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Abstract
In this paper, we present sharp bounds for the two Neuman means SHA and SCA
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1 Introduction
Let a,b >  with a �= b, then the Schwab-Borchardt mean SB(a,b) is defined by

SB(a,b) =

⎧⎨
⎩

√
b–a

cos– (a/b) , a < b,
√
a–b

cosh– (a/b) , a > b,
(.)

where cos–(x) and cosh–(x) = log(x +
√
x – ) are the inverse cosine and inverse hyper-

bolic cosine functions, respectively.
It is well known that SB(a,b) is strictly increasing in both a and b, nonsymmetric and

homogeneous of degree  with respect to a and b. Many symmetric bivariate means are
special cases of the Schwab-Borchardt mean, for example,

P(a,b) =
a – b

 sin–[(a – b)/(a + b)]
= SB(G,A) is the first Seiffert mean,

T(a,b) =
a – b

 tan–[(a – b)/(a + b)]
= SB(A,Q) is the second Seiffert mean,

M(a,b) =
a – b

 sinh–[(a – b)/(a + b)]
= SB(Q,A) is the Neuman-Sándor mean,

L(a,b) =
a – b

 tanh–[(a – b)/(a + b)]
= SB(A,G) is the logarithmic mean,

whereG(a,b) =
√
ab, A(a,b) = (a+ b)/ andQ(a,b) =

√
(a + b)/ denote the classical ge-

ometric mean, arithmetic mean and quadratic mean of a and b, respectively. The Schwab-
Borchardt mean SB(a,b) was investigated in [, ].
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LetH(a,b) = ab/(a+b),C(a,b) = (a +b)/(a+b) be the harmonic and contraharmonic
means of two positive numbers a and b, respectively. Then it is well known that

H(a,b) < G(a,b) < L(a,b) < P(a,b)

< A(a,b) <M(a,b) < T(a,b) <Q(a,b) < C(a,b) (.)

for a,b >  with a �= b.
Recently, the Schwab-Borchardt mean and its special cases have been the subject of

intensive research. Neuman and Sándor [, ] proved that the inequalities

P(a,b) >

π
A(a,b),

A(a,b)
log( +

√
)

>M(a,b) >
π

 log( +
√
)
T(a,b),

T
(
A(a,b),G(a,b)

)
< P(a,b), T(a,b) > T

(
A(a,b),Q(a,b)

)
,

L(a,b) < L
(
A(a,b),G(a,b)

)
, M(a,b) < L

(
A(a,b),Q(a,b)

)
,

L(a,b) >H
(
P(a,b),G(a,b)

)
, P(a,b) >H

(
L(a,b),A(a,b)

)
,

M(a,b) >H
(
T(a,b),A(a,b)

)
, T(a,b) >H

(
M(a,b),Q(a,b)

)
,

G(a,b)P(a,b) < L(a,b) <
G(a,b) + P(a,b)


,

L(a,b)A(a,b) < P(a,b) <
L(a,b) +A(a,b)


,

A(a,b)T(a,b) <M(a,b) <
A(a,b) + T(a,b)


,

M(a,b)Q(a,b) < T(a,b) <
M(a,b) +Q(a,b)


,

Q/(a,b)A/(a,b) <M(a,b) <


Q(a,b) +



A(a,b)

hold for all a,b >  with a �= b. In [], the author proved that the double inequalities

αQ(a,b) + ( – α)A(a,b) <M(a,b) < βQ(a,b) + ( – β)A(a,b)

and

λC(a,b) + ( – λ)A(a,b) <M(a,b) < μC(a,b) + ( –μ)A(a,b)

hold for all a,b >  with a �= b if and only if α ≤ [ – log( +
√
)]/[(

√
 – ) log( +

√
)] =

. . . . , β ≥ /, λ ≤ [ – log( +
√
)]/ log( +

√
) = . . . . and μ ≥ /. Chu and

Long [] found that the double inequality

Mp(a,b) <M(a,b) < qI(a,b)

holds for all a,b >  with a �= b if and only if p ≤ log/ log[ log(+
√
)] = . . . . and q ≥

e/[ log( +
√
)] = . . . . , whereMp(a,b) = [(ap + bp)/]/p (p �= ) andM(a,b) =

√
ab

is the pth power mean of a and b. Zhao et al. [] presented the least values α, α, α and

http://www.journalofinequalitiesandapplications.com/content/2014/1/175
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the greatest values β, β, β such that the double inequalities

αH(a,b) + ( – α)Q(a,b) <M(a,b) < βH(a,b) + ( – β)Q(a,b),

αG(a,b) + ( – α)Q(a,b) <M(a,b) < βG(a,b) + ( – β)Q(a,b)

and

αH(a,b) + ( – α)C(a,b) <M(a,b) < βH(a,b) + ( – β)C(a,b)

hold for all a,b >  with a �= b.
Very recently, the bivariate means SAH , SHA, SCA and SAC derived from the Schwab-

Borchardt mean have been defined by Neuman [, ] as follows:

SAH = SB(A,H), SHA = SB(H ,A), SCA = SB(C,A), SAC = SB(A,C). (.)

We call the means SAH , SHA, SCA and SAC given in (.) the Neuman means. Moreover,
let v = (a – b)/(a + b) ∈ (–, ), then the following explicit formulas for SAH , SHA, SAC and
SCA have been found by Neuman []:

SAH = A
tanh(p)

p
, SHA = A

sin(q)
q

, (.)

SCA = A
sinh(r)

r
, SAC = A

tan(s)
s

, (.)

where p, q, r and s are defined implicitly as sech(p) =  – v, cos(q) =  – v, cosh(r) =  + v

and sec(s) =  + v, respectively. Clearly, p ∈ (,∞), q ∈ (,π/), r ∈ (, log( +
√
)) and

s ∈ (,π/).
In [], Neuman proved that the inequalities

H(a,b) < SAH (a,b) < L(a,b) < SHA(a,b) < P(a,b), (.)

T(a,b) < SCA(a,b) <Q(a,b) < SAC(a,b) < C(a,b) (.)

hold for a,b >  with a �= b.
He et al. [] found the greatest values α,α ∈ [, /], α,α ∈ [/, ] and the least

values β,β ∈ [, /], β,β ∈ [/, ] such that the double inequalities

H
(
αa + ( – α)b,αb + ( – α)a

)
< SAH (a,b) <H

(
βa + ( – β)b,βb + ( – β)a

)
,

H
(
αa + ( – α)b,αb + ( – α)a

)
< SHA(a,b) <H

(
βa + ( – β)b,βb + ( – β)a

)
,

C
(
αa + ( – α)b,αb + ( – α)a

)
< SCA(a,b) < C

(
βa + ( – β)b,βb + ( – β)a

)

and

C
(
αa + ( – α)b,αb + ( – α)a

)
< SAC(a,b) < C

(
βa + ( – β)b,βb + ( – β)a

)

hold for all a,b >  with a �= b.

http://www.journalofinequalitiesandapplications.com/content/2014/1/175
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It follows from (.) and (.) together with (.) that

G(a,b) < SHA(a,b) < A(a,b) < SCA(a,b) <Q(a,b) (.)

for all a,b >  with a �= b.
For fixed a,b >  with a �= b, let x ∈ [, /], y ∈ [/, ],

f (x) =G
[
xa + ( – x)b,xb + ( – x)a

]
, (.)

g(y) =Q
[
ya + ( – y)b, yb + ( – y)a

]
. (.)

Then it is not difficult to verify that f (x) and g(y) are continuous and strictly increasing
on [, /] and [/, ], respectively. Note that

f () =G(a,b) < SHA(a,b) < A(a,b) = f (/), (.)

g(/) = A(a,b) < SCA(a,b) <Q(a,b) = g(). (.)

Motivated by (.)-(.), in the article we present the best possible parameters α,α,β,
β ∈R, α,β ∈ [, /] and α,β ∈ [/, ] such that the double inequalities

αA(a,b) + ( – α)G(a,b) < SHA(a,b) < βA(a,b) + ( – β)G(a,b),

αA(a,b) + ( – α)Q(a,b) < SCA(a,b) < βA(a,b) + ( – β)Q(a,b),

G
[
αa + ( – α)b,αb + ( – α)a

]
< SHA(a,b) <G

[
βa + ( – β)b,βb + ( – β)a

]
,

Q
[
αa + ( – α)b,αb + ( – α)a

]
< SCA(a,b) <Q

[
βa + ( – β)b,βb + ( – β)a

]

hold for all a,b >  with a �= b.
Our main results are the following Theorems .-.. All numerical computations are

carried out using Mathematica software.

Theorem . The double inequality

αA(a,b) + ( – α)G(a,b) < SHA(a,b) < βA(a,b) + ( – β)G(a,b)

holds for all a,b >  with a �= b if and only if α ≤ / and β ≥ /π .

Theorem . The two-sided inequality

αA(a,b) + ( – α)Q(a,b) < SCA(a,b) < βA(a,b) + ( – β)Q(a,b)

holds true for all a,b >  with a �= b if and only if α ≥ / and β ≤ [
√
 log( +

√
) –√

]/[(
√
 – ) log( +

√
)] = . . . . .

Theorem . Let α,β ∈ [, /], then the double inequality

G
[
αa + ( – α)b,αb + ( – α)a

]
< SHA(a,b) <G

[
βa + ( – β)b,βb + ( – β)a

]

http://www.journalofinequalitiesandapplications.com/content/2014/1/175
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holds for all a,b >  with a �= b if and only if α ≤ / –
√
/ = . . . . and β ≥ / –√

π – /(π ) = . . . . .

Theorem . Let α,β ∈ [/, ], then the two-sided inequality

Q
[
αa + ( – α)b,αb + ( – α)a

]
< SCA(a,b) <Q

[
βa + ( – β)b,βb + ( – β)a

]

holds true for all a,b >  with a �= b if and only if α ≤ / +
√
/ = . . . . and β ≥

/ +
√
/[log( +

√
)] – / = . . . . .

2 Two lemmas
In order to prove our main results, we need two lemmas, which we present in this section.

Lemma . Let p ∈R and

f (x) = ( – p)x +
(
–p + p – 

)
x +

(
p + p – 

)
x + p – . (.)

Then the following statements are true:
() If p = /, then f (x) <  for all x ∈ (, ) and f (x) >  for all x ∈ (,

√
);

() If p = /π , then there exists λ ∈ (, ) such that f (x) <  for x ∈ (,λ) and f (x) > 
for x ∈ (λ, );

() If p = [
√
 log( +

√
) –

√
]/[(

√
 – ) log( +

√
)], then there exists λ ∈ (,

√
)

such that f (x) <  for x ∈ (,λ) and f (x) >  for x ∈ (λ,
√
).

Proof For part (), if p = /, then (.) becomes

f (x) =


(x – )

(
x + x + 

)
. (.)

Therefore, part () follows easily from (.).
For part (), if p = /π , then simple computations lead to

–p + p –  =
–π + π – 

π > , (.)

p + p –  =
–π + π + 

π > , (.)

f () = –
π – 

π
< , (.)

f () =
( – π )

π
> , (.)

f ′(x) = ( – p)x + 
(
–p + p – 

)
x +

(
p + p – 

)
. (.)

It follows from (.) and (.) together with (.) that f (x) is strictly increasing on (, ).
Therefore, part () follows from (.) and (.) together with the monotonicity of f (x).
For part (), if p = [

√
 log( +

√
) –

√
]/[(

√
 – ) log( +

√
)] = . . . . , then nu-

merical computations lead to

–p + p –  = . . . . > , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/175
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f () = –. . . . < , (.)

f (
√
) = . . . . > . (.)

It follows from (.) and (.) that

f ′(x) > ( – p) + 
(
–p + p – 

)
+

(
p + p – 

)
= p( – p) >  (.)

for x ∈ (,
√
).

Therefore, part () follows easily from (.)-(.). �

Lemma . Let p ∈R and

g(x) = (p – )x +
(
–p + p – ,p + p – p + p – 

)
x

+
(
p – ,p + ,p – p + p – p – 

)
x

+
(
–p + p – p + p – p + p – 

)
. (.)

Then the following statements are true:
() If p = / –

√
/, then g(x) <  for all x ∈ (, );

() If p = / +
√
/, then g(x) >  for all x ∈ (, );

() If p = / –
√

π – /(π ), then there exists λ ∈ (, ) such that g(x) <  for
x ∈ (,λ) and g(x) >  for x ∈ (λ, );

() If p = / +
√
/[log( +

√
)] – /, then there exists λ ∈ (, ) such that g(x) <  for

x ∈ (,λ) and g(x) >  for x ∈ (λ, ).

Proof For parts () and (), if p = / –
√
/ or p = / +

√
/, then (.) becomes

g(x) =



(x – )
(
x + x + 

)
. (.)

Therefore, parts () and () follow from (.).
For part (), if p = / –

√
π – /(π ), then numerical computations show that

–p + p – ,p + p – p + p – 

=
–π + π – π + 

π > , (.)

p – ,p + ,p – p + p – p – 

=
–π – π + π – 

π > , (.)

g() =
–π + π – π + 

π < , (.)

g() =
( – π)

π > , (.)

g ′(x) = (p – )x + 
(
–p + p – ,p + p – p + p – 

)
x

+
(
p – ,p + ,p – p + p – p – 

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/175
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From (.), (.) and (.) we clearly see that g(x) is strictly increasing on (, ). There-
fore, part () follows from (.) and (.) together with the monotonicity of g(x).

For part (), if p = / +
√
/[log( +

√
)] – /, then numerical computations lead to

–p + p – ,p + p – p + p –  = –. . . . < , (.)

p – ,p + ,p – p + p – p –  = –. . . . < , (.)

g() = –. . . . < , (.)

g() = . . . . > , (.)

–p + p – p + p –  = . . . . > . (.)

It follows from (.), (.), (.) and (.) that

g ′(x) > (p – )x + 
(
–p + p – ,p + p – p + p – 

)
x

+
(
p – ,p + ,p – p + p – p – 

)
x

= 
(
–p + p – p + p – 

)
x >  (.)

for x ∈ (, ).
Therefore, part () follows from (.) and (.) together with (.). �

3 Proofs of Theorems 1.1-1.4
Proof of Theorem . Without loss of generality, we assume that a > b. Let v = (a–b)/(a+b),
λ = v

√
 – v, x = √ – λ and p ∈ {/, /π}. Then v,λ,x ∈ (, ) and (.) leads to

SHA(a,b) –G(a,b)
A(a,b) –G(a,b)

=
λ – ( – λ)/ sin–(λ)
[ – ( – λ)/] sin–(λ)

, (.)

SHA(a,b) –
[
pA(a,b) + ( – p)G(a,b)

]

= A(a,b)
[

λ

sin–(λ)
– ( – p)

(
 – λ)/ – p

]

=
A(a,b)[p + ( – p)( – λ)/]

sin–(λ)
F(x), (.)

where

F(x) =
√
 – x

( – p)x + p
– sin–

(√
 – x

)
,

F() =

p
–

π


, (.)

F() =  (.)

and

F ′(x) =
 – x√

 – x[( – p)x + p]
f (x), (.)

where f (x) is defined as in Lemma ..

http://www.journalofinequalitiesandapplications.com/content/2014/1/175
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We divide the proof into two cases.
Case : p = /. Then from Lemma .() and (.) we clearly see that F(x) is strictly

decreasing on (, ). Therefore,

SHA(a,b) >


A(a,b) +



G(a,b) (.)

for all a,b >  with a �= b follows from (.) and (.) together with the monotonicity of
F(x).
Case : p = /π . Then from (.), (.) and Lemma .() we know that

F() =  (.)

and there exists λ ∈ (, ) such that F(x) is strictly decreasing on (,λ] and strictly in-
creasing on [λ, ). Therefore,

SHA(a,b) <

π
A(a,b) +

(
 –


π

)
G(a,b) (.)

for all a,b >  with a �= b follows from (.) and (.) together with (.) and the piecewise
monotonicity of F(x).
Note that

lim
λ→+

λ – ( – λ)/ sin–(λ)
[ – ( – λ)/] sin–(λ)

=



(.)

and

lim
λ→–

λ – ( – λ)/ sin–(λ)
[ – ( – λ)/] sin–(λ)

=

π
. (.)

Therefore, Theorem . follows from (.) and (.) together with the following state-
ments.
• If α > /, then equations (.) and (.) imply that there exists small enough δ > 
such that SHA(a,b) < αA(a,b) + ( – α)G(a,b) for all a > b >  with b/a ∈ ( – δ, ).

• If β < /π , then equations (.) and (.) imply that there exists large enoughM > 
such that SHA(a,b) > βA(a,b) + ( – β)G(a,b) for all a > b >  with a/b ∈ (M, +∞). �

Proof of Theorem . Without loss of generality, we assume that a > b. Let v = (a– b)/(a +
b), μ = v

√
 + v, x = 

√
 +μ and p ∈ {[√ log( +

√
) –

√
]/[(

√
 – ) log( +

√
)], /}.

Then v ∈ (, ), μ ∈ (,
√
), x ∈ (,

√
) and (.) leads to

SCA(a,b) –Q(a,b)
A(a,b) –Q(a,b)

=
μ – ( +μ)/ sinh–(μ)
[ – ( +μ)/] sinh–(μ)

, (.)

SCA(a,b) –
[
pA(a,b) + ( – p)Q(a,b)

]

= A(a,b)
[

μ

sinh–(μ)
– ( – p)

(
 +μ)/ – p

]

=
A(a,b)[( – p)( +μ)/ + p]

sinh–(μ)
G(x), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/175
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where

G(x) =
√
x – 

( – p)x + p
– sinh–

(√
x – 

)
,

G() = , (.)

G(
√
) =

√
√

 – (
√
 – )p

– log( +
√
), (.)

G′(x) =
x – √

x – [( – p)x + p]
f (x), (.)

where f (x) is defined as in Lemma ..
We divide the proof into two cases.
Case : p = [

√
 log( +

√
) –

√
]/[(

√
 – ) log( +

√
)] = . . . . . Then from (.)

and (.) together with Lemma .() we clearly see that there exists λ ∈ (,
√
) such

that G(x) is strictly decreasing on (,λ] and strictly increasing on [λ,
√
), and

G(
√
) = . (.)

Therefore,

SCA(a,b) <
√
 log( +

√
) –

√


(
√
 – ) log( +

√
)

A(a,b)

+
√
 – log( +

√
)

(
√
 – ) log( +

√
)
Q(a,b) (.)

for all a,b >  with a �= b follows easily from (.) and (.) together with (.) and the
piecewise monotonicity of G(x).
Case : p = /. Then Lemma .() and (.) lead to the conclusion that G(x) is strictly

increasing on (,
√
). Therefore,

SCA(a,b) >


A(a,b) +



Q(a,b) (.)

for all a,b >  with a �= b follows from (.) and (.) together with the monotonicity of
G(x).
Note that

lim
μ→+

μ – ( +μ)/ sinh–(μ)
[ – ( +μ)/] sinh–(μ)

=



(.)

and

lim
μ→√

–
μ – ( +μ)/ sinh–(μ)
[ – ( +μ)/] sinh–(μ)

=
√
 log( +

√
) –

√


(
√
 – ) log( +

√
)

. (.)

Therefore, Theorem . follows from (.) and (.)-(.). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/175
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Proof of Theorem . Without loss of generality, we assume that a > b. Let v = (a– b)/(a +
b), λ = v

√
 – v, x =

√
 – λ and p ∈ [, /]. Then v,λ,x ∈ (, ) and (.) leads to

G
[
pa + ( – p)b,pb + ( – p)a

]
– SHA(a,b)

= A(a,b)
[√

 – ( – p)
(
 –

√
 – λ

)
–

λ

sin–(λ)

]

=
A(a,b)

√
 – ( – p)( –

√
 – λ)

sin–(λ)
H(x), (.)

where

H(x) = sin–
(√

 – x
)
–

√
 – x√

( – p)x – ( – p) + 
,

H() = , (.)

H() =
π


–

√
 – ( – p)

(.)

and

H ′(x) =
h(x)


√
 – x[( – p)x – ( – p) + ]/

, (.)

where

h(x)

= ( – p)x + 
[
 – ( – p)

]
x + ( – p) – 

[
( – p)x – ( – p) + 

]/

=
(x – )g(x)

( – p)x + [ – ( – p)]x + ( – p) + [( – p)x – ( – p) + ]/
, (.)

where g(x) is defined as in Lemma ..
We divide the proof into four cases.
Case : p = / –

√
/. Then Lemma .() and (.) together with (.) lead to the

conclusion that H(x) is strictly increasing on (, ). Therefore,

SHA(a,b) >G
[(



–

√



)
a +

(


+

√



)
b,

(


–

√



)
b +

(


+

√



)
a
]

for all a,b >  with a �= b follows easily from (.) and (.) together with the mono-
tonicity of H(x).
Case : / –

√
/ < p ≤ /. Let q = ( – p) and λ → +, then  ≤ q < / and power

series expansions lead to
√
 – ( – p)

(
 –

√
 – λ

)
–

λ

sin– λ

=

√
 – q( –

√
 – λ) sin– λ – λ

sin– λ
=


sin– λ

[(


–
q


)
λ + o

(
λ)]. (.)

Equations (.) and (.) imply that there exists small enough δ >  such that
SHA(a,b) <G[pa + ( – p)b,pb + ( – p)a] for all a,b >  with b/a ∈ ( – δ, ).
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Case : p = / –
√

π – /(π ). Then from Lemma .() and (.)-(.) we clearly
see that there exists λ ∈ (, ) such that H(x) is strictly increasing on (,λ] and strictly
decreasing on [λ, ), and

H() = . (.)

Therefore,

SHA(a,b) < G
[(



–

√
π – 
π

)
a +

(


+

√
π – 
π

)
b,

(


–

√
π – 
π

)
b +

(


+

√
π – 
π

)
a
]

for all a,b >  with a �= b follows easily from (.) and (.) together with (.) and the
piecewise monotonicity of H(x).
Case :  ≤ p < / –

√
π – /(π ). Then

lim
λ→–

[√
 – ( – p)

(
 –

√
 – λ

)
–

λ

sin–(λ)

]
=

√
 – ( – p) –


π

< . (.)

Equation (.) and inequality (.) imply that there exists large enough M >  such
that SHA(a,b) >G[pa + ( – p)b,pb + ( – p)a] for all a,b >  with a/b ∈ (M, +∞). �

Proof of Theorem . Without loss of generality, we assume that a > b. Let v = (a– b)/(a+
b), μ = v

√
 + v, x =

√
 +μ and p ∈ [/, ]. Then v ∈ (, ), μ ∈ (,

√
), x ∈ (, ) and

(.) leads to

Q
[
pa + ( – p)b,pb + ( – p)a

]
– SCA(a,b)

= A(a,b)
[√

 + ( – p)
(√

 +μ – 
)
–

μ

sinh–(μ)

]

=
A(a,b)

√
 + ( – p)(

√
 +μ – )

sinh–(μ)
J(x), (.)

where

J(x) = sinh–
(√

x – 
)
–

√
x – √

( – p)x – ( – p) + 
,

J() = , (.)

J() = log( +
√
) –

√
√

 + ( – p)
, (.)

J ′(x) =
[( – p)x – ( – p) + ]/ – [( – p)x + ( – ( – p))x + ( – p)]


√
x – [( – p)x – ( – p) + ]/

= –


[( – p)x – ( – p) + ]/ + [( – p)x + ( – ( – p))x + ( – p)]

× x – 

√
x – [( – p)x – ( – p) + ]/

g(x), (.)

where g(x) is defined as in Lemma ..
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We divide the proof into four cases.
Case : p = / +

√
/. Then Lemma .() and (.) lead to the conclusion that J(x) is

strictly increasing on (, ). Therefore,

SCA(a,b) >Q
[(



+

√



)
a +

(


–

√



)
b,

(


+

√



)
b +

(


–

√



)
a
]

for all a,b >  with a �= b follows easily from (.) and (.) together with the mono-
tonicity of J(x).
Case : / +

√
/ < p ≤ . Let q = ( – p) and μ → +, then  ≥ q > / and power

series expansions lead to

√
 + ( – p)

(√
 +μ – 

)
–

μ

sinh–(μ)

=

√
 + q(

√
 +μ – ) sinh–(μ) –μ

sinh–(μ)

=


sinh–(μ)

[(


q –




)
μ + o

(
μ)]. (.)

Equations (.) and (.) imply that there exists small enough δ >  such that
SCA(a,b) <Q[pa + ( – p)b,pb + ( – p)a] for all a,b >  with b/a ∈ ( – δ, ).
Case : p = / +

√
/[log( +

√
)] – /. Then (.) and (.) together with Lem-

ma .() lead to the conclusion that there exists λ ∈ (, ) such that J(x) is strictly in-
creasing on (,λ] and strictly decreasing on [λ, ), and

J() = . (.)

Therefore,

SCA(a,b) <Q
[
pa + ( – p)b,pb + ( – p)a

]

for all a,b >  with a �= b follows easily from (.) and (.) together with (.) and the
piecewise monotonicity of J(x).

Case : / ≤ p < / +
√
/[log( +

√
)] – /. Then

lim
μ→√

–

[√
 + ( – p)

(√
 +μ – 

)
–

μ

sinh–(μ)

]

=
√
 + (p – ) –

√


log( +
√
)

< . (.)

Equation (.) and inequality (.) imply that there exists large enough M >  such
that SCA(a,b) >Q[pa + ( – p)b,pb + ( – p)a] for all a,b >  with a/b ∈ (M, +∞). �
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