log2
transformation of the original data.

Differentially expressed genes in wild type cells
We first apply the single group test to the wild type data
to identify differentially expressed genes with non-flat
expression profiles. The lifeline positions of the wild type
data range from 14 to 305, where 0-100 correspond to
the recovery phase from synchrony and 100-305 corre-
spond to two cell cycles. We take the data with lifeline
greater than 100, including 21 time points. Applying the
FPCA method, we select the first three principal compo-
nents, accounting for 97.5% of the total variation. Figure 2
displays the estimated covariance function and the first
three eigenfunctions. The ridge along the diagonal of the
covariance function depicts the variance of the noisy sig-
nal. The first eigenfunction (explaining 65.6% of total
variation) has an increasing trend with small fluctuations
after lifeline 180. Both the second and the third eigen-
functions (explaining 17.7% and 14.2% of total variation,
respectively) exhibit clear periodic patterns. The second
eigenfunction has two peaks around lifeline 150 and 260,
corresponding to the two cell cycles, respectively. The
third eigenfunction displays a seemingly sinusoidal wave
up to lifeline 200 and increases linearly afterwards.
Using B = 10, 000 permutations, we identified 1180

genes with FDR = 0.01, in which 750 are shared with
the list of 1275 genes identified by [17]. We also find
that these 750 shared genes constitute 82% of the 500 top
ranked genes in Orlando’s list. The discrepancy between
genes identified by [17] and by our method may due to
the differences in the selecting criteria. [17] emphasized
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Figure 2 Estimates for the covariance function (left panel) and the first three eigenfunctions (right panel; first-solid, second-dashed,
third-dash dotted) for the wild type data with lifeline position greater than 100.
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on the periodic pattern of the gene expressions, while our
method aims tomaximize the ratio of the variation around
themean expression and the noise level. So genes included
in Orlando’s list but missed by our method may have large
noises in the observed data. On the other hand, genes
identified by our method could have non-periodic pat-
terns, for example, genes with large loadings on the first
eigenfunction may exhibit linear trends.
It is also of interest to compare the results from the pro-

posed method with those of the EDGE method proposed
by [12] and the permutation-based method by [20]. Since
there are no longitudinal replicates available, the meth-
ods in [14] and [15] are not applicable. In both EDGE and
Sohn’s methods, the gene expression curves are estimated
using the gene-specific B-spline smoothing, and the num-
ber of spline basis functions is determined as the sufficient
size for fitting all the top “eigen-genes”. For this dataset,
nine B-spline basis functions are used. EDGE used a boot-
strap method for approximating the null distribution of
the statistics, while Sohn’s method adopted a similar per-
mutation approach as our method. In order for the results
from different methods to be comparable, we also use the
FDR procedure proposed by [25] in the EDGE and Sohn’s
methods. Table 1 shows the numbers of genes identified
by these two methods and their overlaps with genes iden-
tified by [17] and our proposed method. We can see that
our method identified the most genes and had the highest
agreement with the significant gene list in [17].
Figure 3 displays the gene expression profiles chosen as

differentially expressed by our method but not by oth-
ers, while Figure 4 reflects the opposite scenario showing
the profiles of genes chosen by other methods only. We
can see that genes identified by our method but not by
[17] have similar shapes to the first eigenfunction, and
our method missed those periodic genes with either large
noises or small variations around the mean expression.
The genes picked by EDGE or Sohn’s method but not
by our method mostly have small variations around the
means. Since the F-statistic (6) is a signal-to-noise ratio,
these genes with small “signals” would still have large
statistics due to small noises. In addition, the expression
curves estimated by the gene-specific B-spline smoothing
tend to be under-smoothed (Figure 4, last two rows),

which makes the denominator of the F-statistic even
smaller. These genes are not identified by our method
because we add a small constant in the denominator of (6)
to stabilize its variance.

Comparing genes in wild type and cyclinmutant cells
We next apply our method to identify genes with differ-
ent expression patterns in the wild type and cyclin mutant
cells. We restrict this analysis to the 1275 periodic genes
identified by [17]. Since the maximum lifeline position for
the cyclin mutant is 243.8, we consider the gene expres-
sions within interval [ 100, 244], which includes 15 time
points for the wild type and 22 time points for the cyclin
mutant. The observation times are not equally spaced and
are not the same for the two cell types.
We apply the FPCA method to the wild type, the cyclin

mutant and the combined samples and obtain the esti-
mates of their eigenfunctions. Figure 5 shows the esti-
mates of the first two eigenfunctions, accounting for 94.9%
of the total variation for the wild type, 99.6% for the cyclin
mutant and 98.9% for the combined data. We can see
that the eigenfunctions of different samples have some
similarity, but also show some clear differences: The first
eigenfunction of the wild type (explaining 69.4% of total
variation) increases up to around lifeline 180 and starts
to decrease afterwards, while the first eigenfunction of
the cyclin mutant (explaining 80.4% of total variation)
increases at a slower rate but keeps increasing till the
end; the second eigenfunction of the wild type (explaining
25.5% of total variation) has a sinusoidal shape with a peak
around lifeline 150 and a trough around lifeline 200, while
the second eigenfunction of the cyclin mutant (explain-
ing 19.2% of total variation) peaks a little later and does
not exhibit an increase pattern after lifeline 200; the eigen-
functions of the combined samples seem to be the average
of the corresponding eigenfunctions of the wild type and
the cyclin mutant. [17] found that, although the cyclin
mutant cells are devoid of functional Clb-CDK complex
and arrest at the G1/S-phase border, a majority of their
genes continued to be expressed on schedule, with minor
changes in transcript behavior in comparison with wild
type cells. This explains the similarity of the eigenfunc-
tions of the wild type and cyclin mutant. In addition, we

Table 1 Identified gene numbers by the proposedmethod, EDGE and Sohn’s method for testing non-flat gene
expressions in the wild type cells, adjusted at FDR levels of 0.01 and 0.05

FDR = 0.01 FDR = 0.05

Genes Overlap Overlap Genes Overlap Overlap
identified w/Orlando w/proposed identified w/Orlando w/proposed

Proposed 1180 750 - 1958 901 -

EDGE 1076 617 809 1705 783 1322

Sohn’s 985 590 767 1636 769 1291

The numbers of genes overlapped with the list by [17] and the proposed method are also included.
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Figure 3 Genes selected by the proposedmethod but not by [17] (first row), EDGE (second row) and Sohn’s method (third row) for testing
non-flat expressions in the wild type data (FDR = 0.01). The observed expressed values (star) and the estimated expression curves (FPCA-solid,
dashed-B splines) are centered.

find that the cell cycle of the cyclin mutant cells seem to
be 50% longer than that of the wild type, so within 1.5 cell
cycles of the wild type, the cyclin mutant cells only have
one cell cycle.
Since the observation times are different for the wild

type and the cyclin mutant, we can not use the usual per-
mutation. Instead, we divide the lifeline domain [ 100, 244]
into small bins with length 10 each. Within each bin, there
are at least one observation from each of the wild type
and the cyclinmutant groups (except for [ 120, 130], which
includes no observations from either the wild type or the
cyclin mutant). The observations are permuted within
each bin, using the permutation strategy for data with
replicates as described in Section “Multiple group case”.
Using B = 10, 000 permutations, we identified 883

genes for an FDR of 0.01, in which 631 are included in
the 835 genes identified by [17] with changed expression
patterns in the cyclin mutant. These genes are likely to
be directly or indirectly regulated by Clb-CDK, and since
Clb-CDK activities are known to be essential for trigger-
ing the transcriptional programme, we may not observe
any periodic expression patterns in these genes for the
cyclin mutant cells. For this data, ten B-spline basis func-
tions are used in EDGE and Sohn’s methods for smoothing
the expression data. The numbers of differential genes

identified by EDGE and Sohn’s methods are 704 and 522
for FDR = 0.01, respectively, sharing 451 and 329 genes
with those identified by [17] (Table 2).
Most of the genes identified by EDGE and Sohn’s meth-

ods are also identified by our method, but our method
identified some genes that are not picked by the other two
methods. This is because the EDGE and Sohn’s methods
used a large number of B-spline basis for smoothing the
bootstrap/permutation samples, which generally leads to
under-smoothed fits. This may inflate the probability of
large valued statistics under the null hypothesis, so fewer
genes would be identified. In Figure 6, we display 4 ran-
domly picked genes that are selected by our method but
not by [17], EDGE or Sohn’s method. [17] seems to miss
some genes with vertical shifts in their expression levels.
Figure 7 shows genes that are not selected by our method
but by others. The y-axis is adjusted to have the same scale
of that in Figure 6 for easier comparison. The comparison
confirms that the proposed method can detect significant
patterns that the other methods fail to identify.

Simulation studies
Simulation studies are carried out to compare the perfor-
mance of our method to that of the EDGEmethod and the
permutation-based method by [20]. We consider a single
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Figure 4 Genes not selected by the proposedmethod but by [17] (first row), EDGE (second row) and Sohn’s method (third row) for testing
non-flat expressions in the wild type data (FDR = 0.01). The observed expressed values (star) and the estimated expression curves (FPCA-solid,
dashed-B splines) are centered.
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Table 2 Identified gene numbers by the proposedmethod, EDGE and Sohn’s method for comparing gene expression
profiles between the wild type and the cyclin mutant, adjusted at FDR levels of 0.01 and 0.05, respectively

FDR = 0.01 FDR = 0.05

Genes Overlap Overlap Genes Overlap Overlap
identified w/Orlando w/proposed identified w/Orlando w/proposed

Proposed 883 631 - 1086 735 -

EDGE 704 524 679 839 600 833

Sohn’s 522 410 516 758 557 755

The numbers of genes overlapped with the list by [17] and the proposed method are also included.

group test of non-flat gene expressions and a two group
test of differential gene expressions across groups. In both
cases, the data are simulated to mimic the Saccharomyces
cerevisiae cell cycle data set.
In the single group case, the non-differential genes have

model Xi(t) = 0, and the differential genes have Xi(t) =∑3
l=1 ξilφl(t), where φ1(t) = −√

2/(b1 − a1) cos
(
2π(t −

a1)/(b1 − a1)
)
, φ2(t) = √

2/(b1 − a1) sin
(
2π(t − a1)/

(b1 − a1)
)
and φ3(t) = −√

2/(b1 − a1) cos
(
4π(t −

a1)/(b1−a1)
)
, t ∈[ a1, b1]. The coefficients ξil are i.i.d. nor-

mal r.v.’s with mean 0 and variance λl with λ1 = 4, λ2 = 2
and λ3 = 1. For each gene, the gene expression profiles are

simulated at the same time points as the wild type yeast
data, so there are 21 observations in [ a1, b1]=[ 100, 305].
The noisy signal in the observed data is simulated as i.i.d.
normal r.v. with mean 0 and variance σ 2 = 0.01.
In the two group case, the data are generated from

model (2), where J = 1, 2, and the number of observa-
tions is Ki1 = 15 for the “wild” group and Ki2 = 22 for the
“mutant” group, i = 1, . . . , n. The sampling times are the
same as those in the yeast cell cycle data, locating within
interval [ a2, b2]=[ 100, 244]. For the true gene expression
profiles, we consider model Xij(t) = ∑2

l=1(ξijl + γijl)ψl(t),
where ψ1(t) = −√

2/(b2 − a2) cos
(
2π(t−a2)/(b2−a2)

)
,
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Figure 6 Genes selected by the proposedmethod but not by [17] (first row), EDGE (second row) and Sohn’s method (third row) for testing
changes in expressions between the wild type and the cyclin mutant groups (FDR = 0.01). The observed expressed values for the wild type
(circle) and the cyclin mutant (cross) are displayed and overlaid with the corresponding estimated expression curves (wild-solid, mutant-dashed).
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Figure 7 Genes not selected by the proposedmethod but by [17] (first row), EDGE (second row) and Sohn’s method (third row) for testing
changes in expressions between the wild type and the cyclin mutant groups (FDR = 0.01). The observed expressed values for the wild type
(circle) and the cyclin mutant (cross) are displayed and overlaid with the corresponding estimated expression curves (wild-solid, mutant-dashed).

ψ2(t) = √
2/(b2 − a2) sin

(
2π(t − a2)/(b2 − a2)

)
, t ∈

[ a2, b2]. The coefficients ξijl ∼ i.i.d. N (0, λξ l), γijl ∼
i.i.d. N (0, λγ l), with (λξ1, λξ2) = (4, 2) and (λγ 1, λγ 2) =
(5, 3). For non-differentially expressed genes, we let
γijl = 0. The error term is generated fromN (0, 0.01).
For both cases, We generate n = 1000 genes and

the proportion of differential genes is set to be π0 =
0.05, 0.2, 0.5, respectively. The number of principal com-
ponents in our method is selected so that the fraction
of variation explained (FVE) exceeds 90%. This criterion
selects the correct number of components for over 90% of
time under all simulation scenarios. We tried the method
proposed by [12], which fits all the top “eigen-genes”, to
select the number of B-spline basis for EDGE and Sohn’s
method. For over 80% of time, we ended up with select-
ing 19 basis for the single group case and 13 basis for
the two group case, leading to severely under-smoothed
gene expression curves and very few differential genes
identified. We therefore manually select 6 bases for the
single group case and 5 bases for the two group case for
EDGE and Sohn’s methods, which seem to provide the
best results when experimenting from 5 bases to 10 bases.
We perform 100 simulations for each simulation setting

and the results are summarized in Tables 3 and 4. We

compare the performance of our FPCA method in detect-
ing differentially expressed genes with that of the EDGE
and Sohn’s methods, based on the empirical false positive
rate (FPR, proportion of the falsely rejected hypotheses
over the total number of rejected hypotheses) and senstiv-
ity (proportion of true positives correctly identified). In
our simulation studies, we also evaluated the performance
of p-values calculated by (7), ‘Proposedb’ in Tables 3 and
4, and by (8), ‘Proposeda’ in Tables 3 and 4. We find that
it is better to use (8) for computing the p-values when
the proportion of differential genes is small, and through-
out all settings, using (8) provides smaller false positive
rates. We also find that under all scenarios, the proposed
method clearly outperforms the EDGEmethod and Sohn’s
method, especially when the proportion of differential
genes is small. The fact that our method has the high-
est sensitivity is in line with the finding that our method
identified the most genes in the application of yeast cell
cycle data.

Conclusions
We proposed a new method for significance analysis of
time course gene expression data by integrating a func-
tional principal component method into a hypothesis
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Table 3 Comparison of the proposedmethod, EDGE and Sohn’s method for the single group test by FPR (proportion of
falsely rejected hypotheses over the total number of rejected hypotheses) and sensitivity (proportion of true positives
correctly identified)

Proposeda Proposedb EDGE Sohn’s

π0 = 0.05 FDR = 0.01 FPR 0.0016 0.0127 0.0100 0.0091

Sensitivity 0.7606 0.6864 0.4742 0.5160

FDR = 0.05 FPR 0.0180 0.0541 0.0459 0.0514

Sensitivity 0.8440 0.7858 0.6378 0.6616

π0 = 0.2 FDR = 0.01 FPR 0.0003 0.0084 0.0079 0.0078

Sensitivity 0.7716 0.7851 0.6210 0.6302

FDR = 0.05 FPR 0.0070 0.0409 0.0363 0.0408

Sensitivity 0.8644 0.8667 0.7652 0.7641

π0 = 0.5 FDR = 0.01 FPR 0.0002 0.0053 0.0041 0.0051

Sensitivity 0.7731 0.8329 0.7021 0.7031

FDR = 0.05 FPR 0.0025 0.0251 0.0238 0.0244

Sensitivity 0.8709 0.9049 0.8285 0.8261

Proposedb uses (7) for computing p-values and Proposeda , EDGE and Sohn’s use (8).

testing framework. Our method can be applied to both
single group and multiple group scenarios, and has shown
to be more powerful in identifying temporally differen-
tially expressed genes than the existing methods through
real data application and various simulation studies.
Moreover, our method is generally applicable, no matter
the time course expression data have replicates or not,
while most of the existing methods require replicates or
even longitudinal replicates.
FPCA is a flexible nonparametric method for analyz-

ing continuous trajectory data. The time course data are
modeled through a data-based eigen-representation and

the eigen-basis functions reflect the major modes of vari-
ation in the data. As illustrated in the yeast cell cycle data,
the eigenfunctions often have a direct biological interpre-
tation and offer a visual tool to assess the main directions
in which the gene expression profiles vary. In addition,
these eigenfunctions are orthogonal basis, so they carry
information in a most efficient way and the representa-
tion of temporal trajectories can be more parsimonious
than using the predetermined basis. This is particularly
important in the significance analysis of time course gene
expression data, because we could reserve more degrees
of freedom for the inference.

Table 4 Comparison of the proposedmethod, EDGE and Sohn’s method for the two group test by FPR (proportion of
falsely rejected hypotheses over the total number of rejected hypotheses) and sensitivity (proportion of true positives
correctly identified)

Proposeda Proposedb EDGE Sohn’s

π0 = 0.05 FDR = 0.01 FPR 0.0071 0.0168 0.0079 0.0055

Sensitivity 0.6186 0.5638 0.4858 0.4706

FDR = 0.05 FPR 0.0432 0.0624 0.0478 0.0377

Sensitivity 0.7048 0.6810 0.5850 0.5756

π0 = 0.2 FDR = 0.01 FPR 0.0028 0.0099 0.0076 0.0032

Sensitivity 0.6530 0.6566 0.5819 0.5153

FDR = 0.05 FPR 0.0276 0.0440 0.0400 0.0200

Sensitivity 0.7538 0.7579 0.6888 0.6505

π0 = 0.5 FDR = 0.01 FPR 0.0013 0.0062 0.0047 0.0011

Sensitivity 0.6701 0.7127 0.6370 0.5364

FDR = 0.05 FPR 0.0134 0.0286 0.0238 0.0092

Sensitivity 0.7850 0.8089 0.7465 0.6817

Proposedb uses (7) for computing p-values and Proposeda , EDGE and Sohn’s use (8).
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In the EDGE and Sohn’s methods, the test statistic is
constructed as a goodness-of-fit measure for each gene
separately. Although our method uses a similar statistic,
part of our statistic involves information from all genes,
as the gene-specific expression curve and the variance sta-
bilizer δ in the F-statistic (6) are estimated by borrowing
strength from all the genes. This strategy can improve the
power of the inference, especially for short time course
data or data without replicates. In a simulation for one
group test with only 11 measurements and no replicates
for each gene (results not shown), our method can iden-
tify about 50% of differential genes correctly for an FDR of
0.01 and about 72% for an FDR of 0.05, but the EDGE and
Sohn’s methods can hardly identify any differential genes.
Our method is also computationally fast. For the yeast

cell cycle data, on a dual core processor 2.99GHz PC
with 1.95 GB RAM, it took 385 seconds for the pro-
posedmethod, 885 seconds for EDGE and 493 seconds for
Sohn’s method to complete the one group test with n =
10928 genes and B = 10000 permutations/bootstraps,
and 51, 176 and 189 seconds, respectively, for the two
group test with n = 1275 and B = 10000. This ensures
that our method can be applied to analyze very large
genome wide data sets.
In our method, the covariance function is assumed to

be the same for all genes in the same experimental group.
This strategy has also been adopted by many other works
in the analysis of time course gene expression data, for
example [13] and [15]. A similar assumption was adopted
in [6], where the within-gene correlation is implied in the
presence of first-order dependence structure of the under-
lying Markov process and it is assumed to be identical
for all genes. Although our method is presented assum-
ing a homogeneous covariance, it can be easily extended
to accommodate the heterogeneity in the covariance of
gene expressions. We can first cluster the data and com-
pute the covariance of gene expressions for each cluster,
and then combine them to obtain the covariance of the
mixed population [15].
When smoothing the covariance function, the band-

width is chosen by generalized cross-validation (GCV).
The overall shapes of the estimated covariance and eigen-
functions are quite stable over a range of bandwidth values
in our numerical examples. The smoothing parameter
may have effects on the power of the inference procedure,
but the detailed investigation on this problem is beyond
the scope of this paper. Intersected minds are referred
to [27] and references therein for further discussions.
Another related topic is to incorporate the inter-gene cor-
relations in themultiple testing procedure, which has been
discussed in [28,29] and [30]. Our method can be applied
in combination with any of these multiple testing adjust-
ment methods. However, the effect of different multiple
testing adjustments on the results of significant testing is

not the emphasis of this paper and could be an interesting
topic for future research.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SW proposed the method, performed the statistical analysis and wrote the
manuscript. HW supported the research project and revised the manuscript
critically for important intellectual content. All authors read and approved the
final manuscript.

Acknowledgements
This research was partially supported by the NIH grants HHSN272201000055C,
AI087135, and the University of Rochester CTSI pilot award (UL1RR024160)
from the National Center for Research Resources.

Received: 7 August 2012 Accepted: 7 November 2012
Published: 16 January 2013

References
1. Tusher V, Tibshirani R, Chu C: Significance analysis of microarrays

applied to the ionizing radiation response. Proc Nat Acad Sci USA 2001,
98:5116–5121.

2. Storey J, Tibshirani R: SAM thresholding and false discovery rates for
detecting differential gene expression in DNAmicroarrays. In The
analysis of gene expression data: methods and software. Edited by
Parmigiani G, Garrett ES, Irizarry R, Zeger S. New York: Springer;
2003:272–290.

3. Park T, Yi S, Lee S, Lee S, Yoo D, Ahn J, Lee Y: Statistical tests for
identifying differentially expressed genes in time course microarray
experiments. Bioinformatics 2003, 19:694–703.

4. Smyth G: Limma: linear models for microarray data. In Bioinformatics
and computational biology solutions using R and Bioconductor. Edited by
Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer;
2005:12837–12842.

5. Tai Y, Speed T: Amultivariate empirical Bayes statistic for replicated
microarray time course data. Ann Stat 2006, 34:2387–2412.

6. Yuan M, Kendziorski C: Hidden Markov Models for Microarray Time
Course Data in Multiple Biological Conditions. J Am Stat Assoc 2006,
101(476):1323–1332.

7. Sun W, Wei Z:Multiple Testing for Pattern Identification, With
Applications to Microarray Time-Course Experiments. J Am Stat
Assocsss 2011, 106:73–88.

8. Ramsay JO, Silverman BW: Functional data analysis. second edition,
Springer Series in Statistics. New York: Springer; 2005.

9. Coffey N, Hinde J: Analysing time-course microarray data using
functional data analysis - A review. BMC Bioinf 2011, 10:23.

10. Xu XL, Olson JM, Zhao LP: A regression-based method to identify
differentially expressed genes in microarray time course studies
and its application in an inducible Huntington’s disease transgenic
model. HumanMol Genet 2002, 11(17):1977–1985.

11. Bar-Joseph Z, Gerber G, Simon I, Gifford D, Jaakkola T: Comparing the
continuous representation of time-series expression profiles to
identify differentially expressed genes. Proc Nat Acad Sci USA 2003,
100:10146–10151.

12. Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW: Significance analysis
of time course microarray experiments. Proc National Acad Sci USA
2005, 102(36):12837–12842.

13. Hong F, Li H: Functional hierarchical models for identifying genes
with different time-course expression profiles. Biometrics 2006,
62:534–544.

14. Liu X, Yang M: Identifying temporally differentially expressed genes
through functional principal component analysis. Biostatistics 2009,
10:667–679.

15. Chen K, Wang JL: Identifying differentially expressed genes for
time-course microarray data through functional data analysis. Stat
Biosci 2010, 2:95–119.

16. Ma P, Zhong W, Liu J: Identifying differentially expressed genes in
time course microarray data. Stat Biosci 2009, 1:144–159.



Wu and Wu BMC Bioinformatics 2013, 14:6 Page 13 of 13
http://www.biomedcentral.com/1471-2105/14/6

17. Orlando D, Lin C, Bernard A, Wang J, Socolar J, Iversen E, Hartemink A,
Haase S: Global control of cell-cycle transcription by coupled CDK
and network oscillators. Nature 2008, 453:944–947.

18. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown
PO, Botstein D, Futcher B: Comprehensive Identification of Cell
Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by
Microarray Hybridization.Mol Biol Cell 1998, 9(12):3273–3297.

19. Cicatiello L, Scafoglio C, Altucci L, Cancemi M, Natoli G, Facchiano A,
Iazzetti G, Calogero R, Biglia N, De Bortoli M, Sfiligoi C, Sismondi P,
Bresciani F, Weisz A: A genomic view of estrogen actions in human
breast cancer cells by expression profiling of the
hormone-responsive trascriptome. J Mol Endocrinol 2004, 32:719–775.

20. Sohn I, Owzar K, George SL, Kim S, Jung S: A permutation-based
multiple testing method for time-course microarray experiments.
BMC Bioinf 2009, 10:336.

21. Han X, Sung WK, Feng L: Identifying differentially expressed genes in
time-course microarray experiment without replicate. J Bioinf
Comput Biol 2007, 5:281–296.

22. Ash RB, Gardner MF: Topics in stochastic processes. New York: Academic
Press; 1975. [Probability and Mathematical Statistics, Vol. 27].

23. Yao F, Müller HG, Wang JL: Functional data analysis for sparse
longitudinal data. J Am Stat Assoc 2005, 100(470):577–590.

24. Shen Q, Faraway J: An F test for linear models with functional
responses. Statistica Sinica 2004, 14:1239–1257.

25. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R S Soc : Ser B
(Stat Methodology) 1995, 57:289–300.

26. Reiner A, Yekutieli D, Benjamini Y: Identifying diffrentially expressed
genes using false discovery rate controlling procedure.
Bioinformatics 2003, 19:368–375.

27. Hart JD: Nonparametric smoothing and lack-of-fit tests: Springer; 1997.
28. Benjamini Y, Yekutieli D: The control of the false discovery rate in

multiple testing under dependency. Ann Stat 2001, 29:1165–1188.
29. Klebanov L, Yakovlev A: Detecting intergene correlation changes in

microarray analysis: A new approach to gene selection. Ann Appl Stat
2007, 1:538–559.

30. Hu R, Qiu X, Glazko G: A new gene selection procedure based on the
covariance distance. Bioinformatics 2010, 23:348–354.

doi:10.1186/1471-2105-14-6
Cite this article as: Wu and Wu: More powerful significant testing for
time course gene expression data using functional principal component
analysis approaches. BMC Bioinformatics 2013 14:6.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	FPCA for time course gene expression data
	Identifying differentially expressed genes
	One group case
	Multiple group case


	Results and discussion
	Yeast cell cycle data
	Differentially expressed genes in wild type cells
	Comparing genes in wild type and cyclin mutant cells

	Simulation studies

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

