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1 Introduction
Let a,b > 0 with a # b, then the Schwab-Borchardt mean SB(a, b) is defined by

Vb2—a?

cosL (a/b)’ a< b’
SB(a,b) = e o (1.1)

cosh™L (a/b)’

where cos™(x) and cosh™(x) = log(x + ~/x2 — 1) are the inverse cosine and inverse hyper-
bolic cosine functions, respectively.

It is well known that SB(a, b) is strictly increasing in both 4 and b, nonsymmetric and
homogeneous of degree 1 with respect to a and b. Many symmetric bivariate means are
special cases of the Schwab-Borchardt mean, for example,

-b
P(a,b) = —— 4 =SB(G,A) is the first Seiffert mean,
2sin™" [(a — b)/(a + b)]
-b
T(a,b) = > tan | (:_ D)@ D] =S8SB(A,Q) isthe second Seiffert mean,
-b
M(a,b) = ——— a =SB(Q,A) is the Neuman-Siandor mean,
2sinh™ [(a — b)/(a + b)]
-b
L(a,b) a4 =SB(A,G) is the logarithmic mean,

" 2tanh ' [(a - b)/(a + b)]

where G(a, b) = Vab, A(a,b) = (a+b)/2 and Q(a, b) = \/(a® + b*)/2 denote the classical ge-
ometric mean, arithmetic mean and quadratic mean of a and b, respectively. The Schwab-
Borchardt mean SB(a, b) was investigated in [1, 2].
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Let H(a, b) = 2ab/(a+b), C(a, b) = (a® + b*)/(a + b) be the harmonic and contraharmonic
means of two positive numbers a and b, respectively. Then it is well known that

H(a,b) < G(a,b) < L(a,b) < P(a,b)
< A(a,b) < M(a,b) < T(a,b) < Qa,b) < C(a, b) (1.2)
fora,b >0 with a #b.

Recently, the Schwab-Borchardt mean and its special cases have been the subject of
intensive research. Neuman and Sandor [3, 4] proved that the inequalities

714(”’ b > M(a,b) > L
log(1 ++/2) ’ 4log(l +/2)

T(A(a, b), G(a, b)) < P(a,b), T(a,b) > T(A(u, b), Q(a, b)),

P(a,b) > %A(a, b), T(a,b),

L(a,b) < L(A(a,b), G(a, D)), M(a,b) < L(A(a, b), Q(a, b)),
L(a,b) > H(P(a, b), G(a, b)), P(a,b) > H(L(a, b),A(a, b)),
M(a,b) > H(T(@,b),A@b),  T(ab)>H(M(ab),Qab),

G*(a, b) + P*(a, b)

2

L%(a,b) + A%(a, b)

2

A(a,b)T(a,b) < M*(a,b) < w’

M?(a,b) + Q*(a,b)
2

G(a, b)P(a,b) < L*(a,b) <

’

L(a, b)A(a, b) < P*(a,b) <

’

M(a,b)Q(a,b) < T*(a,b) < ,
1/3 2/3 1 2
Q"?(a,b)A”"*(a,b) < M(a,b) < gQ(a, b) + gA(a, b)
hold for all 4, b > 0 with a # b. In [5], the author proved that the double inequalities
aQ(a,b) + (1 —a)A(a,b) < M(a,b) < BQ(a,b) + (1 - B)A(a, b)
and
AC(a,b) + (1 - A)A(a,b) < M(a,b) < uC(a,b) + 1 — w)A(a, b)
hold for all @, b > 0 with a # b if and only if & < [1 - log(1 + +/2)]/[(+/2 — 1) log(1 + +/2)] =
0.3249..., 8 >1/3, 1 < [1 —log(1 + +/2)]/log(1 + /2) = 0.1345... and u > 1/6. Chu and
Long [6] found that the double inequality
My(a,b) < M(a,b) < ql(a, b)
holds for all @, b > 0 with @ # b if and only if p < log2/log[2log(1++/2)] = 1.224...and g >

e/[2log(1 ++/2)] = 1.5420..., where M,(a, b) = [(a” + b*)/2]? (p #0) and Mo(a, b) = v/ab
is the pth power mean of 4 and b. Zhao et al. [7] presented the least values o1, oy, a3 and
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the greatest values f;, 82, B3 such that the double inequalities

alH(ﬂ’ b) + (]- - al)Q(ﬂ’ b) < M(ﬂ! b) < ﬂlH(ﬂ’ b) + (1 - ﬁl)Q(ﬂ’ b)’
2G(a,b) + (1 - a2)Q(a, b) < M(a,b) < fG(a, b) + (1 - p2)Q(a, b)

and
asH(a,b) + (1 — a3)C(a, b) < M(a,b) < B3H(a,b) + (1 — B3)C(a, b)

hold for all a,b > 0 with a # b.
Very recently, the bivariate means Sap, Spa, Sca and Suc derived from the Schwab-
Borchardt mean have been defined by Neuman [8, 9] as follows:

San = SB(A,H), Sta = SB(H, A), Sca =SB(C,A), Sac =SB(A,C). (1.3)
We call the means Sap, Spa, Sca and Suc given in (1.3) the Neuman means. Moreover,

let v=(a-b)/(a+b) € (-1,1), then the following explicit formulas for S4r, Sya, Sac and
Sca have been found by Neuman [8]:

tanh i
Sy = ABRO) o, sin@) (1.4)
p q
inh ¢
Sca=A sinh(r) ) Sac=4A an(s), (1.5)
r S

where p, g, r and s are defined implicitly as sech(p) = 1 —v?, cos(q) = 1 - v2, cosh(r) =1 + 2
and sec(s) = 1 + 12, respectively. Clearly, p € (0,00), g € (0,7/2), r € (0,log(2 + V/3)) and
se€(0,7/3).
In [8], Neuman proved that the inequalities
H(a’ b) < SAH(('Z’ b) < L(d, b) < SHA(“: b) < P(d, b): (16)
T(a,b) < Scala,b) < Qa,b) < Ssc(a,b) < C(a,b) 1.7)
hold for a, b > 0 with a # b.

He et al. [10] found the greatest values a1, 0 € [0,1/2], a3, 4 € [1/2,1] and the least
values B, B> € [0,1/2], Bs, Ba € [1/2,1] such that the double inequalities

H(aa+ (1—on)b,anb + (1 - ay)a) < Sau(a, b) < H(Bra + (1 - )b, Bib + (1 - B1)a),
H(Olza + (1 - O[z)b, Olzb + (1 - Olz)a) < SHA(LZ, ]9) < H(ﬁztl + (1 - ﬁz)b, ,32]9 + (1 - ,32)(1),
C(asa+ (1 - a3)b,asb + (1 - as)a) < Scala, b) < C(Bsa + (1 - B3)b, Bsb + (1 - B3)a)

and
C(a4a + (A —ag)b,asb+ (1 - a4)a) <Sacla,b) < C(ﬂm + (1= Ba)b,Bab+(1— ,34)61)

hold for all ¢, b > 0 with a # b.
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It follows from (1.2) and (1.6) together with (1.7) that
G(a,b) < Sya(a,b) < A(a,b) < Sca(a,b) < Q(a,b) (1.8)

forall a,b > 0 with a # b.
For fixed a,b > 0 with a # b, let x € [0,1/2], y € [1/2,1],

fx)= G[xa +(1-x)b,xb+ (1 - x)a], (1.9)

g = Qya+ A -y)b,yb+(1-yal. (1.10)

Then it is not difficult to verify that f(x) and g(y) are continuous and strictly increasing
on [0,1/2] and [1/2,1], respectively. Note that

f(0) = Gla,b) < Syala,b) < Ala,b) = f(1/2), (1.11)
g(1/2) = A(a, b) < Scala, b) < Q(a, b) = g(1). (1.12)

Motivated by (1.8)-(1.12), in the article we present the best possible parameters oy, a3, 1,
B € R, a3, B35 € [0,1/2] and ay, B4 € [1/2,1] such that the double inequalities

a1A(a,b) + (1 - a1)G(a, b) < Suala, b) < f1A(a,b) + (1 - p1)G(a, b),
arA(a,b) + (1 - 22)Q(a, b) < Scala, b) < prA(a, b) + (1 - B2)Q(a, b),
Glasa + (1 - az)b,asb + (1 - a3)a] < Spa(a,b) < G| Bsa + (1 - B3)b, B3b + (1 - B3)al,
Qloaa + (1 — a)b, s + (1 — as)a] < Sca(a, b) < Q[ aa + (1 = Ba)b, Bab + (1 - Ba)a]

hold for all 4, b > 0 with a # b.
Our main results are the following Theorems 1.1-1.4. All numerical computations are
carried out using MATHEMATICA software.
Theorem 1.1 The double inequality
a1A(a,b) + (1 — o1)G(a, b) < Spala,b) < B1A(a, b) + (1 - B1)G(a, b)
holds for all a,b > 0 with a # b if and only if oy <1/3 and B, > 2/mw.
Theorem 1.2 The two-sided inequality

a2A(a, b) + (1 - 2)Q(a, b) < Sca(a, b) < p2A(a, b) + (1 - f2)Q(a, b)

holds true for all a,b > 0 with a # b if and only if oy > 1/3 and B, < [«/ilog(2 +4/3) -
V312 -1)log(2 + +/3)] =0.2390.....

Theorem 1.3 Let a3, B3 € [0,1/2], then the double inequality

G[O{gﬂ + (1 -a3)b,asb+(1- Olg)ﬂ] <Spala, b) < G[ﬁga +(1-B3)b,B3b+ (1 - ,33)(1]
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holds for all a,b> 0 with a # b if and only ifaz <1/2 — /6/6 = 0.09175... and f3 > 1/2 —
Vr?—4/27) = 0.1144....

Theorem 1.4 Let ay, B4 € [1/2,1), then the two-sided inequality
Q[aaa + (1 - aa)b,asb + (1 — ay)a] < Sca(a, b) < Q[ aa + (L - Ba)b, Pub + (1 - Bu)a]

holds true for all a,b > 0 with a # b if and only if vs <1/2 + J/6/6 =0.9082... and Ba >
1/2 +/3/[log(2 + /312 - 1/2 = 0.9271....

2 Two lemmas
In order to prove our main results, we need two lemmas, which we present in this section.

Lemma 2.1 Letp € R and
f@)=1-p)’+ (=2 +5p-1)a> + (2p* + p-D)x+p-1. (2.1)

Then the following statements are true:
(1) Ifp=1/3, then f(x) < 0 for all x € (0,1) and f(x) > 0 for all x € (1,+/2);
(2) If p=2/m, then there exists A1 € (0,1) such that f(x) < 0 for x € (0, A1) and f(x) >0
forx € (A1,1);
(3) Ifp = [V210g(2 + v/3) — v/3)/[(+/2 = 1) 10g(2 + +/3)), then there exists Ay € (1,+/2)
such that f(x) < 0 for x € (1, A2) and f(x) > 0 for x € (g, /2).

Proof For part (1), if p = 1/3, then (2.1) becomes
2 2
fE)=5ee=1) (3x% + 5x + 3). (2:2)

Therefore, part (1) follows easily from (2.2).
For part (2), if p = 2/m, then simple computations lead to

72 +10m -8

—2p* +5p—1= — Q> 0, (2.3)
2p2+p—1:W>0, (2.4)
f0--"=2 <o, (25)
=221, 26)
f(®) =31 -p® +2(-2p* +5p-1)x + (2p*> + p - 1). (2.7)

It follows from (2.3) and (2.4) together with (2.7) that f(x) is strictly increasing on (0,1).
Therefore, part (2) follows from (2.5) and (2.6) together with the monotonicity of f(x).

For part (3), if p = [v/210g(2 + v/3) — v/3]/[(+/2 - 1)10g(2 + +/3)] = 0.2390..., then nu-
merical computations lead to

—2p* +5p-1=0.0810...>0, (2.8)
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f(1)=-0.5656...<0, (2.9)
f(V/2)=0.6388...>0. (2.10)

It follows from (2.7) and (2.8) that
f®)>31-p)+2(-2p* +5p-1) + (2p* +p-1) =2p(4 - p) > 0 (2.11)

for x € (1,v/2).
Therefore, part (3) follows easily from (2.9)-(2.11). O

Lemma 2.2 Letp € R and

g(x) = (2p - 1)**® + (-256p° + 768p° — 1,008p* + 736p> — 296p” + 56p — 3)x”
+ (512p° - 1,536p° +1,776p* — 992p° + 248p> — 8p —1)x

+(-256p° + 768p° — 784p* + 288p° — 24p” + 8p - 1). (2.12)

Then the following statements are true:
) Ifp=1/2-6/6, then g(x) < 0 for all x € (0,1);
(2) Ifp=1/2+/6/6, then g(x) > 0 for all x € (1,2);
(3) Ifp=1/2- V7% = 4/(27), then there exists A3 € (0,1) such that g(x) <0 for
x € (0,A3) and g(x) > 0 for x € (r3,1);
4) Ifp=1/2+ \/3/[log(2 ++/3)]2 = 1/2, then there exists Ly € (1,2) such that g(x) < 0 for
x € (1, Ay) and g(x) > 0 for x € (74,2).

Proof For parts (1) and (2), if p = 1/2 — V/6/6 or p = 1/2 + /6/6, then (2.12) becomes
4 2
glx) = ﬁ(x ~1)(3x" + 4w +2). (2.13)

Therefore, parts (1) and (2) follow from (2.13).
For part (3), if p = 1/2 — /7% — 4/(27), then numerical computations show that

—256p° +768p° —1,008p* + 736p> — 296p* + 56p — 3

—37° +567% - 24072 + 256
= 7.[6 >

512p% —1,536p° + 1,776p* — 992p° + 248p* —8p — 1

0, (2.14)

-0 —87* + 24072 - 512
= >

= - 0, (2.15)
T
-0+ 8% — 1672 + 256
8(0) = c <0, (2.16)
T
4(12 — 72
g) = 27 >0, (2.17)

7.[2
(%) =32p - 1)*x* +2(-256p° + 768p° — 1,008p* + 736p> — 296p” + 56p — 3)x

+ (512p° - 1,536p° + 1,776p* — 992p° + 248p> —8p - 1). (2.18)

Page 6 of 13
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From (2.14), (2.15) and (2.18) we clearly see that g(x) is strictly increasing on (0, 1). There-
fore, part (3) follows from (2.16) and (2.17) together with the monotonicity of g(x).

For part (4),if p=1/2 + \/3/[10g(2 +4/3)]2 — 1/2, then numerical computations lead to

-256p° + 768p° —1,008p* + 736p° — 296p + 56p — 3 = -0.2329... <0, (2.19)
512p% — 1,536p° + 1,776p* — 992p> + 248p®> —8p —1 = —0.6027...< 0, (2.20)
2(1)=-0.7567... <0, (2.21)
2(2)=1.6692...>0, (2.22)
-48p* + 96p® — 68p* +20p —1=0.1322...> 0. (2.23)

It follows from (2.18), (2.19), (2.20) and (2.23) that
g®) >3(2p - 1)**” + 2(-256p° + 768p° — 1,008p" + 736p> — 296p + 56p — 3)x>
+ (512p° - 1,536p° +1,776p* — 992p° + 248p> — 8p — 1)x

= 4(-48p* + 96p” — 68p> +20p —1)x*> > 0 (2.24)

forx € (1,2).
Therefore, part (4) follows from (2.21) and (2.22) together with (2.24). a

3 Proofs of Theorems 1.1-1.4
Proofof Theorem 1.1 Without loss of generality, we assume thata > b. Letv = (a-b)/(a+b),
A=vV/2-12,x=~/1-1%and p € {1/3,2/7}. Then v, A,x € (0,1) and (1.4) leads to

Suala,b) - G(a,b) 1 —(1—2*)"*sin' ()

Aa,b) — G(a,b) ~ [1—(1-A2)Y4]sin" (1) (1)
Sal(a,b) - [pA(a,b) + 1 - p)G(a,b)]
= Ala, b)[m —(-p)(1-22)" —p:|
_A@Db)p+ .(1,_1’9)(1 — A% Flx), (3.2)
sin™ (M)
where
F(x) = 1= —sin”H (V1 -x%),
1-p)x+
Foy=1_7 (33)
p 2
F1)=0 (3.4)
and
Flx)= L% i, (3.5)

V1-x4(1-p)x +p)?

where f(x) is defined as in Lemma 2.1.
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We divide the proof into two cases.
Case 1: p =1/3. Then from Lemma 2.1(1) and (3.5) we clearly see that F(x) is strictly

decreasing on (0,1). Therefore,
1 2
Stala,b) > §A(a, b) + gG(a, b) (3.6)

for all a,b > 0 with a # b follows from (3.2) and (3.4) together with the monotonicity of
F(x).
Case 2: p = 2/m. Then from (3.3), (3.5) and Lemma 2.1(2) we know that

F(0)=0 (3.7)

and there exists A; € (0,1) such that F(x) is strictly decreasing on (0, ;] and strictly in-

creasing on [A1,1). Therefore,

Stala,b) < gA(a, b) + <1 - %)G(a, b) (3.8)
T T

for all @, b > 0 with a # b follows from (3.2) and (3.4) together with (3.7) and the piecewise
monotonicity of F(x).
Note that
rA—(1-2H)YsinI(A) 1

Pt [1—(1-A2)Y4]sin"I(2) -3 (3.9)

and

e A2V sifl‘l(k) _2 (3.10)
-1 [1— (1 - A2)Y4]sin7t(0) =

Therefore, Theorem 1.1 follows from (3.6) and (3.8) together with the following state-
ments.
o If @ >1/3, then equations (3.1) and (3.9) imply that there exists small enough § > 0
such that Sya(a, b) < aA(a,b) + (1 — «)G(a, b) for all a > b > 0 with b/a € (1-4,1).
« If B <2/m, then equations (3.1) and (3.10) imply that there exists large enough M > 1
such that Sya(a, b) > BA(a,b) + 1 - B)G(a,b) for all a > b > 0 with a/b € (M, +00). [

Proof of Theorem 1.2 Without loss of generality, we assume that a > b. Let v = (a — b)/(a +
b), w=vv/2+v2,x= Y1+ p?and p € {{v/210g(2 + v/3) = v/3]/[(~/2 - 1) log(2 + +/3)],1/3}.
Then v e (0,1), u € (0,+/3), x € (1,4/2) and (1.5) leads to

Scala,b) — Q(a,b)  p—(1+pu*)*sinh™ (1)

A(a,b) - Q(a,b)  [1-(1+p2)V*]sinh(n)’ (311
Scala,b) — [pA(a,b) + (1 - p)Q(a, )]
=A(a,b)|:#l(m -1 —p)(l + Mz)1/4 —p:|
/
_A@b)[(1-p)A+pu*)"™ + p] 6, (3.12)

sinh™ (1)
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where
G- Y1 G (Vo1
x) = (1—p)x+p_sm x ),
G@) =0, (3.13)
~ V3
G(\/i) = m - 10g(2 + \/g), (3.14)
G- ik S (3.15)

xt —1[(1 - p)x + p)?

where f(x) is defined as in Lemma 2.1.

We divide the proof into two cases.

Case1: p = [v/210g(2 + +/3) = V/3]/[(+v/2 = 1) log(2 + +/3)] = 0.2390.... Then from (3.14)
and (3.15) together with Lemma 2.1(3) we clearly see that there exists A, € (1, +/2) such
that G(x) is strictly decreasing on (1, 5] and strictly increasing on [A,, +/2), and

G(v?2)=0. (3.16)

Therefore,

V2log(2 ++/3) - /3
(v2-1)log(2 ++/3)
. J3 - log(2 + \/§)

(V2 -1)log(2 ++/3)

Scala,b) < Ala,b)

Q(a, b) (3.17)

for all a4, b > 0 with a # b follows easily from (3.12) and (3.13) together with (3.16) and the
piecewise monotonicity of G(x).

Case 2: p =1/3. Then Lemma 2.1(1) and (3.15) lead to the conclusion that G(x) is strictly
increasing on (1, v/2). Therefore,

Scala,b) > %A(a, b) + %Q(a, b) (3.18)

for all a4, b > 0 with a # b follows from (3.12) and (3.13) together with the monotonicity of
G(x).
Note that
p— L+ p)sinh ™ (u) 1

m - - 3.19
w0 1= (L+ 2) 4 sinh () ~ 3 1)

and

i A0 pA)sinh (1) v2log(2 ++/3) - /3
pov3 (L= L+ p2)V4]sinh™ (1)~ (V2 -1)log(2 ++/3)

(3.20)

Therefore, Theorem 1.2 follows from (3.11) and (3.17)-(3.20). O
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Proof of Theorem 1.3 Without loss of generality, we assume that a > b. Let v = (a — b)/(a +
b), x=vv/2-v2, x=+/1-22and p € [0,1/2]. Then v, 1, x € (0,1) and (1.4) leads to

G[pa + 1 -p)b,pb + (1 -p)a] - Sya(a,b)

=A(a,b) [\/1 ~(1-2p2(1-v1-22) - Sinﬁ(/\)]

Awby1-0-2pPa-VI=R)

o) ), (3.21)

where

H(x) =sin™" (vV1-x2) - 1= ,

V@ -2p)2x-(1-2p)>+1
H(1) =0, (3.22)
HO=%_ 1 (3.23)
2 /1-(1-2p2 '
and
o h(x)

Hiw = 21— 22 [(1 - 2p)2x — (1 - 2p)% + 132 (3:24)
where

h(x)

= (1-2p)%% +2[1 - (1-2p)*]x + (1 - 2p)* = 2[(1 - 2p)*x — (1 - 2p)* + 1]

~ (x - 1)g(x)
C(1-2p)2x2 +2[1 - (1 -2p)2]x + (1 - 2p)% + 2[(1 - 2p)2x — (1 — 2p)% + 1]3/2’

(3.25)

where g(x) is defined as in Lemma 2.2.

We divide the proof into four cases.

Case 1: p = 1/2 — /6/6. Then Lemma 2.2(1) and (3.24) together with (3.25) lead to the
conclusion that H(x) is strictly increasing on (0,1). Therefore,

1 6 1 6 1 6 1 6
Syala,b) > G (— - £>¢z+ (— + £)b, <— - £)b+ <_ + £)a
2 6 2 6 2 6 2 6
for all a,b > 0 with a # b follows easily from (3.21) and (3.22) together with the mono-
tonicity of H(x).

Case2:1/2 —/6/6 < p <1/2. Let g = (1 - 2p)® and A — 0*, then 0 < g < 2/3 and power
series expansions lead to

\/1—(1—2p)2(1—\/1—)»2)— A

sin™! A

6

= 3.26
sin™! A sin™' A ( )

L-qU-V1-#)sintr-4 1 [(1 q>A3+o(x3)]

Equations (3.21) and (3.26) imply that there exists small enough §; > 0 such that
Suala,b) < Glpa + (1 - p)b,pb + (1 — p)a] for all a,b > 0 with b/a € (1 - 6,1).
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Case 3: p=1/2 — /72 — 4/(27). Then from Lemma 2.2(3) and (3.23)-(3.25) we clearly
see that there exists A3 € (0,1) such that H(x) is strictly increasing on (0, 3] and strictly
decreasing on [A3,1), and

H(0) = 0. (3.27)

Therefore,

1 w2 -4 1 w2 -4
SHA(a,b)<G|:(§— = )a+(§+ = )b,

1 w2 -4 1 w2 -4
- — b+ =+ a
2 2 2 21
for all a, b > 0 with a # b follows easily from (3.21) and (3.22) together with (3.27) and the

piecewise monotonicity of H(x).
Case4:0<p<1/2—-~/7%?-4/(2x). Then

Jlim. [\/1 —(1-2p)(1-V1-22) - a } =y1-(1-2p)> - % <0. (3.28)

sin”!())

Equation (3.21) and inequality (3.28) imply that there exists large enough M; > 1 such
that Sy4(a, b) > Glpa + 1 - p)b,pb + (1 — p)a] for all a, b > 0 with a/b € (M, +00). O

Proof of Theorem 1.4 Without loss of generality, we assume that a > b. Let v = (a — b)/(a +
b), p=vV/2+v2, x = \/1+ u? and p € [1/2,1]. Then v € (0,1), u € (0,4/3), x € (1,2) and
(1.5) leads to

Q[pa + (- p)b,pb + (1 - p)a] - Sca(a, b)

e .

sinh™ (1)
Al BI1+ (- 2pP(/T+ 1 - D

S (0) ), (3.29)
where
7o) = sinh ™ (Va2 1) - it ,
VA= 2p)%x - (1-2p)* +1
J1) =0, (3.30)
~ V3
J(2) =log(2 + +/3) - NirTe T (3.31)

_2[A-2p)x - (1-2p)* + 177 - [(1 - 2p)°%* + 2(1 - (1 - 2p)*)x + (1 - 2p)°]
- 272 —1[(1 - 2p)2x — (1 - 2p)2 + 1]32
1
" 20— 2pPx— (1= 2p) + 12 + [(1- 29042 + 2(1 - (1= 2p))x + (1 - 2p)°]
x—1

x 24/ —1[(1 - 2p)%x — (1 - 2p)? + 1]3/2

J (%)

g(x), (3.32)

where g(x) is defined as in Lemma 2.2.
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We divide the proof into four cases.
Casel: p =1/2 + +/6/6. Then Lemma 2.2(2) and (3.32) lead to the conclusion that /() is
strictly increasing on (1,2). Therefore,

Seata,)> Q| (3 ?) +(5- ?)b (5+ ?)b (3- ?)}

for all a,b > 0 with a # b follows easily from (3.29) and (3.30) together with the mono-
tonicity of J(x).

Case 2:1/2++/6/6 <p <1.Let g = (1-2p)®> and u — 0%, then 1> ¢ > 2/3 and power
series expansions lead to

"
\/1+1 202 (V1+p?-1) - =T

\/1+q(— V1+p2=1)sinh™ () - n

- sinh™(u)

= m [(iq— %)/LS + o(u?’)]. (3.33)

Equations (3.29) and (3.33) imply that there exists small enough §; > 0 such that
Scala,b) < Qlpa + (1 - p)b,pb + (1 - p)a] for all a, b > 0 with b/a € (1 - 8,,1).

Case 3: p=1/2 + \/3/[10g(2 ++/3)]2 —1/2. Then (3.31) and (3.32) together with Lem-
ma 2.2(4) lead to the conclusion that there exists 14 € (1,2) such that J(x) is strictly in-
creasing on (1, A4] and strictly decreasing on [A4,2), and

J(2) =0. (3.34)
Therefore,
Scala,b) < Q[pa + (1 - p)b,pb + (1 - p)a]

for all @, b > 0 with a # b follows easily from (3.29) and (3.30) together with (3.34) and the
piecewise monotonicity of J(x).

Case4:1/2 <p<1/2 + \/3/[10g(2 ++/3)]2 —=1/2. Then

uw
lim 1+(1-2p) 1 + _
sy > [‘/ PP (Vi+iw=1)= smh-l(m]

V3
= _ 2 —_—
V1+(2p-1) og(@ + 7 <0. (3.35)

Equation (3.29) and inequality (3.35) imply that there exists large enough M, > 1 such
that Sca(a, b) > Qlpa + (1 —p)b,pb + (1 — p)a] for all a,b > 0 with a/b € (M,, +00). O
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