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Abstract

Let SH and S̃H be two independent d-dimensional sub-fractional Brownian motions
with indices H Î (0, 1). Assume d ≥ 2, we investigate the intersection local time of
subfractional Brownian motions

�T =

T∫
0

T∫
0

δ
(
SHt − S̃Hs

)
dsdt, T > 0,

where δ denotes the Dirac delta function at zero. By elementary inequalities, we
show that ℓT exists in L2 if and only if Hd <2 and it is smooth in the sense of the
Meyer-Watanabe if and only if H < 2

d+2 . As a related problem, we give also the
regularity of the intersection local time process.
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1. Introduction
The intersection properties of Brownian motion paths have been investigated since the

forties (see [1]), and since then, a large number of results on intersection local times of

Brownian motion have been accumulated (see Wolpert [2], Geman et al. [3], Imkeller

et al. [4], de Faria et al. [5], Albeverio et al. [6] and the references therein). The inter-

section local time of independent fractional Brownian motions has been studied by

Chen and Yan [7], Nualart et al. [8], Rosen [9], Wu and Xiao [10] and the references

therein. As for applications in physics, the Edwards’ model of long polymer molecules

by Brownian motion paths uses the intersection local time to model the ‘excluded

volume’ effect: different parts of the molecule should not be located at the same point

in space, while Symanzik [11], Wolpert [12] introduced the intersection local time as a

tool in constructive quantum field theory.

Intersection functionals of independent Brownian motions are used in models hand-

ling different types of polymers (see, e.g., Stoll [13]). They also occur in models of

quantum fields (see, e.g., Albeverio [14]).

As an extension of Brownian motion, recently, Bojdecki et al. [15] introduced and

studied a rather special class of self-similar Gaussian processes, which preserves many

properties of the fractional Brownian motion. This process arises from occupation time
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fluctuations of branching particle systems with Poisson initial condition. This process

is called the subfractional Brownian motion. The so-called subfractional Brownian

motion (sub-fBm in short) with index H Î (0, 1) is a mean zero Gaussian process

SH = {SHt , t ≥ 0} with SH0 = 0 and

CH(s, t) := E[SHt S
H
s ] = s2H + t2H − 1

2

[
(s + t)2H + (t − s)2H

]
(1:1)

for all s, t ≥ 0. For H = 1
2, S

H coincides with the Brownian motion B. SH is neither a

semimartingale nor a Markov process unless H = 1/2, so many of the powerful techni-

ques from stochastic analysis are not available when dealing with SH. The sub-fBm has

self-similarity and long-range dependence and satisfies the following estimates:

[
(2 − 22H−1) ∧ 1

]
(t − s)2H ≤ E

[
(SHt − SHs )

2
]

≤ [(
2 − 22H−1) ∨ 1

]
(t − s)2H.(1:2)

Thus, Kolmogorov’s continuity criterion implies that sub-fBm is Hölder continuous

of order g for any g < H. But its increments are not stationary. More works for sub-

fBm can be found in Bardina and Bascompte [16], Bojdecki et al. [17-19], Shen et al.

[20-22], Tudor [23] and Yan et al. [24,25].

In the present paper, we consider the intersection local time of two independent sub-

fBms on ℝd, d ≥ 2, with the same indices H Î (0, 1). This means that we have two d-

dimensional independent centered Gaussian processes SH = {SHt , t ≥ 0} and

S̃H = {S̃Ht , t ≥ 0} with covariance structure given by

E
(
SH,i
t SH,j

s

)
= E(S̃H,i

t S̃H,j
s ) = δi,jCH(s, t),

where i, j = 1,..., d, s, t ≥ 0. The intersection local time can be formally defined as fol-

lows, for every T >0,

�T =

T∫
0

T∫
0

δ
(
SHt − S̃Hs

)
dsdt, (1:3)

where δ(·) denotes the Dirac delta function. It is a measure of the amount of time

that the trajectories of the two processes, SH and S̃H , intersect on the time interval [0,

T]. As we pointed out, this definition is only formal. In order to give a rigorous mean-

ing to ℓT, we approximate the Dirac delta function by the heat kernel

pε(x) = (2πε)−
d
2 e−

|x|2
2ε , x ∈ �

d.

Then, we can consider the following family of random variables indexed by ε >0

�ε,T =

T∫
0

T∫
0

pε(SHt − S̃Hs )dsdt, (1:4)

that we will call the approximated intersection local time of SH and S̃H . An interest-

ing question is to study the behavior of ℓε,T as ε tends to zero.
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For H = 1
2 , the process SH and S̃H are Brownian motions. The intersection local time

of independent Brownian motions has been studied by several authors (see Wolpert

[2], Geman et al. [3] and the references therein). In the general case, that is H �= 1
2 ,

only the collision local time has been studied by Yan and Shen [24]. Because of inter-

esting properties of sub-fBm, such as short-/long-range dependence and self-similarity,

it can be widely used in a variety of areas such as signal processing and telecommuni-

cations( see Doukhan et al. [26]). Therefore, it seems interesting to study the so-called

intersection local time for sub-fBms, a rather special class of self-similar Gaussian

processes.

The aim of this paper is to prove the existence, smoothness, regularity of the inter-

section local time of SH and S̃H , for H �=1
2 and d ≥ 2. It is organized as follows. In Sec-

tion 2, we recall some facts for the chaos expansion. In Section 3, we study the

existence of the intersection local time. In Section 4, we show that the intersection

local time is smooth in the sense of the Meyer-Watanabe if and only if H < 2
d+2 . In

Section 5, the regularity of the intersection local time is also considered.

2. Preliminaries
In this section, firstly, we recall the chaos expansion, which is an orthogonal decompo-

sition of L2(Ω, P). We refer to Meyer [27] and Nualart [28] and Hu [29] and the refer-

ences therein for more details. Let X = {Xt, t Î [0, T]} be a d-dimensional Gaussian

process defined on the probability space (�,F ,P) with mean zero. If pn(x1, . ., xk) is a

polynomial of degree n of k variables x1,..., xk, then we call pn(X
i1
t1 , ...,X

ik
tk ) a polynomial

functional of X with t1,..., tk Î [0, T] and 1 ≤ i1,..., ik ≤ d. Let Pn be the completion

with respect to the L2(Ω, P) norm of the set {pm(Xi1
t1 , ...,X

ik
tk ) : 0 ≤ m ≤ n} . Clearly, Pn

is a subspace of L2(Ω, P). If Cn denotes the orthogonal complement of Pn−1 in Pn ,

then L2(Ω, P) is actually the direct sum of Cn , i.e.,

L2(�,P) =
∞⊕
n=0

Cn. (2:1)

For F Î L2 (Ω, P), we then see that there exists Fn ∈ Cn , n = 0, 1, 2,..., such that

F =
∞∑
n=0

Fn, (2:2)

This decomposition is called the chaos expansion of F. Fn is called the n-th chaos of

F. Clearly, we have

E
(|F|2) = ∞∑

n=0

E
(|Fn|2) . (2:3)

As in the Malliavin calculus, we introduce the space of “smooth” functionals in the

sense of Meyer and Watanabe (see Watanabe [30]):

U := {F ∈ L2(�,P) : F =
∞∑
n=0

Fn and
∞∑
n=0

nE(|Fn|2) < ∞},

and F Î L2(Ω, P) is said to be smooth if F ∈ U .

Shen Journal of Inequalities and Applications 2011, 2011:139
http://www.journalofinequalitiesandapplications.com/content/2011/1/139

Page 3 of 16



Now, for F Î L2(Ω, P), we define an operator ϒu with u Î [0,1] by

ϒuF :=
∞∑
n=0

unFn. (2:4)

Set �(u) := ϒ√
uF . Then, Θ(1) = F. Define 	�(u) := d

du

(||�(u)||2) , where ||F||2 := E

(|F|2) for FÎ L2(Ω, P). We have

	�(u) =
∞∑
n=1

nun−1E
(|Fn|2) . (2:5)

Note that ||�(u)||2 = E
(|�(u)|2) = ∑∞

n=1 E
(
un|Fn|2

)
.

Proposition 1. Let F Î L2(Ω, P). Then F ∈ U , if and only if FΘ(1) < ∞.

Now consider two d-dimensional independent sub-fBms SH and S̃H with indices H Î
(0, 1). Let Hn(x), x Î ℝ be the Hermite polynomials of degree n. That is,

Hn(x) = (−1)n
1
n!

e
x2
2

∂n

∂xn
e−

x2
2 . (2:6)

Then,

etx−
t2

2 =
∞∑
n=0

tnHn(x) (2:7)

for all t Î ℂ and x Î ℝ, which deduces

exp(iu〈ξ , SHt − S̃Hs 〉 + 1
2
u2|ξ |2Var(SH,1

t − S̃H,1
s ))

=
∞∑
n=0

(iu)nσ n(t, s, ξ)Hn

(
〈ξ , SHt − S̃Hs 〉

σ (t, s, ξ)

)
,

where σ (t, s, ξ) =
√
Var(SH,1

t − S̃H,1
s )|ξ |2 for ξ Î ℝd. Because of the orthogonality of

{Hn(x), x ∈ �}n∈�+ , we will get from (2.2) that

(iu)nσ n(t, s, ξ)Hn

(
〈ξ , SHt − S̃Hs 〉

σ (t, s, ξ)

)

is the n-th chaos of

exp
(
iu〈ξ , SHt − S̃Hs 〉 + 1

2
u2|ξ |2Var

(
SH,1
t -S̃H,1

s

))

for all t, s ≥ 0.

3. Existence of the intersection local time
The aim of this section is to prove the existence of the intersection local time of SH

and S̃H , for an H �= 1
2 and d ≥ 2. We have obtained the following result.

Theorem 2. (i) If Hd <2, then the ℓε,T converges in L2(Ω). The limit is denoted by ℓT
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(ii) If Hd ≥ 2, then

lim
ε→0

E(�ε,T) = +∞,

and

lim
ε→0

Var(�ε,T) = +∞.

Note that if {S
1
2
t }t≥0

is a planar Brownian motion, then

�ε =

T∫
0

T∫
0

pε

(
S1/2t − S1/2s

)
dsdt,

diverges almost sure, when ε tends to zero. Varadhan, in [31], proved that the renor-

malized self-intersection local time defined as limε®0(ℓε-Eℓε) exists in L2(Ω). Condition

(ii) implies that Varadhan renormalization does not converge in this case.

For Hd ≥ 2, according to Theorem 2, ℓε,T does not converge in L2(Ω), and therefore,

ℓT, the intersection local time of SH and S̃H , does not exist.

Using the following classical equality

pε(x) =
1

(2πε)
d
2

e−
|x|2
2e =

1

(2π)d

∫
�d

ei〈ξ ,x〉e−ε
|ξ |2
2 dξ ,

we have

�ε,T =

T∫
0

T∫
0

pε(SHt − S̃Hs )dsdt

=
1

(2π)d

T∫
0

T∫
0

∫
�d

e
i〈ξ ,SHt −S̃Hs 〉

· e−ε
|ε|2
2 dξdsdt.

(3:1)

Since 〈ξ , SHt − S̃Hs 〉 ∼ N(0, |ξ |2(2 − 22H−1)(t2H + s2H)) , so

E|ei〈ξ ,SHt −S̃Hs 〉 = e−[(2−22H−1)(t2H+s2H)]
|ξ |2
2 .

Therefore,

E(�ε,T) =
1

(2π)d

T∫
0

T∫
0

∫
�d

E
[
ei〈ξ ,

SHt −S̃Hs 〉
]

· e−ε
|ξ |2
2 dξdsdt

=
1

(2π)d

T∫
0

T∫
0

∫
�d

e−[ε+(2−22H−1)(t2H+s2H)]
|ξ |2
2 dξdsdt

=
1

(2π)
d
2

T∫
0

T∫
0

[ε + (2 − 22H−1)(t2H + s2H)]
− d
2 dsdt,

(3:2)
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where we have used the fact

∫
�d

e−[ε+(2−22H−1)(t2H+s2H)]
|ξ |2
2 dξ =

(
2π

ε + (2 − 22H−1)(t2H + s2H)

) d
2
.

We also have

E(�2ε,T) =
1

(2π)2d

∫
[0,T]4

∫
�2d

E
[
ei〈ξ ,S

H
t −S̃Hs 〉+i〈η,SHu −S̃Hv 〉

]

×e
−

ε(|ξ |2 + |η|2)
2 dξdηdsdtdudv.

(3:3)

Let we introduce some notations that will be used throughout this paper,

λs,t = Var(SH,1
t − SH,2

s ) = (2 − 22H−1)(t2H + s2H),

ρu,v = Var(SH,1
v − SH,2

u ) = (2 − 22H−1)(u2H + v2H),

and

μs,t,u,v = Cov
(
SH,1
t − SH,2

s , SH,1
v − SH,2

u

)
= s2H + t2H + u2H + v2H − 1

2
[(t + v)2H + |t − v|2H + (s + u)2H + |s − u|2H],

where SH,1 and SH,2 are independent one dimensional sub-fBms with indices H.

Using the above notations, we can write for any ε >0

E(�ε,2T ) =
1

(2π)2d

∫
[0,T]4

∫
�2d

exp
{
−1
2
((λs,t + ε)|ξ |2 + (ρu,v + ε)|η|2 + 2μs,t,u,v〈ξ , η〉)

}
× dξdsdtdudv

=
1

(2π)d

∫
[0,T]4

[(
λs,t + ε

) (
ρu,v + ε

) − μ2
s,t,u,v

]− d
2 dsdtdudv.

(3:4)

In order to prove the Theorem 2, we need some auxiliary lemmas. Without loss of

generality, we may assume v ≤ t, u ≤ s and v = xt, u = ys with x, y Î [0,1]. Then, we

can rewrite ru,v and µs,t,u,v as following.

ρu,v = (2 − 22H−1)(x2Ht2H + y2Hs2H),

μs,t,u,v = t2H
{
1 + x2H − 1

2
[(1 + x)2H + (1 − x)2H]

}

+ s2H
{
1 + y2H − 1

2
[(1 + y)2H + (1 − y)2H]

}
.

(3:5)

It follows that

λs,tρu,v − μ2
s,t,u,v = t4Hf (x) + s4Hf (y) + t2Hs2Hg(x, y), (3:6)

where

f (x) := (2 − 22H−1)2x2H −
(
1 + x2H − 1

2
(1 + x)2H − 1

2
(1 − x)2H

)2

,
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and

g(x, y) = (2 − 22H−1)2(x2H + y2H)

− 2
(
1 + x2H − 1

2
(1 + x)2H − 1

2
(1 − x)2H

)

×
(
1 + y2H − 1

2
(1 + y)2H − 1

2
(1 − y)2H

)
.

(3:7)

For simplicity throughout this paper, we assume that the notation F ≍ G means that

there are positive constants c1 and c2 so that

c1G(x) ≤ F(x) ≤ c2G(x)

in the common domain of definition for F and G. For a, b Î ℝ, a ∧ b := min{a, b}

and a ∨ b := max{a, b}. By Lemma 4.2 of Yan and Shen [24], we get

Lemma 3. Let f(x) and g(x, y) be defined as above and let 0 < H <1. Then, we have

f (x) � x2H(1 − x)2H, (3:8)

and

g(x, y) � x2H(1 − y)2H + y2H(1 − x)2H (3:9)

for all x, y Î [0,1].

Lemma 4. Let

AT :=
∫

[0,T]4

(λs,tρu,v − μ2
s,t,u,v)

− d
2 dsdtdudv.

Then, AT is finite if and only if Hd <2.

Proof. It is easily to prove the necessary condition. In fact, we can find ε >0 such that

Dε ⊂ [0, T]4, where

Dε ≡ {
(s, t, u, v) ∈ �

4
+ : s2 + t2 + u2 + v2 ≤ ε2

}
.

We make a change to spherical coordinates as following⎧⎪⎪⎨
⎪⎪⎩
s = r cos ϕ1,
t = r sin ϕ1 cos ϕ2,
u = r sin ϕ1 sin ϕ2 cos ϕ3,
v = r sin ϕ1 sin ϕ2 sin ϕ3.

(3:10)

where 0 ≤ r ≤ ε, 0 ≤ �1, �2 ≤ π, 0 ≤ �3 ≤ 2π,

J =
∂(s, t, u, v)

∂(r,ϕ1,ϕ2,ϕ3)
= r3 sin2 ϕ1 sin ϕ2.

As λs,tρu,v − μ2
s,t,u,v is always positive, and λs,tρu,v − μ2

s,t,u,v = r4Hφ(θ) , we have

AT ≥
∫
Dε

(λs,tρu,v − μ2
s,t,u,v)

− d
2 dsdtdudv =

ε∫
0

r3−2Hd
∫
�

φ(θ)dθ , (3:11)
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where the integral in r is convergent if and only if 3 - 2Hd >-1 i.e., Hd <2 and the

angular integral is different from zero thanks to the positivity of the integrand. There-

fore, Hd ≥ 2 implies that AT = +∞.

Now, we turn to the proof of sufficient condition. Suppose that Hd <2. By symmetry,

we have

AT = 4
∫
ϒ

(λs,tρu,v − μ2
s,t,u,v)

− d
2 dsdtdudv,

where ϒ = f(u, v, s, t):0 < u < s ≤ T, 0 < v < t ≤ T}.

By Lemma 3, we get

λs,tρu,v − μ2
s,t,u,v = t4Hf (x) + s4Hf (y) + t2Hs2Hg(x, y)

� t4Hx2H(1 − x)2H + s4Hy2H(1 − y)2H

+ t2Hs2H(x2H(1 − y)2H + y2H(1 − x)2H)

= [x2Ht2H + y2Hs2H][(1 − x)2Ht2H + (1 − y)2Hs2H]

= (v2H + u2H)[(t − v)2H + (s − u)2H].

(3:12)

These deduce for all H Î (0, 1) and T >0,

�T ≤ CH

T∫
0

dt

t∫
0

(vH(t − v)H)
−d/2

dv

T∫
0

ds

s∫
0

(uH(s − u)H)
−d/2

du

= CH

⎛
⎝ T∫

0

t1−Hddt

1∫
0

x−Hd
2 (1 − x)−

Hd
2 dx

⎞
⎠

2

< ∞.

□
Proof of Theorem 2. Suppose Hd <2, we have

E(�ε,T · �η,T) =
1

(2π)d

∫
[0,T]4

((λs,t + ε)(ρu,v + η) − μ2
s,t,u,v)

− d
2 dsdtdudv.

Consequently, a necessary and sufficient condition for the convergence in L2(Ω) of ℓε,

T is that∫
[0,T]4

(λs,tρu,v − μ2
s,t,u,v)

− d
2 dsdtdudv < ∞.

This is true due to Lemma 4.

If Hd ≥ 2, then from (3.2) and using monotone convergence theorem

lim
ε→0

E(�ε,T) =
1

(2π(2 − 22H−1))d/2

T∫
0

T∫
0

(s2H + t2H)
− d
2 dsdt.

Making a polar change of coordinates{
x = r cos θ ,
y = r sin θ ,
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where 0 ≥ r ≥ T, 0 ≤ θ ≤ π
2 ,

T∫
0

T∫
0

(s2H + t2H)
− d
2 dsdt

=

T∫
0

π
2∫

0

r1−Hd(cos2Hθ + sin2Hθ)−
d
2 drdθ ,

and this integral is divergent if Hd ≥ 2. By the expression (3.2) and (3.4), we have

lim
ε→0

Var(�ε,T) = lim
ε→0

[E(�2ε,T) − (E�ε,T)2]

=
1

(2π)d

∫
[0,T]4

{
(λs,tρu,v − μ2

s,t,u,v)
− d
2 − (λs,tρu,v)

− d
2

}
dvdudsdt.

Making a change of variables to spherical coordinates as (3.10), if Hd ≥ 2, we have

lim
ε→0

Var(�ε,T) = +∞.

In fact, as the integrand is always positive, we obtain∫
[0,T]4

{
(λs,tρu,v − μ2

s,t,u,v)
− d
2 − (λs,tρu,v)

− d
2

}
dvdudsdt

≥
∫
Dε

{
(λs,tρu,v − μ2

s,t,u,v)
− d
2 − (λs,tρu,v)

− d
2

}
dvdudsdt

=

ε∫
0

r3−2Hddr
∫
�

ψ(θ)dθ ,

where the integral in r is convergent if and only if Hd <2, and the angular integral is

different from zero thanks to the positivity of the integrand. Therefore, Hd ≥ 2 implies

that

lim
ε→0

Var(�ε,T) = +∞.

This completes the proof of Theorem 2. □

4. Smoothness of the intersection local time
In this section, we consider the smoothness of the intersection local time. Our main

object is to explain and prove the following theorem. The idea is due to An and Yan

[32] and Chen and Yan [7].

Theorem 5. Let ℓT be the intersection local time of two independent d-dimensional

sub-fBms SH and S̃Hwith indices H Î (0, 1). Then, ℓT Î U if and only if

H <
2

d + 2
.
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Recall that

λs,t = (2 − 22H−1)(t2H + s2H),

ρu,v = (2 − 22H−1)(u2H + v2H),

and

μs,t,u,v = s2H + t2H + u2H + v2H − 1
2
[(t + v)2H + |t − v|2H + (s + u)2H + |s − u|2H],

for all s, t, u, v ≥ 0.

In order to prove Theorem 5, we need the following propositions.

Proposition 6. Under the assumptions above, the following statements are equivalent:

(i) H < 2
d+2 ;

(ii)
T∫
0

T∫
0

T∫
0

T∫
0
(λs,tρu,v − μ2

s,t,u,v)
− d
2−1

μ2
s,t,u,vdvdudsdt < ∞ .

Proof. By (3.12), we have

λs,tρu,v − μ2
s,t,u,v = t4Hf (x) + s4Hf (y) + t2Hs2Hg(x, y)

� t4Hx2H(1 − x)2H + s4Hy2H(1 − y)2H

+ t2Hs2H(x2H(1 − y)2H + y2H(1 − x)2H)

= [x2Ht2H + y2Hs2H][(1 − x)2Ht2H + (1 − y)2Hs2H].

(4:1)

On the other hand, an elementary calculus can show that

x2H ≤ 1 + x2H − 1
2
(1 + x)2H − 1

2
(1 − x)2H ≤ (2 − 22H−1)x2H

for all x, H Î (0, 1). By (3.5), we obtain

(t2Hx2H + s2Hy2H)2 ≤ μ2
s,t,u,v ≤ (2 − 22H−1)2(t2Hx2H + s2Hy2H)2. (4:2)

It follows that

T∫
0

T∫
0

T∫
0

T∫
0

(λs,tρu,v − μ2
s,t,u,v)

− d
2−1

μ2
s,t,u,vdsdtdudv

≥ CH,T

T∫
0

1∫
0

T∫
0

1∫
0

(t2Hx2H + s2Hy2H)st

((1 − x)2Ht2H + (1 − y)2Hs2H)
1+ d

2

dydsdxdt

≥ CH,T

1∫
0

1∫
0

1∫
0

1∫
0

(t2Hx2H + s2Hy2H)st

((1 − x)2Ht2H + (1 − y)2Hs2H)
1+ d

2

dydsdxdt

≥ CH,T

1∫
0

dy

y∫
0

dx

x∫
0

dt

t∫
0

ds
s2H+1x2H

t2H(1+d/2)−1(1 − x)2H(1+d/2)

≥ CH,T

1∫
0

dy

y∫
0

x4−H(d−2)

(1 − x)2H(1+d/2)
dx = CH,T

1∫
0

x4−H(d−2)(1 − x)1−2H(1+d/2)dx,
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where CH,T >0 is a constant depending only on H and T and its value may differ

from line to line, which implies that H < 2
d+2 if the convergence (ii) holds.

On the other hand,

T∫
0

T∫
0

T∫
0

T∫
0

(λs,tρu,v − μ2
s,t,u,v)

− d
2−1

μ2
s,t,u,vdudsdvdt

≤ CH

T∫
0

1∫
0

T∫
0

1∫
0

(t2Hx2H + s2Hy2H)2st

[(x2Ht2H + y2Hs2H)((1 − x)2Ht2H + (1 − y)2Hs2H)]
d/2+1

dydsdxdt

≤ CH

T∫
0

1∫
0

T∫
0

1∫
0

(t2Hx2H + s2Hy2H)2st

[(xHtHyHsH)((1 − x)HtH(1 − y)HsH)]
d/2+1

dydsdxdt

≤ CH

T∫
0

1∫
0

T∫
0

1∫
0

T4H

x
d+2
2 Hy

d+2
2 H(1 − x)

d+2
2 H(1 − y)

d+2
2 Ht(d+2)H−1S(d+2)H−1

dydsdxdt

< ∞

if H < 2
d+2 . Where CH >0 is a constant depending only on H and its value may differ

from line to line. Thus, the proof is completed. □
Hence, Theorem 5 follows from the next proposition.

Proposition 7. Under the assumptions above, the following statements are equivalent:

ℓT Î U if and only if

T∫
0

T∫
0

T∫
0

T∫
0

(λs,tρu,v − μ2
s,t,u,v)

− d
2−1

μ2
s,t,u,vdudvdsdt < ∞. (4:3)

In order to prove Proposition 7, we need some preliminaries(see Nualart [28]). Let X,

Y be two random variables with joint Gaussian distribution such that E(X) = E(Y) = 0

and E(X2) = E(Y2) = 1. Then, for all n, m ≥ 0, we have

E(Hn(X)Hm(Y)) =
{
0, m �= n,
1
n! [E(XY)]

n, m = n.
(4:4)

Moreover, elementary calculus can show that the following lemma holds.

Lemma 8 ([7]). Suppose d ≥ 1. For any x Î [-1, 1) we have

∞∑
n=1

n∑
k1,...,kd=0
k1+···+kd=n

2n(2k1 − 1)!! · · · · · (2kd − 1)!!
(2k1)!! · · · · · (2kd)!! xn � x(1 − x)−( d2 +1).

Particularly, this is an equality if and only if d = 1 (see An and Yan [32]).

It follows from μ2
s,t,u,v ≤ λs,tρu,v that

μ2
s,t,u,v

(λs,tρu,v − μ2
s,t,u,v)

d
2 +1

=
μ2
s,t,u,v

λs,tρu,v

(
1 − μ2

s,t,u,v

λs,tρu,v

)−( d2 +1)( 1
λs,tρu,v

) d
2

�
∞∑
n=1

n∑
k1,...,kd=0
k1+···+kd=n

2n(2k1 − 1)!! · · · · · (2kd − 1)!!
(2k1)!! · · · · · (2kd)!!

μ2n
s,t,u,v

(λs,tρu,v)
n+ d

2

.
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Proof of Proposition 7. For ε >0, T ≥ 0, we denote

	�ε
(κ) := E(|ϒ√

κ�ε,T |2)

and 	�(κ) := E(|ϒ√
κ�T|2). Thus, by Proposition 2.1, it suffices to prove (4.3) if and

only if FΘ(1) <∞. Noticing that

�ε,T =

T∫
0

T∫
0

pε(SHt − S̃Hs )dsdt

=
1

(2π)d

T∫
0

T∫
0

∫
�d

ei〈ξ , SHt − S̃Hs 〉e−ε
|ξ |2
2 dξdsdt

=
1

(2π)d

T∫
0

T∫
0

∫
�d

e−
1
2 (λs,t+ε)|ξ |2

∞∑
n=0

inσ n(t, s, ξ)Hn

(
〈ξ , SHt − S̃Hs 〉

σ (t, s, ξ)

)
dξdsdt

≡
∞∑
n=0

Fn.

Thus, by (4.4) and Lemma 8, we have

	�ε
(1) =

∞∑
n=0

nE(|Fn|2)

=
∞∑
n=0

n

(2π)2d
E

⎡
⎢⎣ ∫
[0,T]4

∫
�2d

e−
1
2 ((λs,t+ε)|ξ |2+(ρu,v+ε)|η|2)

σ n(t, s, ξ)σ n(u, v, η)

Hn

(
〈ξ , SHt − S̃Hs 〉

σ (t, s, ξ)

)
Hn

(
〈η, SHu − S̃Hv 〉

σ (u, v, η)

)
dξdηdudvdsdt

]

=
∞∑
n=1

1

(2π)2d(n − 1)!

∫
[0,T]4

μn
s,t,u,vdudvdsdt

∫
�2d

e−
1
2 ((λs,t+ε)|ξ |2+(ρu,v+ε)|η|2)〈ξ , η〉ndξdη

=
∞∑
n=1

1

(2π)2d(2n − 1)!

∫
[0,T]4

μ2n
s,t,u,vdudvdsdt

∫
�2d

e−
1
2 ((λs,t+ε)|ξ |2+(ρu.v+ε)|η|2)〈ξ , η〉2ndξdη

=
∞∑
n=1

1

(2π)2d(2n − 1)!

∫
[0,T]4

μ2n
s,t,u,vdudvdsdt

×
∫
�2d

e−
1
2 ((λs,t+ε)(ξ2

1 +···+ξ2
d )+(ρu,v+ε)(η2

1+···+η2
d )(ξ1η1 + · · · + ξdηd)

2ndξ1 · · ·dξddη1 . . . dηd

=
∞∑
n=1

1

(2π)2d(2n − 1)!

∫
[0,T]4

μ2n
s,t,u,vdudvdsdt ×

∫
�2d

e−
1
2 ((λs,t+ε)(ξ2

1 +···+ξ2
d )+(ρu,v+ε)(η2

1+···+η2
d ))

n∑
k1,...,kd=0
k1+···+kd=n

(ξ1η1)
2k1(ξ2η2)

2k2 . . . (ξdηd)
2kddξ1 . . . dξddη1 . . . dηd

=
1

(2π)d

∞∑
n=1

n∑
k1,...,kd=0
k1+···+kd=n

2n(2k1 − 1)!! · · · · · (2kd − 1)!!
(2k1)!! · · · · · (2kd)!!

∫
[0,T]4

μ2n
s,t,u,v

((λs,t + ε)(ρu,v + ε))n+
d
2

dudvdsdt

�
∫

[0,T]4

μ2
s,t,u,v((λs,t + ε)(ρu,v + ε) − μ2

s,t,u,v)
− d
2−1dudvdsdt,
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where we have used the following fact:

∫
�

ξ2ke−
1
2 (λs,t+ε)ξ2

dξ = 2

∞∫
0

ξ2ke−
1
2 (λs,t+ε)ξ2

dξ

= 2k+
1
2�

(
k +

1
2

)
(λs,t + ε)−(k+ 12 ) =

√
2π(2k − 1)!!(λs,t + ε)−(k+ 12 ).

It follows that

lim
ε→0

	�ε
(1) �

∫
[0,T]4

μ2
s,t,u,v(λs,tρu,v − μ2

s,t,u,v)
− d
2 dudvdsdt

for all T ≥ 0. This completes the proof. □

5. Regularity of the intersection local time
The main object of this section is to prove the next theorem.

Theorem 9. Let Hd <2. Then, the intersection local time ℓt admits the following esti-

mate:

E(|�t − �s|2) ≤ Ct2−Hd|t − s|2−Hd,

for a constant C >0 depending only on H and d.

Proof. Let C >0 be a constant depending only on H and d and its value may differ

from line to line. For any 0 ≤ r, l, u, v ≤ T, denote

σ 2 = Var
[
ξ
(
SHr − S̃Hl

)
+ η

(
SHu − S̃Hv

)]
.

Then, the property of strong local nondeterminism (see Yan et al. [24]):there exists a

constant �0 >0 such that (see Berman [33]) the inequality

Var

⎛
⎝ n∑

j=2

uj
(
SHtj − S̃Htj−1

)⎞⎠ ≥ κ0

n∑
j=2

u2j Var
(
SHtj − S̃Htj−1

)
. (5:1)

holds for 0 ≤ t1 < t2 <· · · < tn ≤ T and uj Î ℝ, j = 2, 3,..., n. and (1.2) yield

σ 2 = Var
(
ξ(SHr − SHu ) − ξ(S̃Hl − S̃Hv ) + (ξ + η)

(
SHu − S̃Hv

))
≥ C[ξ2(|r − u|2H + |l − v|2H) + (ξ + η)2(u2H + v2H)].

It follows from (3.1) that for 0 ≤ s ≤ t ≤ T

E
∣∣Pε,t − �ε,s

∣∣2 =
1

(2π)2d

t∫
s

t∫
s

drdl

t∫
s

t∫
s

dudv
∫
�2d

e−
1
2 (σ

2+ε|ξ |2+ε|η|2)dξdη

+
4

(2π)2d

t∫
s

dr

t∫
s

dl

t∫
s

s∫
0

dudv
∫
�2d

e−
1
2 (σ

2+ε|ξ |2+ε|η|2)dξdη

+
4

(2π)2d

t∫
s

dr

s∫
0

dl

t∫
s

s∫
0

dudv
∫
�2d

e−
1
2 (σ

2+ε|ξ |2+ε|η|2)dξdη

≡ 1

(2π)2d
[A1(s, t) + 4A2(s, t) + 4A3(s, t)].
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We have

A1(s, t) =

t∫
s

t∫
s

drdl

t∫
s

t∫
s

dudv
∫
�2d

e−
1
2 (σ

2+ε|ξ |2+ε|η|2)dξdη

≤ C

t∫
s

t∫
s

drdl

t∫
s

t∫
s

dudv [(|r − u|2H + |l − v|2H)(u2H + v2H)]
− d
2

≤ C

t∫
s

t∫
s

t∫
s

t∫
s

|r − u|−
Hd
2 |l − v|−

Hd
2 u−Hd

2 v−
Hd
2 drdldudv

= C

⎛
⎝ t∫

s

t∫
s

|r − u|−Hd
2 u−Hd

2 drdu

⎞
⎠

2

≤ 4C

⎛
⎝ t∫

s

r∫
s

(r − u)−
Hd
2 u−Hd

2 dudr

⎞
⎠

2

,

for 0 ≤ s ≤ t ≤ T. Noting that

1∫
α

(1 − m)x−1mx−1dm ≤ βx(1 − α)x,

for all a Î [0,1] and x >0, where bx is a constant depending only on x, we get

t∫
s

r∫
s

(r − u)−
Hd
2 u−Hd

2 dudr =

t∫
s

r1−Hddr

1∫
s/r

(1 − m)−
Hd
2 m−Hd

2 dm

≤ C(t − s)2−dH,

which yields

A1(s, t) ≤ C(t − s)4−2dH,

for 0 ≤ s ≤ t ≤ T. Similarly, for A2(s, t) and A3(s, t) we have also

A2(s, t) =

t∫
s

dr

t∫
s

dl

t∫
s

s∫
0

dudv
∫
�2d

e−
1
2 (σ

2+ε|ξ |2+ε|η|2)dξdη

≤ C

t∫
s

dr

t∫
s

dl

t∫
s

s∫
0

dudv [(|r − u|2H + |l − v|2H)(u2H + v2H)]−
d
2

= C

t∫
s

t∫
s

|r − u|−
Hd
2 u−Hd

2 drdu

t∫
s

dl

s∫
0

|l − v|−
Hd
2 v−

Hd
2 dv

≤ Ct2−Hd(t − s)2−Hd,

A3(s, t) =

t∫
s

dr

s∫
0

dl

t∫
s

s∫
0

dudv
∫
�2d

e−
1
2 (σ

2+ε|ξ |2+ε|η|2)dξdη

≤ C

t∫
s

s∫
0

drdl

t∫
s

s∫
0

dudv[(|r − u|2H + |l − v|2H)(u2H + v2H)]
− d
2

= C

t∫
s

t∫
s

|r − u|−
Hd
2 u−Hd

2 drdu

s∫
0

s∫
0

|l − v|−
Hd
2 v−

Hd
2 dldv

≤ Ct2−Hd(t − s)2−Hd,
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for 0 ≤ s ≤ t ≤ T. Thus, Theorem 2 and Fatou’s lemma yield

E(|�t − �s|2) = E(lim
ε→0

|�ε,t − �ε,s|2) ≤ lim inf
ε→0

E(|�ε,t − �ε,s|2) ≤ Ct2−Hd(t − s)2−Hd.

This completes the proof. □
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