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1 Introduction and statement of results
Let P(z) := Z;l:o a;7 be a polynomial of degree 7, and let P'(2) be its derivative, then

max|P’(z)| < nmax|P(z)|. @
lzl=1 |zl=1

Inequality (1) is a famous result due to Bernstein and is best possible with equality holding
for the polynomial P(z) = Az", where X is a complex number.

If we restrict ourselves to a class of polynomials having no zeros in |z| < 1, then the above
inequality can be sharpened. In fact, Erdos conjectured and later Lax [1] proved that if
P(z) #0in |z| < 1, then

max’P’(z) < 2 max P(z)|. (2)
|z]=1 2 |z|=1

As a refinement of (2), Aziz and Dawood [2] proved that if P(z) is a polynomial of degree
n having no zeros in |z| < 1, then

1‘121|2=1¥|P’(z)| < g{ma)l(|P(z)| —I‘Ei:rll|P(z)|}. (3)

lz|=

Asan improvement of (3), Dewan and Hans [3] proved that if P(z) is a polynomial of degree
n having no zeros in |z| < 1, then for any g with || <1and |z| =1,

zP (2) + %P(z)
B

=54( 2| maee) - (
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Let D, P(z) denote the polar derivative of the polynomial P(z) of degree n with respect
to o, then

D,P(z) = nP(z) + (a — 2)P'(2).

The polynomial D, P(z) is of degree at most » —1 and it generalizes the ordinary derivative
in the sense that

D,P(2)
lim

o—>00 o

=P(z).

As an extension of (1) to the polar derivative, Aziz and Shah ([4], Theorem 4 with k = 1)
showed that if P(z) is a polynomial of degree n, then for every complex number o« with
|| > 1,

’DaP(z)| < nla| r‘rzllei)I(|P(z)| for |z] =1. (5)

Inequality (5) becomes equality for P(z) = az", a # 0.

If we divide the two sides of (5) by || and let |o| — oo, we get inequality (1).

Aziz and Shah [5] proved that if P(z) is a polynomial of degree # that does not vanish in
|z| <1, then for every complex number « with |«| > 1,

max|DwP(z)| < "

nay 51 U+ 1) max|P@)] - (1 - 1) minlp)] | ©)

The estimate (6) is best possible with equality for P(z) = z" + 1. If we divide both sides of (6)
by |«| and make || — oo, we get inequality (3).

As an improvement and generalization to (6) and (4), Liman et al. [6] recently proved
the following theorem.

Theorem 1 If P(z) is a polynomial of degree n that does not vanish in |z| < 1, then for every
complex number a, 8 with |a| > 1, |8| <1land |z| =1,

| -1
2

< E{(‘owr,fil()['—_l + ‘z+ﬁ|a|—_1 )max|P(z)|
-2 2 2 lz|=1

_(‘a+,6|a|2_1‘—‘z+,6|a|2_1‘)min|P(z)|}, (7)

lz|=1

zDP(z) + np P(2)

In this paper, we prove the following more general result which is an extension as well
as generalization of Theorem 1 and yields a number of known polynomial inequalities.

Theorem 2 Let P(z) be a polynomial of degree n that does not vanish in |z| < k, k <1, then
for all real or complex numbers o; with |oa;| > k, k <1,i=1,2,...,t, t <n -1 and for any
real or complex number B with |8| <1 and for |z| =1,

1+ k)

(laa| = k) (|az] = k) - - - (|| = k) ”
1+ k)t

2Dy, -+ Doy Dy P(2) +/3n(n—1)~~~(n—t+1){ (loa| = k)(leea| = &) - - - (Jexe| = k) }P(z)'

5%n(n—1)~~(n—t+1){<%

051'052"'at+ﬂ{


http://www.journalofinequalitiesandapplications.com/content/2013/1/183

Singh et al. Journal of Inequalities and Applications 2013, 2013:183
http://www.journalofinequalitiesandapplications.com/content/2013/1/183

+

; (loa| = K)oz | = k) -+ - (Jere| = k)
: ”3{ A+ )y ”) max|P(z)|

(1 oo cay +,3{(|a1|_k)(|a2|_k)(|at|_k)H
kn 102 D
¢ (loa] = k)(Jas| = k) - - - (Joeg| = k) .
—lz +ﬂ{ A + k)t }DILILII:]P(Z)‘} ®)

Remark Theorem 1 is a special case of Theorem 2 when we take t =k =1.
If we take ¢ =1 in Theorem 2, we get the following corollary.

Corollary 1 If P(z) is a polynomial of degree n that does not vanish in |z| < k, k <1, then
for all complex numbers o, 8 with |a| > k, k <1, || <1, and for |z| =1,

—k —k
2D, P(z) + ,3— ()’ {(k“ '3|(;|+k( +’z+ﬂl(;|+k(>mla>1<|P(z)|
_(ia+ﬂ|a|_k‘—‘z+ﬂ|al_k> n|P(z)|}
k" 1+k 1+k |/ 1zl=k

If we take k =1 in Theorem 2, we get the following result.

Corollary 2 Let P(z) be a polynomial of degree n that does not vanish in |z| < 1, then for all
real or complex numbers a; with |a;| > 1,i=1,2,...,t,t <n—1and for any real or complex
number B with |B| <1 and for |z| =1,

ztDat~-~Da2Da1P(z)+,3n(n—1)~~~(n—t+1){(|al|_1)(|a2|;t1)m(|at|_1) }P(z)’
B 1| B [ A SRR
. zt+ﬁ{(|al| —1)(|az|;t1)~~~(|at| —1)”> max|P(2)
_<al,azmaﬁﬁ{(mu—1>(|a2|;t1)---(|at|—DH
e p et G 01 ©

For $ =0 and ¢ =1 in Theorem 2, we get the following.

Corollary 3 Let P(z) be a polynomial of degree n that does not vanish in |z| < k, k <1, then
for any real or complex number o with |a| > k, k <1,

max|D P(z)| { (u + 1) 1‘11|2_1)1<|P(z)| - (|k_| - 1) F}i—I/:|P(Z)| } (10)

If we take k =1 in Corollary 3, then (10) reduces to (6).
By taking ¢ =1 in (8), dividing both sides of (8) by || and letting |a| — 00, we have the
following generalization of inequality (4).

Page 3 of 19
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Corollary 4 Let P(z) be a polynomial of degree n that does not vanish in |z| < k, k <1, then
for any real or complex number B with |B| < land |z| =

<3 (B i+ e e
K 1+ k|) HERIEE

(k” ‘ ‘1+k ) ‘ler;’P(z ’} D

Taking B = 0 and k =1 in Corollary 4, (11) reduces to (3).

zP (2) + —ﬁP(z)

2 Lemmas
We require the following lemmas. The first lemma follows from Laguerre’s theorem [7,
p-52] (see also [8]).

Lemma 1 Ifall the zeros of the nth degree polynomial P(z) lie in a circular region C, and if

& is any zero of
D, P(z) = nP(2) + (@ — 2)P'(2),
the polar derivative of P(z), then both points & and o may not lie outside of C.

By repeated applications of Lemma 1, we get the following result, when the circular re-

gion C is the circle |z]| <r.
Lemma 2 If all the zeros of the nth degree polynomial P(z) lie in |z| < r and if none of
the points oy, s, .., lie in |z| < r, then each of the polar derivatives Dy, - - - Dy, Dy, P(2),

t=1,2,...,n—1, has all its zeros in |z| <r.

Lemma 3 IfP(z) := ao + Z;iu aj7,1 < pu < n, is a polynomial of degree n having no zeros
in the disk |z| < k, k > 1, then

kP <|Q@)]| forle =
where Q(z) = z”IT%) and %|%|k“ <L
The above lemma is due to Chan and Malik [9].

Lemma 4 IfP(z) := a,z" + Z]y’z u an_z"7 is a polynomial of degree n having all its zeros in
the disk |z| < k <1, then

|Q@)| <k*|P(2)| forlzl=11<pu=<n, (12)
where Q(z) = z”@.

Proof of Lemma 4 Since all the zeros of P(z) lie in |z| < k < 1, therefore all the zeros of

Qz) = z”P(%) lie in |z| > % > 1. Hence applying Lemma 3 to the polynomial Q(2) := a, +
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>, an 7, we get
1
K—MIQ’(Z)I <[P ()|
Hence, inequality (12) follows. O
Lemma5 Let P(z) = a,z" + E]fiﬂa,,_jz”’/, 1 < u < n, be a polynomial of degree n having all

its zeros in the disk |z| < k, k <1, then for every real or complex number o with || > k,
k <1and for|z| =1,

— kM
D.P@)| = n("; g )|P(z)|.

Proof of Lemma 5 Let Q(z) = Z"P(%), we have P(z) = Z”Q(%). Then it can be easily verified
that

|Q(2)| = [nP(z) ~zP'(z)| for |z =1. (13)
Since P(z) has all its zeros in |z| < k <1, by Lemma 4, we get

|Q(2)| <k*|P(2)| for |z =1.
This implies

P'(2)| +]Q )| = (1+&)|P(2)]. (14)
Also, for |z = 1, by using (13), we have

n|P(z)| = |nP(z) + zP'(z) — zP'(z)| < |nP(z) = zP'(z)| + |P'(2)| = |Q (2)| + [P'(2)|.
Using (14) in the above inequality, we get

n|P(z)| < (1+k*)|P(z)],
or

n

’P/(z)’ > m’P(z” for |z| = 1. (15)

For every real or complex number « with |a| > k, kK <1, we have
|DoP(2)| = |nP(2) + (@ — 2)P'(2)].
Now, by using Lemma 4 and (15), we have

|D0,P(z)| = |nP(z) + (o —z)P'(z)|

= |aP'(2) + nP(z) - zP'(z)|
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> |a||P'(2)| - |nP(z) - 2P (z)|

= |a||P'(2)] - [Q(2)] forlz| =1
> |a|P'(2)| - k[P (z)|

- (lal ") P

iy
_n<|a| - )’P/(z)| for |z| = 1.

1+ k+

This completes the proof of Lemma 5. d

Lemma 6 Let P(z) = a,z" + Z]": " an_j7"7,1 < u < n, be a polynomial of degree n having
all its zeros in the disk |z| < k, k <1, then for every real or complex number o; with |«;| > k,
k<1,i=12,...,t,t <n-1land for|z| =1,

|Dy, -+ Doy Doy P(2) |

(lon| — k) (leta| — K*) - - - (Jove| — &)
(L +Kk#)t

2n(n—1)---(n—t+1){ }|P(z)|. (16)
Proofof Lemma 6 If |o;| = k for at least one i, 1 < i < t, then inequality (16) is trivial. Thus,
we assume that |o;| > k, k <1,forall1 <i < t. We proceed by the principle of mathematical
induction. The result is true for £ =1 by Lemma 5, that s, if |o;| > &, then

iy
|D., P(2)| = "(hﬂ—ku) |P(2)). 17)

Now, for ¢ = 2 and for |oy | > k, D,, P(z) will be a polynomial of degree at most #—1. Since all
the zeros of P(z) in |z| < k, k <1, therefore, by applying Lemma 1, all the zeros of D,, P(z)

liein |z| <k, k <1, then using Lemma 5 for the polynomial D,, P(z) of degree at most n—1,
and for |ay| > k, we have

|ora | — k"

|D0l2 {DMP(Z)} | = (Vl - 1)<W

) |Dqo, P(2)|. (18)

Combining (17) and (18), we get

(loa| = k) (lorz| — K*)
1+ kn)?

|Do, Do, P(2)| = n(n— 1){ }|P(z)|.

So, the result is true for ¢ = 2. Now, we assume that the result is true for ¢ = v < #; that is,
for |z| =1,

’Dau o 'DagDa1P(z)|

(loa| = k*)(loa]| — k) - - - (laty | — k™)
1+ kv

Zn(n—1)~~~(n—v+1){ }|P(z)}. (19)
We need to show that the result is true for £ = v + 1.

Now corresponding to an nth degree polynomial P(z) whose all zeros lie in the disk
|z| <k, k <1, we construct Dy, - - - Dy, Do, P(z) a polynomial of degree at most # — v for all
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real or complex numbers «; with |o;| > k, k <1,i=1,2,...,v (v < n) whose all zeros lie in

|z| < k. Therefore, for |a,1| > k, by applying Lemma 5 to Dy, - - - Dy, Dy, P(2), we get
|Dayy1 {Dat, - Day Dey P(2) }|

Upqet| — KM
= (n_U)<%>|Dau"'DazDot1P(Z)|' (20)

Combining (19) and (20), we obtain
|D0tu+1D0tu o 'DaszP(Z){

(loa| = k*)(lea| = K*) - - - (Jetvaa —k“)}
(1 + kr v+

2n(n—1)~~(n—v){ |P(z)|.

This implies that the result is true for £ = v + 1 and this completes the proof of Lemma 6.
O

Lemma?7 Let P(z) = a,z" + Zj’iuan_jz”‘j, 1 < u < n, be a polynomial of degree n having all
its zeros in the disk |z| < k, k < 1. Then for every real or complex number o; with |o;| > k,

k<1,i=12,...,t,t <n-1, and for any real or complex number B with |8| <1 and for
|Z| =1,

ztDa[ -+ DoyD P(2) + n(n—1)---(n—t +1)

(Jer] = k*)(Jaa| = Kk#) - - - (Jore| — k*)
<P { L+ ko) }P(Z)‘
>nn-1)---(n-t+1)
1 (lon| = k) (Jaa| = kH) - (Joe| = k) || .
Xﬁal.az...at+ﬁ{ sz “(21+k#)t “ le;lill'{1|P(z)|. (21)

ProofofLemma7 Theresultis clearif P(z) hasa zero on |z| = k, then m = miny; ¢ |P(z)| = 0.
We now suppose that all the zeros of P(z) lie in |z| < k, then m > 0, and we have m < |P(z)|
for |z| = k. Hence, for every A with |A| < 1, we have |P(z)| > [mA(%)"| for |z| = k. Therefore,
it follows by Rouche’s theorem that the polynomial G(z) = P(z) — mA(3)" has all its zeros
in |z] <k, k <1. As a1,09,...,a; are complex numbers with |o;| > k, k <1,i=1,2,...,t,
t <n -1, then by Lemma 2 all the zeros of

Dozt o ’DazDal G(Z)

=Dy, -+ Dy, Dy, P(2) —k%{n(m 1) (n—t+ Doy oo}t

lie in |z| < k. Applying Lemma 6 to the polynomial G(z), we get

|2'Dy, -+ Doy Do, G(2)|

(lon| = k) (laa| = KkH) - - (Jore| — k")
(1 + kr)t

2n(n—1)~~(n—t+1){ }|G(z)|, |zl =1. (22)

Page 7 of 19
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Since 2Dy, - - - Dy, Dy, G(2) has all its zeros in |z| < k, k < 1, therefore by Rouche’s theorem,
it follows from inequality (22) that the polynomial

2Dy, -+ DgyDyy G(z) + r(n—1) - - (n— £ + 1)

» { (loa| = k")(loa| = k") - - - (lete| = k™)
1+ kn)t

} G(2)

has all its zeros in |z| < 1, where |B] < 1.

By substituting for G(z), we conclude that the polynomial

T(z) =2'Dy, -+ Dgy Doy P(z) + n(n—1)--- (n -t + 1)

(o — k") el — k) -~ (| — k)
y ﬁ( R )P(z)

—Am(%)nn(n—l)m(n—t+1)

(Joa| = k")(loa| = k") - - - (lete| = k™)
% {a1~a2"'at+,3( 1+ k). )} (23)

will have no zeros in |z| > 1. This implies that for every g with |8| <1 and |z| > 1,

2'Dy, -+ Dy, Dy P(z) + n(n—=1)--- (n—t +1)

(Joa| = k*)(laa| = KkH) -+ (Jore| — k")
<8 1+ k) Jre)
Z;fz(n—1)~~~(n—t+1)m‘E "

k
op] = kK)o | = k%) - (Jorg| — K*
x al.az...at+ﬁ((| Sl (21|+kuit (o ))' (24)
If (24) is not true, then there exists a point z = @ with |w| > 1 such that
@'Dy, -+ Dy, Dy P(@) + n(n—1)--- (n -t + 1)
(Joa| = k*)(laa| = k#) -+ (Jore| — k")
P
<8 1+ k) e
<n(n—l)---(n—t+1)m‘%
(loa| = k*)(laa| = k") - -+ (Jote| = k)
X al'a2"'at+ﬁ< (1+k;/,)t : (25)
We take

@' Da, - Day Doy P() + (1 = 1) -+ (1 — £ + D) p{L1lAHN 2k K y

loey | =k ) (ot | =kH)---(Jotg | =kH) I
Q+k)

nn=1)---(n—t+m(g)" (e oy o + B

Page 8 of 19
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so that |A| < 1, and with this choice of A, we have T'(w) = 0 for |w| > 1 from (23). But this
contradicts the fact that T(z) # 0 for |z| > 1. For B with || = 1, (24) follows by continuity.
This completes the proof of Lemma 7. O

Lemma 8 Let P(z) = a,z" + EJZ/Lan_jz”’/, 1 < u < n, be a polynomial of degree n. Then for
all real or complex numbers a; with |o;| > k, k <1,i=1,2,...,t,t <n-1, and for any real

or complex number 8 with |B| <1 and for |z| =1,

2'Dy, -+ Dy, Dy P(z) + n(n—=1)-- - (n—t +1)

xﬂ{uau—kﬂuaﬂ—k”'”““”_bﬂ}Pwﬂ

(1 + kr)t
<nn-1)---(n—t+1)
1 (Joa| = k*)(|aa| = k") - (Joe| — kM)
Xﬁ“1~“2---d:+,3{ il a(21+ku)t a HrrzllzziiqP(z)‘.

Proof of Lemma 8 Let M = max;« |P(z)|, if [A| <1, then [AP(z)| < |M(%)"] for |z| = k.
Therefore, it follows by Rouche’s theorem that the polynomial G(z) = M(3)" — 1P(z) has
all its zeros in |z| < k, k < 1. As a3, ay,...,, are complex numbers with |o;| > k, k <1,
i=12,...,t t <n-1, then by Lemma 2 all the zeros of

M
Dy, -+ Dyy Dy G(2) = = {n(n-1)---(n—t+Day -z a;}2"" = ADg, - - - Doy Doy, P(2)

lie in |z| < k. Applying Lemma 6 to the polynomial G(z), we have

2Dy, - - Doy Doy, G(2)|

(Joa| = k")(loa| = k") - - - (e | = k)
(1 + km)t

Zn(n—1)~~~(n—t+1){ }|G(Z){, lzl=1. O

Now, if we proceed similarly as in Lemma 7, the result follows.

Lemma 9 Let P(z) be a polynomial of degree n, then for all real or complex numbers «;

with |o;| > k,i=1,2,...,t, and for any real or complex number 8 with || <1,

2Dy, -+ Day D, P(2) +n(n—1)---(n—t+1)ﬂ{ (loa| = k) (|aa| = k) - - - (|| - k) }P(z)'
1+ k)t

+|2'Dy; ++ Doy Dy Q(2) + n(n = 1) -+ (n =t +1)

{Gaﬂ—kXMﬂ—k%~ﬂaA—M
x B

1+ k) }Q@W

§n(n—1)-~~(n—t+1){k1—n

Oll'az"'at+,3{

[ el = K)les | K) -] ~ )
Z+ﬂ{ 1+ kY ”}ﬁﬁﬁp@)

(loa| = k)(loea| = k) - - (Jere] —k)”
1+ k)t

+

, forlzl =1,
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<Xa:=<§)n;(§;j.

Proof of Lemma 9 Let M = max ¢ |P(z)|, then |P(z)| < M for |z| < k. If A is any real or
complex number with |A| > 1, then by Rouche’s theorem the polynomial G(z) = P(z) - AM
does not vanish in |z| < k. Consequently, the polynomial

z\" (k>
Hiz):=|-) G| =
= (5) (%)
hasall zeros in |z| < kand |G(z)| = |H(z)| for |z| = k. Since all the zeros of H(z) liein |z| < k,
k <1, therefore, for § with || > 1, by Rouche’s theorem, all the zeros of G(z) + §H(z) lie in

|z| < k. Hence, by taking u =1 in Lemma 6 and using it, for every real or complex number
a; with || > k,i=1,2,...,t (1 <t<n), k<1,and |z| =1, we have

2Dy, - + - Doy D, (G(2) + SH(2))|

(lor| = K)(laa| = k) - - - (o] = k)
1+ k)t

2n(n—1)---(n—t+1){ }\G(z)+81—1(z)|.

Also, by Lemma 2, all the zeros Dy, - - - Dy, Dq, (G(2) + 8H(2)) lie in |2| < k <1, where |o;]| >
k,i=1,2,...,t (1 <t < n). Therefore, for any g with |8] <1, Rouche’s theorem implies that
all the zeros of

Z'Dy, -+ Dy, Do, (G(2) + 8H(2))

(laa| = k) (loz| = k) - - - (|| = k)
(1+k)t

+,Brz(n—1)~-~(n—t+1){ }(G(Z)+5H(Z))

liein |z| < 1.
So, the polynomial

T(z) = 2'Dy, - - - Day Doy G(z) + fr(n—1) - - (n =t +1)

| R
1+ k)t

} G(2)

+ 8<ztDat -++Dyy Dy H(2) + Br(n—=1)---(n— £ +1)

(loa] = K)(lta| = ) (] )
X{ ATk }H&O

will have no zeros in |z| > 1. Now, using a similar argument as that in the proof of Lemma 7
and taking pu = 1, we get for |z| > 1,

2'Dy, -+ +DgyDy, G(2) + r(n—1)--- (n— £ + 1)

(o] = K)(leral = ) -+~ (ke — &)
X{ 1+ k) }G@’
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=

2'Dy, -+ Dy, Do H(z) + Bu(n—1)--- (n—t + 1)

y { (loa] = K)(Jea] = k) - - - (ot — k)

B }H&w (26)

Now,

o G ) () (0 -0 3

On substituting G(z) and H(z) in (26), we obtain the following:

Z'Dy, -+ DyyDo, P(2) + Pri(n—1) -+ - (n—t + 1){ (loa] = KNjoral 280 - (erel = K) }P(z)
1+ k)t
_an(n_l)...(n_Hl)(Zt+ﬁ{ (Jon | —k><|a(zl|;/k<;t---(|at| ~k) D‘

<|2'Dy, -+ Dy, Doy Q2) + pri(n —1) -+ (n — £ + 1)

y {(Ionl —k)(loea| = k) - - - (Jetg| = k)

1+ k)t }Q(z)

_XMn(n_l)...(n_t_l—l)(%)n

x (a rea +ﬂ{(lonl—k>(locz|—k)---(mg-zd})(
e 1+ k) :

This implies that

Z'Dy, -+ Dy, Do P(2) + Br(n—1)--- (n—t + 1){ (oa] = K)leva| =) - - (ete| = K) }P(z)'

1+ k)t
_WLM%m_ly.(n_t+D(£+ﬂ{ﬂaﬂ—kxmazi;“ﬂaA_m})‘
< ZtDat~~'Da2Da1Q(Z)+,31’l(n—1)~~~(n—t+1)
(lar| = K)(Jaa| = k) - - - (o] = k)
X{ 1+ k) }Q@
_XMn(n_l)...(n—t_'_l)(E)n
k
— K —k) - (Joog | —
e

As |P(z)| = |Q(z)| for |z| = k, that is, M = max, |P(z)| = max,-x |Q(z)], by taking u =1 in
Lemma 8 and using it to the polynomial Q(z), we obtain the following:

szm---DaszQ(z)+ﬂn(n—1)--~(n—r+1){('“1"k)"“z"k)"'('“t"k’}@z)‘
1+ k)t
< Ikln(n—l)..~(n—t+1)2—/i o ""2"'0lt+,3{(|a1| _k)(la(21|:;:))t"'(|at| —k)”



http://www.journalofinequalitiesandapplications.com/content/2013/1/183

Singh et al. Journal of Inequalities and Applications 2013, 2013:183 Page 12 of 19
http://www.journalofinequalitiesandapplications.com/content/2013/1/183

Thus, taking the argument of A suitably, we obtain

ZtDa[---DaQDalQ(Z)+/3n(n—1)~~~(n—t+l){(|a1| —k)(|062| —k)...(|Olt| _k)}Q(Z)
1+ k)t
—XMn(n—1)~~~(n—t+1)(f)n
k
§ (a . +ﬁ{uom—k)(|ozz|—k)---(|ozt|—/<)}>‘
o (1 + k)t
= AMMnn-1)---(n—t+1)
NE T +ﬂ{(|a1|—k)(|a2|—k>-~-<|at|—k)}‘
kTP ‘ 1+ k)t
— 2Dy, + Dgy Doy Q2) + Br(n —1) - - (n -t + 1)
(lea| = K)(|az| = k) - - - (|| = k)
X { YL }Q(z)’. (28)

Using (28) in (27), we get for |z] =1 and |B] < 1,

2Dy, -+ Doy Dy P(2) +n(n—1)--~(n—t+1),3{ (loa| = k)(leea| = &) - - - (Jere| = k) }P(z)'

1+ k)t
—|)L|}’l(l/l—1)-~~(}’l—t+1)M Zt+ﬁ{(|al|_k)(la2|_k)"'(|at|_k)}‘
1+ k)t
§|)\|n(n—1)~~~(n—t+1);(—\;1 051'(12"'05t+ﬂ{(lall_k)(|a(21|:]/:))t"'(|at|_k)}‘
— 2Dy, +++ Dy Doy Qz) + n(n—1) - - - (n— £ + 1)
(loa]| = k) (Jaa| = k) - - - (Jae| = k)
<8 Lk fota)
That is,
Z'Dy, -+ Dy, Dy P(z) + n(n—=1)--- (n—t +1)
(loa| = k) (Jaa| = k) - - - (|| - k)
<8 A+ ky fre)
+|2'Dy; ++ Doy Dy Q(2) + n(n = 1) -+ (n =t +1)
(Joa| = K)(laa| = k) - - - (o] — k)
< { L+ k) }Q(Z)'
_ — k) (loy] —
< W{ al-az---at+ﬂ{(|a1| k)(la(21|+/:))t (Joe| k)” %

* (1+ k)

Zt+ﬂ{(|a1|_k)“az'_k)m('atl_k)}Hn(n—1)~~(n—t+1)M,
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Taking |A| — 1, we get

2Dy, -+ Day Do, P(2) +n(n—1)-~~(n—t+1)/3{ (loa| = K) (2| = k) - - - (loze| = k) }P(z)’

1+ k)t

+|2'Dy, ++*Dyy Doy Q2) + n(n—1) -+ - (n—t + 1)
(lar| = K)(Jaa| = k) - - - (Jors| = k)
o (Y oo
iy —k) - (Joy| -
< { al-az---at+ﬁ{(|all )(|0l(21|+k))t (lae k)”.%
+ zt+ﬁ{(|al|_k)(|a2|_k)m(|at|_k)}Hn(n—l)--.(n—t+1)M. (29)
1+ k)t

Then, by applying the maximum modulus principle for the polynomial P(z) when |k| <1,

max ’P(z) ’ < max |P(z) ‘
|z|=k |z|=1

This in conjunction with (29) and the argument of continuity gives the result. O

Lemma 10 Let H(z) be a polynomial of degree n having all its zeros in |z| <k, k <1, and
let G(z) be a polynomial of degree not exceeding that of H(z). If |G(z)| < |H(z)| for |z| = k,
k <1, then for all real or complex numbers o; with |o;| > k,i=1,2,...,t, and for any real

or complex number 8 with |B| <1, and |z| = 1, we have

Z'Dy, -+ Dy, Doy G(z) + n(n—1)--- (n— £ + 1)

{ (loa| = K) (2| = &) - - - (loze| = k)
xp

1+ k) }Gwﬂ

<|Z'Dy, -+ Dy, Doy H(z) + n(n=1)--- (n -t + 1)

(o] = K)(az] - - (o] - )
s L+ & frc)

Proof of Lemma 10 For any real or complex number A with |A| < 1, we have [AG(z)| <
|G(z)| < |H(2)| for |z| = k, k < 1; therefore, by Rouche’s theorem H(z) — AG(z) and H(z)
have the same number of zeros in |z| < k. Also, as |G(z)| < |H(z)| for |z| = k, k <1, any zero
of H(z) that lies on |z| = k is also a zero of G(z). Therefore, H(z) — AG(z) has all its zeros
in the closed disk |z| < k. Therefore, using Lemma 6 with u =1, we have for every real or

complex number «; with |o;| > k,i=1,2,...,t, k<1 (1 <t<mn)and |z] =1,

|2'Dy, -+ Doy Doy (H(2) = AG(2))|

(laa| = k) (Jaa| = k) - - - (|| = k)
1+ k)t

2n(n—1)~~(n—t+1){ }\H(Z)—)»G(Z)|-
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Now, by a similar argument as that used in the proof of Lemma 7, for any real or complex
number B with |B] <1, we get

2Dy, -+ Doy Deyy (H(2) = AG(2))|
(loa| = k) (|| = &) - - - (loze| = k)
1+ k)t

(loa| = k)(lea| = k) - - - (Jore| = k)
1+k)t

Zn(n—1)~~~(n—t+1){ }|H(Z)—7»G(Z)|

>n(n—1)---(n—t+1)|/3|{ }‘H(z)—kG(z)’

for |z| = 1, which implies

T(2) = 2'Dy, -+ + Dyy Doy H(2) = AZ' Dy, - - Dy, Doy G(2)

(lea| = K)(Jaa| = k) - - - (Joe| = k) }
1+ k)t

+n(n—1)--~(n—t+1)/3{

x (H(z) - 2G(2)) #0

for |z| = 1.
That is,

T(z) =2'Dy, -+ Doy Doy H(2) + n(n—1) -+ (n =t +1)

y ﬁ{ (lon| = K)(Jea| = k) - - - (lee| — k)
1+ k)t

}H(z)

—A|:ztDat--~Da2Da1G(z) +nn=1)---(n—t+1)

{(Iall =Kl = k) - -~ (loe| = k)
xp

L+ k) }G(Z)] 70 (30)

for |z| = 1.
So, we conclude that

2'Dy, -+ DgyDoy H(z) + n(n—1)---(n—t + 1)

Xﬁ{ﬂaﬂ—kﬂmﬂ—k%~ﬂaA—M}H&4

1+ k)t
> |2'Dy, ++ Dy Doy G(2) + n(n—1) - (n— £ +1)
8 ﬂ{ (loa| = K)(|Jera| = &) - - - (|ete| = k) }G(z)‘ 31)
1+ k)t
for |z| = 1.

If (31) is not true, then there exists a point z = w with |w| = 1 such that

0'Dy, Doy Doy H) + n(n—1)---(n—t +1)

(o] = K)(ats| = ) - (] )
Xﬁ{ A+ 0y }Hwﬁ

Page 14 of 19
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<|w'Dy, -+ Dyy Dy G(w) + n(n—1) -+ (n— £ +1)
(larl = K)(Jaa| = k) - - - (lerg| = k)
P { L+ k) G|
Take
@' De s DD H(@) 4l =1 (£ + 1B (Rl (=0 H ()
" @Dy DayDey G(0) + il —1) - (n — ¢ + 1) p{ LRl le0)y G )

then |A| < 1, and with this choice of A, we have from (30) T(w) = 0 for |w| = 1. But this
contradicts the fact that T'(z) # 0 for |z| = 1. For B with |8] = 1, (31) follows by continuity.
This completes the proof of Lemma 10. d

3 Proof of the theorem
Since the polynomial P(z) has no zeros in the disk |z| < k, and therefore, if m =
minp, - [P(2)|, then m < |P(z)| for |z| < k. If A is any real or complex number with |A| <1,

we have
|Am| <m < |P(z)| for |z| = k.

Thus, by Rouche’s theorem, the polynomial G(z) = P(z) — Am does not vanish in |z| < k.
Consequently, the polynomial

n 7o\ n
H(z) := (%) G<%) - Q) —XmG)

has all its zeros in |z| < k, where Q(z) = (%)”P(%), and also we have |G(z)| = |H(z)| for
|z| = k.
Applying Lemma 10 to the polynomials H(z) and G(z), we have

(Jaa] = K)(Jea] = k) - - - (et — k)
1+ k)t

}G(z)‘

2'Dy, -+ Dy, Dy, G(2) + n(n—1)--- (n—t + 1),3{

<

2Dy, Doy Doy H(z) + n(n—1) - (n—t + 1)

{ (loa| = K) (2| = &) - - - (loze| = k)
xp

1+ k) }H(Z)’

for every real or complex number o; with |o;| > k,i=1,2,...,¢ and for any real or complex
number B with || <1and |z| = 1.

On substituting G(z) and H(z) in the above inequality, we obtain the following for every
real or complex number «; with |o;| > k,i=1,2,...,¢, and for any real or complex number
B with || <land |z|=1,

Z'Dy, - DyyDo, P(2) + Pr(n—1)--- (n—t + 1){ (oa] = kNJoral 280 - (Jerel = K) }P(z)
L+ k)t
—Amn(n—l)..-(n—t.,.l)(zt +ﬁ[(|al| —k)(|a(zl|:gt---<|a[| -K) D’
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<|2'Dy, -+ Dy, Doy Qz) + pri(n —1) - (n— £ + 1)

y { (loa] = K)(Jea] = k) - - - (ot — k)

(1+k)t }Q(Z)

_an(n_l)(n_t+l)<%)n

_ k) (Joy| — k
RIS AR BRI o)

Since all the zeros of Q(z) lie in |z| < k and |P(z)| = |Q(z)| for |z| = k, therefore, by apply-
ing Lemma 7 to Q(z), we have

Z'Dy, -+ Dgy Doy Q(z) + r(n—1) - - - (n— £ + 1)

1+ k)t
>nn-1)---(n-t+1)

eru—mwm—m~mmrqu&ﬂ

X —

o min|Q(2)|

|z|=k

{(Iall = k)(laa| = k) - - (lexe] —k)}
al'“Z"'at+ﬁ

1+ k)

=n(n—1)---(n—t+1)kin

(laa| = K)(Jea] — k) - - - (ote| — k) } ‘m

al-a2~~~at+,3{ 1+ k)t

Then, for an appropriate choice of the argument of A, we get

2'Dy, -+ DgyDyy Q(z) + pr(n—1)--- (n— £ + 1)

y {(Iall = k)(Jjorz| = k) - - - (lexe| = k)

1+ &) }Q(Z)

—an(n—1)~~~(n—t+1)<z)n

( {(Iall—k)(lazl—k)---(latl—k)}>‘
X|og-ay---ap+

1+k)

2'Dy, -+ DgyDyy Q(z) + r(n—1)--- (n— £ + 1)

(Jar] = K)(jera] = &) - -~ (ot | = &)
X{ L+ ) }Q&ﬂ
—|Almn(n-1)---(n—t+1)
xg;ara2”1n+ﬂ{0au—kxma:§;~0aA—m}‘ )
for |z| = 1.

Then combining the right-hand side of (32) and (33), we rewrite (32) as

2Dy, -+ Do, Day P(2) +/3n(n—1)~~~(n—t+1){ (loa| = k)(leea| = &) - - - (Jexe| = k) }P(z)'

1+ k)

(lea| = K)(loz| = k) - - - (|ot | = k) H
(1+k)t

—|Amn(n-1)---(n—t+1)

zt+,3[
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=

2'Dy, -+ Dy, Dy Q(z) + B(n—1)--- (n—t + 1)

y { (loa] = K)(Jea] = k) - - - (ot — k)
1+ k)t

—|Amn(n-1)---(n—t+1)
y 1 (loa| = K)oz = k) -+ (Jee| = k)
1+ k)t

}Q(Z)‘

kn

a10a2'~~at+ﬁ{ H for |z| = 1.

Equivalently,

apw~~DmDmPu)+ﬂmn—1y~mn—t+n{““”‘k““ﬂ‘k*”““”‘”}P@ﬁ

(1+k)

<

Z'Dy, -+ Dy, Dy Q(2) + B(n—1)--- (n—t + 1)

y {(Iall = k)(Jjorz| = k) - - - (lexe| = k) }Q(z)‘

1+ k)t
—|Amn(n-1)---(n—t+1)
8 {ia v +ﬁ{(|a1|—k)(lazl—k)~~~(|at|—k)”
P ! 1+ k)t

¢ {(qul—k)(lazl—/<)~~-(|at|—k)}H
zZ+8 .

1+ k)t

As |A| — 1, we have

ZDq; -+ Doy Doy P(2) + Brln—1) - (n—t + 1){ (o] = KJerz| — K) - (ee] = &) }P(z)'

1+ k)

= ZtDaQ--.DazDalQ(Z)+,Bl’l(l’l—1)...(n_t+1)
(o] = K)oz | = k) - - - (Jeeg| = k)
X{ (1+k)t }Q(z)‘
—mnn-1)---n-t+1)
X {i a1 -0y +ﬁ{(|a1|—k)(|a2|—k)(|at|_k)”
rT t 1+ k)t

: {(qul—k)(lazl—/<)~~~(|at|—/<)”}
zZ+ 8 .

1+k)t

It implies that for every real or complex number g with || <1and |z| =1,

2|2'Dy, -+ * Doy Doy P(2) + Bri(n—1) - - - (n — £ + 1)

(] —K)(leral — ) -+~ (et — &)
X{ 1+ Ay }P&ﬂ

<

2'Dy, -+ Dgy Do, P(z) + Br(n—1) -+ (n—t +1)

(loa] = K)(ata| = ) (] )
X{ A+ 0 }P&ﬁ


http://www.journalofinequalitiesandapplications.com/content/2013/1/183

Singh et al. Journal of Inequalities and Applications 2013, 2013:183 Page 18 of 19
http://www.journalofinequalitiesandapplications.com/content/2013/1/183

+|2'Dy, -+ Dy Doy Q(2) + Bn(n—1) -+ - (n—t + 1)

(loa| = k) (|aa| — k) - - - (|| — k)
X{ 1+ k) }Q&ﬂ
—mn(n-1)---(n—t+1)
X{La.a.”a+ﬁ{wm—kxwﬂ—b~(mﬂ—m}

P ! 1+ k)t
3 Z:+ﬂ{(|a1|—k)(|az|—k)m(lotzl—k)H}

1+ k)t ’

This in conjunction with Lemma 9 gives, for || <1and |z]| =1,

2|2'Dy, -+ Dgy Do, P(2) + Bri(n—1) -+ (n — £ + 1)

(laa] = K)(Jaa] = k) - - - (let| = k)
x { 1+ k)t }P(Z)‘

1
5n(n—1)---(n—t+1){ﬁ YL

{(|0l1| = K)(Jora| = k) -+~ (leve| —k)H
al.a2...at+ﬁ

¢ (lor| = K)(laa| = k) - - - (o] = k)
+Z+5{ 1+ k) ”}ﬁ?w@”
1 (Joa| = K)(laa| = k) - - - (lete| = k)
—n(n—1)~~~(n—t+1){k—na1~a2~--a,+,3{ a0y H

min|P()]

7 +;3{ (lar| = K)(Jaa| — k) - - - (Jot; | —k)}H
1+ k)t

This completes the proof of the theorem.
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