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1 Introduction
In this paper, we study the Young and Hölder inequalities from the point of view of the
deviation from equalities with better upper and lower bound estimates. Particularly, we
give a further refinement of Aldaz stability type inequalities [] as well as a simple proof
based exclusively on an algebraic argument with the standard Young inequality.
Throughout this paper, the following remainder function [] plays an important role:

R(θ ;a,b) = θa + ( – θ )b – aθb–θ , (.)

where a,b >  and  ≤ θ ≤ .
The standard Young inequality is described as

R(θ ;a,b)≥ , (.)

which may be used without particular comments. The standard Hölder inequality follows
from (.) and the equality

∫
�

|fg|dμ = ‖f ‖p‖g‖p′
(
 –

∫
�

R
(

p
;

|f |p
‖f ‖pp ,

|g|p′

‖g‖p′
p′

)
dμ

)
(.)

for all f ∈ Lp(�,μ)\{} and g ∈ Lp′ (�,μ)\{}, where Lq(�,μ) is the Banach space of qth
integrable functions on a measure space (�,μ) with the norm ‖ · ‖q,  < q < ∞, and p′ is
the dual exponent of p defined by /p + /p′ = .
The purpose in this paper is to give a clear understanding of the standard Young and

Hölder inequalities on the basis of upper and lower bound estimates on the remainder
function R(θ ;a,b). In Section , we reexamine the multiplication formula on R(θ ;a,b) []
and present its dual formula. As a corollary, we give an algebraic proof of Aldaz stability
type inequalities for the Young andHölder inequalities []. In Section , we compare upper
and lower bound estimates on R(θ ;a,b) in [–]. In Section , we give dyadic refinements
of the multiplication formulae on R(θ ;a,b) with their straightforward corollaries on (.)
and discuss the associated dyadic refinements of the Hölder inequality.
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There are many papers on the related subjects. We refer the reader to [–] and the
references therein.
We close the introduction by giving some notation to be used in this paper. For a,b ∈R

we denote by a∧ b and a∨ b their minimum and maximum, respectively.

2 Multiplication formulae
In this section, we revisit the original multiplication formula on R(θ ;a,b) [] in connection
with Aldaz stability type inequalities []. First of all, we recall Kichenassamy’s multiplica-
tion formula.

Proposition . (Kichenassamy []) Let θ and σ satisfy  ≤ θ ,σ ≤ . Then the equality

R(θσ ;a,b) = θR(σ ;a,b) + b–σR
(
θ ;aσ ,bσ

)
(.)

holds for all a,b > .

Proof The proposition follows from the equality

R(σθ ,a,b) = σθa + ( – θσ )b – aσθb–σθ

= θ
(
σa + ( – σ )b – aσb–σ

)
+ θaσb–σ + ( – θ )b – aσθb–σθ

= θR(σ ,a,b) + b–σ
(
θaσ + ( – θ )bσ – aσθbσ (–θ )). �

Corollary . Let θ and σ satisfy  < θ ≤ σ < . Then the equality

R(θ ;a,b) =
θ

σ
R(σ ;a,b) + b–σR

(
θ

σ
;aσ ,bσ

)
(.)

holds for all a,b > .

Proposition . Let θ and σ satisfy  ≤ θ ≤ σ < . Then the equality

R(σ ,a,b) =
 – σ

 – θ
R(θ ,a,b) + aθR

(
σ – θ

 – θ
,a–θ ,b–θ

)
(.)

holds for all a,b > .

Remark . Equality (.) is regarded as a dual formula for R(θ ;a,b) in the sense that
–σ
–θ

+ σ–θ
–θ

= .

Proof of Proposition .

R(σ ,a,b)

= σa + ( – σ )b – aσb–σ

=
 – σ

 – θ

(
θa + ( – θ )b – aθb–θ

)
+

σ – θ

 – θ
a +

 – σ

 – θ
aθb–θ – aσb–σ

=
 – σ

 – θ
R(θ ,a,b) + aθ

(
σ – θ

 – θ
a–θ +

 – σ

 – θ
b–θ – aσ–θb(–θ )(– σ–θ

–θ
)
)
. �
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Corollary . Let θ and σ satisfy  ≤ θ ≤ σ < . Then the equality

R(θ ;a,b) =
 – θ

 – σ
R(σ ;a,b) –

 – θ

 – σ
aθR

(
σ – θ

 – θ
;a–θ ,b–θ

)
(.)

holds for all a,b > .

Remark . Propositions . and . are equivalent. In fact, it follows from the reciprocal
formula R(θ ;a,b) = R( – θ ,b,a) and Proposition . that

R(σ ;a,b) = R( – σ ;b,a)

=
 – σ

 – θ
R( – θ ;b,a) + a–(–θ )R

(
 – σ

 – θ
;b–θ ,a–θ

)

=
 – σ

 – θ
R(θ ;a,b) + aθR

(
σ – θ

 – θ
;a–θ ,b–θ

)
,

which is precisely (.). Conversely, given θ and σ with  < θ ≤ ,  < σ ≤ , we put θ ′ =
 – θσ and σ ′ =  – σ . Then we have  ≤ σ ′ ≤ θ ′ < , σ =  – σ ′, θ = ( – θ ′)/( – σ ′), and
θσ =  – θ ′. By the reciprocal formula and Proposition ., we have

R(θσ ;a,b) = R
(
 – θ ′;a,b

)
= R

(
θ ′;b,a

)
=
 – θ ′

 – σ ′R
(
σ ′;b,a

)
+ bσ ′

R
(

θ ′ – σ ′

 – σ ′ ;b
–σ ′

,a–σ ′
)

=
 – θ ′

 – σ ′R
(
 – σ ′;a,b

)
+ bσ ′

R
(
 – θ ′

 – σ ′ ;a
–σ ′ ,b–σ ′

)

= θR(σ ;a,b) + b–σR
(
θ ;aσ ,bσ

)
,

which is precisely (.).

Proposition . (Aldaz [], Kichenassamy []) Let  ≤ θ ≤ . Then the inequalities

(
θ ∧ ( – θ )

)(
a/ – b/

) ≤ R(θ ;a,b)≤ (
θ ∨ ( – θ )

)(
a/ – b/

) (.)

hold for all a,b > .

Proof Though the first inequality of (.) is shown in [], we show the inequalities in (.)
for completeness. In the case  ≤ θ ≤ /, we use Corollaries . and . with σ = / to
obtain

θ
(
a/ – b/

) = θR(/;a,b) = R(θ ;a,b) – b/R(θ ;a,b)

≤ R(θ ;a,b)

= ( – θ )R(/;a,b) – ( – θ )aθR
(
/ – θ

 – θ
;a–θ ,b–θ

)

≤ ( – θ )R(/;a,b) = ( – θ )
(
a/ – b/

). (.)
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In the case /≤ θ ≤ , we apply (.) with θ replaced by  – θ to obtain

( – θ )R(/;b,a)≤ R( – θ ;b,a) ≤ θR(/;b,a),

which is precisely (.). �

Remark . An equivalent couple of inequalities in Proposition . were proved by Al-
daz [] by differential calculus. The proof above depends on algebraic identities with the
standard Young inequality.

3 Upper and lower bounds of the remainder function
In this section, we collect and compare several bounds of the remainder function R(θ ;a,b).
For that purpose, we study the upper and lower bound estimates in terms of majorant
M(θ ;a,b) and minorantm(θ ;a,b) in the form

m(θ ;a,b)≤ R(θ ;a,b)≤M(θ ;a,b)

for all a,b > . We introduce four couples of the bounds as follows:

[A] mA(θ ;a,b) =
(
θ ∧ ( – θ )

)(
a/ – b/

),
MA(θ ;a,b) =

(
θ ∨ ( – θ )

)(
a/ – b/

),
[K] mK (θ ;a,b) =

θ ( – θ )


(a∧ b)(loga – logb),

MK (θ ;a,b) =
θ ( – θ )


(a∨ b)(loga – logb),

[H] mH (θ ;a,b) =
(
θ ∧ ( – θ )

)∣∣aθ∧(–θ ) – bθ∧(–θ )∣∣/(θ∧(–θ )),

MH (θ ;a,b) =
(
θ ∨ ( – θ )

)∣∣aθ∨(–θ ) – bθ∨(–θ )∣∣/(θ∨(–θ )),

[FO] mFO(θ ;a,b) =
θ ( – θ )
(a∨ b)

(a – b),

MFO(θ ;a,b) =
θ ( – θ )
(a∧ b)

(a – b).

Those couples are given respectively in [, , ], and [].

Remark . By the monotonicity property suggested in [], the remainder function with
respect to θ ∈ [, ] is approximated arbitrarily precisely by the remainder functions with
respect to rationals which approximate θ . However, the approximation obtained by the
monotonicity property is rather involved. Here, we focus only on lower and upper bounds
with regard to a difference.

Simple relationships in those couples are summarized in the following.

Proposition . Let  ≤ θ ≤ . Then the inequalities

mH (θ ;a,b)≤mA(θ ;a,b)≤ R(θ ,a,b)≤MA(θ ;a,b) ≤MH (θ ,a,b), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/162
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mK (θ ;a,b) ≤mFO(θ ;a,b)≤ R(θ ,a,b)≤MK (θ ;a,b)≤MFO(θ ,a,b) (.)

hold for all a,b > .

Proof By homogeneity, (.) follows from the inequality

(
xθ – 

)/θ ≤ (
xσ – 

)/σ (.)

for all x ≥  and any θ and σ with  ≤ θ ≤ σ . Inequality (.) follows from

xθ =
(
xσ –  + 

)θ/σ ≤ (
xσ – 

)θ/σ + .

Although some inequalities in (.) are proved in [, ], we prove (.) for completeness.
By the integral representations [, ]

R(θ ;a,b) = θ ( – θ )
[∫ 



∫ t



(
ta + ( – t)b

)θ–(sa + ( – s)b
)–θ dsdt

]
(a – b)

=
[∫ 



((
θ ( – t)

) ∧ (
( – θ )t

))
atb–t dt

]
(loga – logb),

we have

mFO(θ ;a,b)≤ R(θ ;a,b)≤MFO(θ ;a,b),

mK (θ ;a,b) ≤ R(θ ;a,b)≤MK (θ ;a,b).

Then it suffices to prove that

mK (θ ;a,b) ≤mFO(θ ;a,b),

MK (θ ;a,b)≤MFO(θ ;a,b).

The last two inequalities are equivalent and follow from

x(logx) ≤ (x – )

for all x > . �

Proposition . Let  < θ <  and let

t(θ ) =
(√


(θ ∨ ( – θ ))

– 
)

.

Then the following inequalities hold for all a,b > :

mA(θ ,a,b)≤mFO(θ ,a,b) if (a∨ b) t(θ )≤ a∧ b, (.)

mA(θ ,a,b)≥mFO(θ ,a,b) if  < a∧ b≤ (a∨ b) t(θ ). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/162
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Remark . Since  < θ ∧ ( – θ )≤ / ≤ θ ∨ ( – θ ) < , t(θ ) satisfies

(
√
 – ) < t(θ )≤ 

for all θ with  ≤ θ ≤ . Proposition . shows that mFO(θ ;a,b) is better than mA(θ ;a,b)
in a neighborhood of the diagonal a = b in the quarter plane (,∞)× (,∞).

Proof of Proposition . It is sufficient to show inequalities (.) and (.) with  < a < b.
We have

lim
a→

mA(θ ,a,b) =
(
θ ∧ ( – θ )

)
b≥ lim

a→
mFO(θ ,a,b) =

θ ( – θ )


b,

lim
a→b

mA(θ ,a,b)
(a/ – b/)

= θ ∧ ( – θ )≤ lim
a→b

mFO(θ ,a,b)
(a/ – b/)

= θ ( – θ ).

Moreover,mA(θ ,a,b) =mFO(θ ,a,b) is equivalent to the equation

(
(a/b)/ + 

) = (θ ∧ ( – θ ))
θ ( – θ )

. (.)

Since the ratio of a/b satisfying (.) with given θ is uniquely determined, inequalities (.)
and (.) follow. �

To compare MA and MK , we prepare Lambert’s W function, which is defined as the
inverse function of [–,∞) � x → xe/x ∈ [–/e,∞). For details, see [].

Proposition . Let ≤ θ ≤  and let

t(θ ) = –
√

(
θ ∧ ( – θ )

)
W

(
–√

(θ ∧ ( – θ ))
exp

(
–√

(θ ∧ ( – θ ))

))
,

where t() and t() are understood to be

lim
θ↓ t(θ ) = lim

θ↑ t(θ ) = .

Then the following inequalities hold for any a,b > :

MA(θ ;a,b)≤MK (θ ;a,b) if (a∧ b)≤ t(θ )(a∨ b), (.)

MA(θ ;a,b)≥MK (θ ;a,b) if (a∧ b)≥ t(θ )(a∨ b). (.)

Remark . Since  ≤ θ ∧ ( – θ ) ≤ /, t(θ ) satisfies  ≤ t(θ ) ≤  for  ≤ θ ≤ . In the
proof below, we see that  < t(θ ) <  if  < θ < . Proposition . shows that MK (θ ;a,b) is
better than MA(θ ) in a neighborhood of the diagonal a = b in the quarter plane (,∞) ×
(,∞).

Proof of Proposition . Let t >  satisfy t = (a∧ b)/(a∨ b). The magnitude correlation of
MA(θ ,a,b) andMK (θ ;a,b) coincides with that of

√
(a∨ b)–MA(θ ,a,b) =  – t

http://www.journalofinequalitiesandapplications.com/content/2014/1/162
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Table 1 The signs at the important values of x

t 0 ··· t1(θ ) ··· √
2(θ ∧ (θ – 1)) ··· 1

f ′(t) ∞ + + + 0 – –
f (t) –∞ ↗ 0 ↗ + ↘ 0

and

√
(a∨ b)–MA(θ ,a,b) = –

√

(
θ ∧ ( – θ )

)
log t.

Let f (t) =  – t +
√
(θ ∧ ( – θ )) log(t). We have f (t(θ )) =  since

–t(θ )√
(θ ∧ ( – θ ))

exp

(
–t(θ )√

(θ ∧ ( – θ ))

)

=
–√

(θ ∧ ( – θ ))
exp

(
–√

(θ ∧ ( – θ ))

)
,

which is rewritten as

exp

(
 – t(θ )√

(θ ∧ ( – θ ))

)
= t(θ )–,

and, moreover,

 – t(θ ) = –
√

(
θ ∧ ( – θ )

)
log

(
t(θ )

)
.

In addition,

f ′(t) = – +
√

(
θ ∧ ( – θ )

)
/t.

Then inequalities (.) and (.) follow from the Table . �

4 Dyadic refinements of multiplication formulae and their applications
In this section, we give dyadic refinements of the multiplication and dual multiplica-
tion formulae on the remainder function R(θ ;a,b) and their applications. By the recip-
rocal formula R(θ ;a,b) = R( – θ ;b,a), it is important to describe the formation of the
remainder function as θ →  and θ → / with the principal terms θR(/;a,b) and
( – θ )R(/;a,b). For that purpose, we utilize dyadic decomposition.

Proposition . Let θ satisfy  < θ ≤ –n with an integer n ≥ . Then the equality

R(θ ,a,b) = θ

n∑
j=

j–b––j
(
a

–j – b
–j) + b–

–n
R
(
nθ ,a–n ,b–n

)
(.)

holds for all a,b > .

Proof We apply Corollary . with σ = / to obtain

R(θ ;a,b) = θ
(
a/ – b/

)
+ b/R

(
θ ;a/,b/

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/162
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b–
–j
R
(
jθ ;a

–j
,b

–j)
= b–

–j(
j+θR

(
/;a

–j
,b

–j)
+ b

–j–
R
(
j+θ ;a

–j–
,b

–j–))
= jθb–

–j(
a

–j
– b

–j) + b–
–j–

R
(
j+θ ;a

–j–
,b

–j–)

for any j with  ≤ j ≤ n. Then (.) follows immediately. �

Proposition . Let θ satisfy (m– – )/(m – ) ≤ θ ≤ / with an integer m ≥ . Then
the equality

R(θ ;a,b) = ( – θ )
(
a/ – b/

)
– ( – θ )

m∑
j=

j–aθb(–θ )(––j)(a(–θ )–j – b(–θ )–j)

– ( – θ )aθb(–θ )(––m)R
(
m · / – θ

 – θ
;a(–θ )–m ,b(–θ )–m

)
(.)

holds for all a,b > .

Proof We apply Corollary . with σ = / to obtain

R(θ ;a,b) = ( – θ )
(
a/ – b/

) – ( – θ )aθR
(
/ – θ

 – θ
;a–θ ,b–θ

)
. (.)

Then (.) follows by applying Proposition . to the last term on the right-hand side of
(.) with ≤ (/ – θ )/( – θ ) ≤ –m. �

Corollary . Let  ≤ θ ≤ /. Then the inequalities

θ
(
a/ – b/

) + (
θ ∧ ( – θ )

)
b/

(
a/ – b/

)
≤ R(θ ;a,b)

≤ ( – θ )
(
a/ – b/

) – ( – θ )aθ
(
a(–θ )/ – b(–θ )/)

– 
(
θ ∧ ( – θ )

)
aθb(–θ )/(a(–θ )/ – b(–θ )/) (.)

hold for all a,b > .

Corollary . Let / ≤ θ ≤ . Then the inequalities

( – θ )
(
a/ – b/

) + ((
( – θ )

) ∧ (θ – )
)
a/

(
a/ – b/

)
≤ R(θ ;a,b)

≤ θ
(
a/ – b/

) – (θ – )b–θ
(
aθ/ – bθ/)

– 
(
( – θ )∧ (θ – )

)
a(–θ )/bθ

(
aθ/ – bθ/) (.)

hold for all a,b > .

http://www.journalofinequalitiesandapplications.com/content/2014/1/162
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Remark . Some of the lower bounds in Corollaries . and . may be found already
in [], Section ..

Remark . Inequalities (.) and (.) improve (.). Inequalities (.) become an equal-
ity when θ = /, while (.) become an equality when θ = , / and (.) become an
equality when θ = /, .

We are now in a position to apply the equalities above to Hölder type inequalities.

Theorem . Let p satisfy  ≤ p <∞ and let m and n be unique integers satisfying

⎧⎨
⎩n ≤ p < n+, n ≥ ,

(m+ – )/(m – ) ≤ p < (m – )/(m– – ), m≥ .

Then the equalities

‖f ‖p‖g‖p′

(
 –


p′

∫
�

( |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

)

dμ

+
(

p′ –


p

) m∑
j=

j–
∫

�

|f |
‖f ‖p

|g|––j
‖g‖––jp′

( |f |(p–)–j

‖f ‖(p–)–jp

–
|g|–j
‖g‖–jp′

)

dμ

+

p′

∫
�

|f |
‖f ‖p

|g|(––m)

‖g‖(––m)
p′

R
(
m– p – 

p – 
,

|f |(p–)–m
‖f ‖(p–)–mp

,
|g|–m
‖g‖–mp′

)
dμ

)

= ‖fg‖

= ‖f ‖p‖g‖p′

(
 –


p

n∑
j=

j–
∫

�

|g|p′(––j)

‖g‖p′(––j)
p′

( |f |p–j

‖f ‖p–jp

–
|g|p′–j

‖g‖p′–j
p′

)

dμ

–
∫

�

|g|p′(––n)

‖g‖p′(––n)
p′

R
(
n

p
,

|f |p–n
‖f ‖p–np

,
|g|p′–n

‖g‖p′–n
p′

)
dμ

)
(.)

hold for all f ∈ Lp(�,μ)\{} and g ∈ Lp′ (�,μ)\{}.

Proof The theorem follows from (.) and Propositions . and . with θ = /p, a =
|f |p/‖f ‖pp, b = |g|p′/‖g‖p′

p′ . �

Corollary . Let p,m, n be as in Theorem .. Then the inequalities

‖f ‖p‖g‖p′

(
 –


p′

∫
�

( |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

)

dμ

+
(

p′ –


p

) m∑
j=

j–
∫

�

|f |
‖f ‖p

|g|––j
‖g‖––jp′

( |f |(p–)–j

‖f ‖(p–)–jp

–
|g|–j
‖g‖–jp′

)

dμ

+

p′

(
 – m– p – 

p – 

)∫
�

|f |
‖f ‖p

|g|(––m)

‖g‖(––m)
p′

( |f |(p–)–m–

‖f ‖(p–)–m–
p

–
|g|–m–

‖g‖–m–
p′

)

dμ

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/162
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≤ ‖fg‖

≤ ‖f ‖p‖g‖p′

(
 –


p

n∑
j=

j–
∫

�

|g|p′(––j)

‖g‖p′(––j)
p′

( |f |p–j

‖f ‖p–jp

–
|g|p′–j

‖g‖p′–j
p′

)

dμ

–
p – n

p

∫
�

|g|p′(––n)

‖g‖p′(––n)
p′

( |f |p–n–

‖f ‖p–n–p
–

|g|p′–n–

‖g‖p′–n–
p′

)

dμ

)
(.)

hold for all f ∈ Lp(�,μ)\{} and g ∈ Lp′ (�,μ)\{}.

Proof The required inequalities follow from Theorem . and Proposition .. �

Corollary . Let p ≥ n with a positive integer n. Then the inequalities

‖f ‖p‖g‖p′
(
 –


p′

∥∥∥∥ |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

∥∥∥∥




+
(

p′ –


p

)∥∥∥∥ |f |/
‖f ‖/p

( |f |(p–)/
‖f ‖(p–)/p

–
|g|/
‖g‖/p′

)∥∥∥∥




)

≤ ‖fg‖

≤ ‖f ‖p‖g‖p′

(
 –


p

n∑
j=

j–
∥∥∥∥ |g|p′(/––j)

‖g‖p′(/––j)
p′

( |f |p–j

‖f ‖p–jp

–
|g|p′–j

‖g‖p′–j
p′

)∥∥∥∥




–
p – n

p

∥∥∥∥ |g|p′(/––n–)

‖g‖p′(/––n–)
p′

( |f |p–n–

‖f ‖p–n–p
–

|g|p′–n–

‖g‖p′–n–
p′

)∥∥∥∥




)
(.)

hold for all f ∈ Lp(�,μ)\{} and g ∈ Lp′ (�,μ)\{}.

Remark . In the case where n =  in Corollary ., the coefficients of the upper and
lower bounds of ‖fg‖ are symmetric as follows:

‖f ‖p‖g‖p′
(
 –


p′

∥∥∥∥ |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

∥∥∥∥




+
(

p′ –


p

)∥∥∥∥ |f |/
‖f ‖/p

( |f |(p–)/
‖f ‖(p–)/p

–
|g|/
‖g‖/p′

)∥∥∥∥




)

≤ ‖fg‖

≤ ‖f ‖p‖g‖p′
(
 –


p

∥∥∥∥ |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

∥∥∥∥




–
(

p′ –


p

)∥∥∥∥ |g|p′/

‖g‖p′/
p′

( |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

)∥∥∥∥




)
.
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Remark . Inequalities (.) improve the Aldaz stability version of the Hölder inequal-
ity []

‖f ‖p‖g‖p′
(
 –


p′

∥∥∥∥ |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

∥∥∥∥




)

≤ ‖fg‖ ≤ ‖f ‖p‖g‖p′
(
 –


p

∥∥∥∥ |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

∥∥∥∥




)
. (.)

As Aldaz observed, (.) become

‖f ‖p‖g‖p′
(
 –


p′

)
≤ ‖fg‖ =  ≤ ‖f ‖p‖g‖p′

(
 –


p

)

if supp f ∩ supp g = ∅. In this respect, Corollary . is sharp since both sides of the inequal-
ities in (.) vanish as follows:

‖f ‖p‖g‖p′
(
 –


p′

∥∥∥∥ |f |p/
‖f ‖p/p

–
|g|p′/

‖g‖p′/
p′

∥∥∥∥




+
(

p′ –


p

)∥∥∥∥ |f |/
‖f ‖/p

( |f |(p–)/
‖f ‖(p–)/p

–
|g|/
‖g‖/p′

)∥∥∥∥




)

= ‖f ‖p‖g‖p′
(
 –


p′ +


p′ –


p

)
= ,

‖f ‖p‖g‖p′

(
 –


p

n∑
j=

j–
∥∥∥∥ |g|p′(/––j)

‖g‖p′(/––j)
p′

( |f |p–j

‖f ‖p–jp

–
|g|p′–j

‖g‖p′–j
p′

)∥∥∥∥




–
p – n

p

∥∥∥∥ |g|p′(/––n–)

‖g‖p′(/––n–)
p′

( |f |p–n–

‖f ‖p–n–p
–

|g|p′–n–

‖g‖p′–n–
p′

)∥∥∥∥




)

= ‖f ‖p‖g‖p′

(
 –


p
–

p

n∑
j=

j– –
p – n

p

)
= .

In addition, (.) coincides with the polarization identity

(|f |, |g|) = ‖f ‖‖g‖
(
 –




∥∥∥∥ |f |
‖f ‖ –

|g|
‖g‖

∥∥∥∥




)

when p = , where (·, ·) is the standard L inner product.
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