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The failure data of bearing products is random and discrete and shows evident uncertainty. Is it accurate and reliable to use
Weibull distribution to represent the failure model of product? The Weibull distribution, log-normal distribution, and an improved
maximum entropy probability distribution were compared and analyzed to find an optimum and precise reliability analysis model.
By utilizing computer simulation technology and k-s hypothesis testing, the feasibility of three models was verified, and the
reliability of different models obtained via practical bearing failure data was compared and analyzed. The research indicates that
the reliability model of two-parameter Weibull distribution does not apply to all situations, and sometimes, two-parameter log-
normal distribution model is more precise and feasible; compared to three-parameter log-normal distribution model, the three-
parameter Weibull distribution manifests better accuracy but still does not apply to all cases, while the novel proposed model of
improved maximum entropy probability distribution fits not only all kinds of known distributions but also poor information issues
with unknown probability distribution, prior information, or trends, so it is an ideal reliability analysis model with least error at

present.

1. Introduction

In machinery products and engineering projects, bearings
are the joints and wearing parts in the whole transmission
system. Their operational reliability is the basis to establish
optimization and improvement strategies and implement
failure factor analysis, which directly relates to the operation
security of product during service time. In bearing reliability
estimation, the selection of failure distribution model is of
great importance, because it directly relates to the precision of
reliability prediction and has a huge influence on the usability
of bearing. If the predicted reliability value is too high and
the product performance exceeds a fatigue limit of normal
operation, particularly for aerospace, high-speed rail, nuclear
reactor, precision meter, and such systems, it will result in
major vicious accident or even affect the national security
[1, 2]. If the predicted reliability value is too low, the product
function cannot be fully exploited, making the product lose

its environmental adaption and leading to huge waste of
conditional resources. Therefore, in order to guarantee the
safe and stable operation of product system, it is essential to
implement effective monitoring and diagnosing and precise
reliability model estimation for bearings [3-7].

Reliability analysis is aimed at searching for the failure
distribution information which can exactly reflect that the
failure mechanism of product components accords with the
analysis results of failure data. After fitting the fault or failure
data into certain distribution form, the reliability estimation
and prediction will be carried out, in which the distribution
function of product failure time is the basis to study reliability.
Since the failure state of bearings may be affected by dif-
ferent operation conditions, such as structural composition,
material, load, lubrication, and numerous uncertainty factors,
the failure life of actual situation is random, accompanied
by multiple failure modes among which each mode can
be mutually affected, acted, and dynamically varied [8].
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There are some difficulties how to quickly and effectively
utilize failure data for precise reliability analysis and model
selection of production information. Recently, there is a lack
of exact plan to describe their gradual change process during
operation, and no perfect theoretical system is formed yet
[9]. Traditional reliability estimation theory is established
on the basis of a large number of failure data. However,
in many cases, the probability distribution of problems met
in engineering and experiment are not normal ones. For
example, the aircraft bearing, due to its high cost, very few
failure data, and extremely high requirements for precision
and reliability, has a harsh demand for test equipment. This
makes it difficult to implement large sample life test or obtain
failure data within limited testing time. So, when the product’s
life probability distribution is unknown, and we only have
small sample data for reference, it is impossible for us to
use existing reliability theory to accurately describe its failure
evolving law.

At present, the researches of bearing failure data are
mostly about Weibull distribution, log-normal distribution,
gamma distribution, and binomial distribution reliability
analysis methods. In particular, the Weibull distribution
and log-normal distribution are widely used in reliability
theoretical analysis. Though this has achieved certain results,
they show large error and low precision in the process
of product reliability estimation [10-15]. The accuracy of
reliability models increasingly got the attention of scholars
and experts. Rodriguez-Picon et al. [16] considered a gamma
process to marginally model the degradation of a perfor-
mance characteristic through two degradation test phases
performed sequentially and obtained a robust model to
get reliability estimates considering the effect of two serial
degradation tests. Reuben et al. [17, 18] proposed a reliability
evaluation method by using Weibull equation and made reli-
ability estimation on product failure data of gearbox bearing
and ceramic material, respectively, where results showed very
small discrepancy between its fitting curve and the points
of failure data. Through the reliability modeling disposing
of failure process of large-scale and complicated machinery
equipment, Pulcini [19] declared that its failure strength is not
so monotonous, and on this basis, he proposed the reliability
analysis model of nonhomogeneous Poisson process. To solve
the real-time online reliability problems, Hong and Meeker
[20] proposed an intelligent reliability estimation method
based on dynamic state information changes, which brought
much convenience to timely judge the dynamic running
state of workpiece. Khaleghei and Makis [21] proposed a
new competing risk model to calculate the conditional mean
residual life and conditional reliability function of a system
subject to two dependent failure modes, namely, degradation
failure and catastrophic failure. In order to ensure that the
classifier can correctly inspect the system failure information,
Hwang and Lee [22] presented a new approach to overcome
class imbalance problem and human factor influence by
using classification technique, thus speedily and effectively
implementing system reliability estimation. Zhang et al. [23]
applied ANSYS/PDS module to make simulated analysis on
the reliability of agricultural machinery chassis drive axle
housing and probed into the influence of random variables
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such as geometric dimension, load, and material strength on
drive axle housing. By exploring discrete random variable
and analyzing the expectation interval and information
capacity of certain entropy, Aviyente et al. [24, 25] success-
fully solved the time frequency distribution problem and
interval forecast problem of entropy. Xia [26] proposed a
grey bootstrap method based on poor information theory,
which conducted a reliability analysis of zero-failure data
when the probability distribution information is known or
unknown in life test, thus providing a strong theoretical
reference to the reliability of poor information of zero-failure
data.

Based on this, lots of topics and literature sources are
mentioned associated with bearing capacity, distribution
types, reliability, lifetime, and so on, because there is a very
close relationship between them. Firstly, bearing capacity,
lubrication condition, rotational speed, and other working
conditions are important determinants affecting the bearing
lifetime, and the set of the same batch bearing lifetime
makes up a number of failure data under the above working
conditions. Secondly, the distribution types of a number of
failure data can be obtained according to statistical theory,
and then its probability density function can be acquired
easily. As we all know, the probability density function is
the hub of data analysis and solution, and then, according
to the probability density function and the given integral
interval, the failure probability of bearings can be obtained
during their service. Finally, using the unit one to subtract
the failure probability, the reliability of bearing failure data
is acquired. Therefore, these topics on bearing capacity,
distribution types, reliability, and lifetime have a very close
coherent interlocking, and all of them have an evidently direct
or indirect relationship with the calculation of the reliability
of bearing failure data.

This article used the failure data obtained from simulated
test and bearing life failure test and made comparative
analysis via log-normal distribution, Weibull distribution,
and improved maximum entropy distribution, so as to select
the optimum and precise reliability analysis model. First,
the reliability empirical value calculated by Johnson [27]
method was taken as standard. In specific analysis, two-
parameter log-normal distribution was compared with two-
parameter Weibull distribution, and three-parameter log-
normal distribution was compared with three-parameter
Weibull distribution, while in parameter estimation pro-
cess of three-parameter log-normal distribution, the integral
transformation moment method, linear moment method,
and probability weighted moment method were used for
comparative analysis, respectively. The research indicates that
Weibull distribution is not applicable to all bearing failure
conditions, and sometimes, the log-normal distribution has
a smaller standard deviation and lower relative life error in
reliability analysis. Then, the reliability estimation method for
improved maximum entropy probability distribution was put
forward to make reliability analysis on failure data, and this
novel method has a high fitting degree and can be applied to
all failure cases; when comparatively analyzing with Weibull
distribution model and log-normal distribution model, both
of the standard deviation and relative life error between its
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reliability truth-value vector and empirical value vector are
minimum.

2. Mathematical Model

2.1. Classical Reliability Empirical Value. Suppose X, is a
failure data series group of research object, and each failure
data is unequal and nonredundant, which is denoted as

Xy = {xo:'} >

Xop < Xgp <

@

<xp < < Xpp 1=1,2,...,m,

where X, is the vector composed of such failure data group,
Xo; is the ith failure data of this data series, i is the serial
number of ith failure data, and n is the number of failure data.

In case that the probability distribution or distribution
parameter of failure data is unknown, the reliability oflife fail-
ure data of research object can be nonparametric estimated
using Johnson’s median rank empirical value formula. The
reliability empirical formula [28, 29] of such method can be
expressed by vector as

RO = {r (in)} >

where RO refers to reliability empirical value vector.
The formula to calculate reliability median rank empirical
value is

i=12,...,n, (2)

i-03 .
T(XOi)=1—n+04; i=12...,n (3)

where i is the ith failure data and 7 is the number of failure
data.

2.2. Two-Parameter Log-Normal Distribution and Weibull
Distribution. Both distributions are common reliability
models in engineering applications, especially the Weibull
distribution which is widely used in analyzing bearing failure
data and has achieved good research results.

The probability density function of two-parameter log-
normal distribution is

(4)

£ _[lnt—y] }

1
= ex
V2ot P { 202

The reliability function is

202

o 2
@)= I—L exp{—m}dt, (5)

1
\2mot

where ¢ is the random variable of life, y is the proportional
parameter, o is the shape parameter, t > 0, 4 > 0, and ¢ > 0.

The probability density function of two-parameter
Weibull distribution is

s ()

The reliability function is

f@ =eXP<—<£)a>> @)

where t is the random variable of life, i is the proportional
parameter, o is the shape parameter, t > 0, 4 > 0, and o > 0.

2.2.1. Parameter Estimation. Maximum likelihood method
[30, 31] is widely used in the parameter estimation of all
kinds of reliability models, which is one of the frequently
used parameter estimation methods. For two-parameter log-
normal distribution and two-parameter Weibull distribution,
the maximum likelihood method is used for parameter
estimation of these two models, respectively.

When the maximum likelihood method is used to esti-
mate two-parameter log-normal distribution, the likelihood
equation set is obtained as below:

olnL(uo® n
i=1
(8)
olnL(u,o” n
) LS e

N
—

where L(u,0”) is the likelihood function of log-normal
distribution.

When the maximum likelihood method is used to
estimate two-parameter Weibull distribution, the likelihood
equation set is obtained as below:

dlnL (o, z _
M_Z” +(np)u™ Zf _izgtgl
- i=1

oo ue
)
olnL (o, u) _ no n(o—l) i o
Ou w w &t

where L(o, p) is the likelihood function of Weibull distribu-
tion. Using the iterative method to solve the equation set, we
can acquire the estimated values of two parameters in two-
parameter Weibull distribution.

2.3. Three-Parameter Log-Normal Distribution and Weibull
Distribution. The probability density function of three-
parameter log-normal distribution is

1 _[ln(t—r)—y]2
F0= Vamot ¥ { 202 } - 19

The reliability function is

(™ [in(t - 7) - )
ro-1-] eXP{‘T} e,

where ¢ is the random variable of life, (¢, 0) is the parameter
of log-normal distribution: y is the proportional parameter
and o is the shape parameter, and 7 is the location parameter.
t>0,u>0,and o > 0.



The probability density function of three-parameter
Weibull distribution is

w2 (5 @ ((5))

t>27>0; 0>0; u>0.

The reliability function is

R(t;p0,7) = 1~ F(£) = exp (— ("‘_TT)U> (13)

where t is the random variable of life, i is the proportional
parameter, ¢ is the shape parameter, and 7 is the location
parameter. t > 0, u > 0, and o > 0.

2.3.1. The Parameter Estimation of Three-Parameter Log-
Normal Distribution. In the process of parameter estima-
tion of three-parameter log-normal distribution, the integral
transformation moment method [32], linear moment method
[33], and probability weighted moment method [34] were
used for comparative analysis, respectively. These parameter
estimation methods are mature and widely used in many
fields, and the details are as follows.

(1) Integral Transformation Moment Method. In the following
formulas, 7 is the location parameter, which can be deter-
mined by mean value Y, coefficient of variation C,, and
coefficient of skew C,, that is,

T:Y(1—9>
n
o=1In(1-7?)

1 147
-2
! 2“[(Y—r>2]

13 (14)
C.—\C2+4
=\
1/3
—-C,—\/C2 +4
| = .
where
1 n
nl; !
C, - lJ o (t- 1Y) (15)
VY n-1
C, =30+,
with

® =exp(0?) -1, (16)

where @ stands for standard normal distribution.
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(2) L-Moment Method

E, + E;1y° + E,13% + E3°
1+ F12 + Byt + Fy7sf

e 17)
=Iln| —22—
: n[l—zq)(o/\/i)]

2
+0°/2
T=A, -

o =1,

where E, E,, E,, E;, F,, F,, and F; are constants. @ refers
to standard normal distribution, and linear moments A, A,,
and 7; are determined by life data of given sample.

(3) Probability Weighted Moment Method

C
=u(1-=2 18
r=u(1-2) (18)
o= \/ln(l +k2) (19)
1 2
u=ln@-1)-In(1+k") (20)
1/2
\JC2+4+C,
k= —— =
2
(21)
1/3
\JC2+4-C,
- 2
.-n( 1) o
M, 2
M, - M,/3
R:—)
M, - M, /2 23)

where H and R are function of C, both of which cannot be
expressed by explicit formulation; C, and C; are coeflicient
of variation and coefficient of skew of variable t, respectively.
M,, M,, and M, are the probability weighted moments [35]
of zero-order, first-order, and two-order, respectively.

H = 3.545 + 34.7v + 220v* + 178v° + 12160v* (24)

with
R-1) 4
(4/3-R)"™ 3
C, = 12.83w + 3.8w” + 40.5w° + 203w* + 855w°  (25)
R-1 4
we D (o)
(4/3-R)" 3

where v and w are transition variables to solve function value
for H and C,.
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2.3.2. The Parameter Estimation of Three-Parameter Weibull
Distribution. The k-order exceeding probability weighted
moment [36] equation of Weibull distribution is

y  nf(1+1/o)
My ox = + R
l+k  (1+k)

(26)

where T is gamma function; for convenience, k is valued as
k = 0,1,3, and we can obtain M, 4y, M, ,;, and M, 3, and
the three parameters of three-parameter Weibull distribution
are

In2
o= .
In ((MI,O,O - 2]\/11,0,1) /2 (M1,o,1 - 2M1,o,3))
4(M, (M, o — M?
L ( 1,0,31,0,0 1,0,1) (27)
AM, o5+ My o0 — 4M g4
_ Migo—7
I'[1/0]

The exceeding probability weighted moments of observed
sample are

MI,O,O:thi

ni3

1<¢ i—0.35
Ml,o,lz;llzlti<l_ " ) (28)

1< i-035)\°
Mg = Y (1- )

2.4. Improved Maximum Entropy Reliability Model.
Improved maximum entropy method can make an optimal
estimation with minimum subjective bias on unknown
probability distribution. Firstly, according to reliability
empirical formula, the reliability empirical vector RO can
be obtained for failure data. Secondly, using the empirical
value of vector RO to adversely deduce a frequency vector
for discrete failure, a statistical histogram is acquired, which
is convenient to be used to calculate Lagrangian multipliers,
and it is different for the traditional maximum entropy to use
amount of sample data to solve the Lagrangian multipliers.
Then, based on an internal mapped method, probability
density function f(x) for the improved maximum entropy
can be obtained. Finally, reliability function for estimate true
value is then acquired by integrating the function of f(x).

2.4.1. Discrete Failure Frequency Vector. According to statistic
theory, from the reliability empirical vector RO in (2), we can
get the discrete cumulative failure probability vector F:

Fo={fif =1-R={1-r(x)};

where 7(x;) is the reliability of the ith failure data of initial
data X, in (1) and n is the number of initial data.

Suppose the corresponding discrete failure probability of
each failure life data is p,. For the first data, that is, when

i=1,2,...,n, (29)

5
i = 1, let its failure probability be p,, = f;. So,
from the second data, that is, when i = 2,3,...,n, the

corresponding failure probability of each failure life can be
obtained by cumulatively subtracting the elements in vector
F, successively as follows: py; = f; = fi_, i =2,3,...,n.

So the discrete failure frequency vector of its failure life
data is

¢ = fi i=1
Py, = {py} = . (30)
gi={fi-finl, i=23....n

Let (30) correspond to statistic histogram, in which the
abscissa is discrete failure life data x,;, and ordinate is the
frequency p, = pog-1» 9 = 2,...,n + 1 that corresponds
to class mid-value x;, = x;(_;) of each group. Normally,
the histogram can be expanded to n + 2 group, that is, g =
L,2,...,n+2,and let p; = p,., =0, x, = x5, — (X0 — Xp1)>
Xpin = X, + (%05 — Xo1 ). Here, the processing of histogram is
beneficial for utilizing Newtons method to solve Lagrangian
multipliers in maximum entropy probability density function
in the following.

2.4.2. Maximum Entropy Probability Distribution Density
Function. Suppose the probability distribution density func-
tion with maximum entropy is

f(t) =exp (i cktk> , (31)
k=0

where ¢ is the random variable of life; m is origin moment
order, generally let m = 3~8, and commonly m = 5; ¢ is the
kth Lagrangian multiplier, k = 0, 1,...,m, totally m + 1.

The first Lagrangian multiplier ¢, is

G = —1n<Lexp (kzlcktk>dt>. (32)

Other m Lagrangian multipliers shall satisty

.[s t* exp (Z;’;l cjtj) dt _
my fs exp (1) dt (33)

g=9()=1-

k=1,2,...,m.

Newton iteration method can be used to solve Lagrangian
multiplier vector c.

2.4.3. Improved Maximum Entropy Probability Distribution
Numerical Solution. There are some difficulties to obtain the
solution procedure of probability distribution by improved
maximum entropy method. To achieve a quick numerical
solution with good convergence, this article adopted the
internal mapped Newton iteration method. First, the failure
data series were mapped onto dimensionless interval [—e, e],
e = 2.718282. Then, the mapping data were sorted from
small to large into Q-2 groups, and histogram was drawn, to
obtain mid-value t, and frequency p, of each group. Later, the



histogram is extended into Q groups; namely, p; = pg = 0,
g=12,...,Q.
The value of k order origin moment m, changes to

n+2

k
mkzzltqpq k=0,1,...,m my=1. (34)
p

The integration variable ¢ turns into mapped variable x,
and integrating range S is mapped onto [—e, e]. The improved
maximum entropy probability distribution density function
changes to

f(x)=exp [co+ick(ax+b)k] , (35)

k=1

where a and b are interval mapping parameters.

Integrate the improved maximum entropy distribution
density function f(x) in interval S = [x;, x,,]. The obtained
cumulative failure probability function F is

F= J f (x) dx. (36)
s

Mathematical Problems in Engineering

Therefore, the improved maximum entropy reliability estima-
tion truth function can be expressed as

R(x)=1-F. (37)

3. Computer Simulation Verification

3.1 Reliability Median Ranks Empirical Model Verification.
Through comparing the reliability discrete vector obtained
from empirical equation (3) with the reliability of simulated
failure data of known Weibull distribution and log-normal
distribution, we verified the feasibility of median ranks
empirical model of failure data.

Example 1 (two-parameter Weibull distribution simulation
example). Suppose that two-parameter Weibull (TWPW)
distribution parameter (¢, ) = (80, 3). Let the value range
of reliability simulated vector R; be 0.95~0.05 with interval
of —0.05. According to the inverse function of two-parameter
Weibull reliability, we got 19 simulation data T,, which
is failure data. Then according to reliability median ranks
empirical model in (3), empirical point can be figured out to
compose empirical vector RO, and the results are shown in
Figure 1.

R, = [0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05]

T,

(38)

=[29.72 37.78 43.66 48.52 52.81 56.73 60.42 63.95 67.39 70.80 74.22 77.70 81.31 85.11 89.20 93.75 99.03 105.64 115.33]

RO = [0.96 0.91 0.86 0.81 0.76 0.71 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.29 0.24 0.19 0.14 0.09 0.04].

Example 2 (three-parameter Weibull distribution simulation
example). Suppose that three-parameter Weibull (THPW)
distribution parameter (4,0,7) = (80,3, 10). Let the value
range of reliability simulated vector R; be 0.95~0.05 with
interval of —0.05. From inverse function of three-parameter

T,

Weibull distribution reliability, we got 19 simulation data T,,
which is failure data. According to reliability median ranks
empirical model in (3), empirical point can be figured out to
compose empirical vector R0, and the results are shown in
Figure 2.

(39)

=[39.72 47.78 53.66 58.52 62.81 66.73 70.42 73.95 77.39 80.80 84.22 87.70 91.31 95.11 99.20 103.75 109.03 115.64 125.33].

Example 3 (two-parameter log-normal distribution simu-
lation example). Suppose that two-parameter log-normal
(TWPLN) distribution parameter (y,0) = (4,0.3). Let
the value range of reliability simulated vector R; be 0.95~
0.05 with interval of —0.05. From inverse function of

T,

two-parameter log-normal distribution reliability, we got
19 simulation data T, which is failure data. According to
reliability median ranks empirical model in (3), empirical
point can be figured out to compose empirical vector R0, and
the results are shown in Figure 3.

40)

=[33.33 37.17 40.01 42.41 44.60 46.61 48.64 50.60 52.58 54.60 56.69 58.91 61.29 63.90 66.48 70.28 74.5 80.19 89.43].
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FIGURE I: Verification of empirical model by two-parameter Weibull model.
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FIGURE 2: Verification of empirical model by three-parameter Weibull model.

Example 4 (three-parameter log-normal distribution simu-
lation example). Suppose that three-parameter log-normal
(THPLN) distribution parameter (u,0,7) = (4,0.3,10).
Let the value range of reliability simulated vector R, be
0.95~0.05 with interval of —0.05. From inverse function of

T,

three-parameter log-normal distribution reliability, we got
19 simulation data T,, which is failure data. According to
reliability median ranks empirical model in (3), empirical
point can be figured out to compose empirical vector R0, and
the results are shown in Figure 4.

(41)

=[34.33 38.17 41.01 43.41 45.60 47.61 49.64 51.60 53.58 55.60 57.69 59.91 62.29 64.90 67.48 71.28 75.5 81.19 90.43].

In the above four simulation examples, it can be seen
that the median ranks empirical method can excellently de-

scribe two-parameter Weibull distribution, three-parameter

Weibull distribution, two-parameter log-normal distribu-
tion, and three-parameter log-normal distribution. The reli-
ability empirical values almost completely fall on the known
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FIGURE 3: Verification of empirical model by two-parameter log-normal model.
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FIGURE 4: Verification of empirical model by three-parameter log-normal model.

distribution function curve, which accurately describes the
distribution law of failure data. In four simulation examples,
the standard deviations between empirical vector RO and
known distribution R, are all 0.0079, which indicates there
is tiny standard deviation between the known reliability of
failure data and that obtained by the empirical method. The
research shows that median ranks empirical model can well
estimate the reliability of product failure data with known
probability distribution, without estimating the parameters,
which avoids possible errors in parameter estimation and
greatly improves the accuracy of estimation. So, in the fol-
lowing reliability model estimation, empirical vector will be
taken as criterion to comparatively analyze the fitting degree
of other models and empirical value, so as to determine
whether reliability model is good or bad.

Though this empirical formula does not need param-
eter estimation, is easy to use, and can precisely com-
pute reliability, the estimation results of reliability truth
are discrete, fluctuant, and uncertain, making it hard to
conduct continuous estimation. Moreover, when failure data
repeatedly appear, this formula cannot estimate the failure
probability precisely. In order to get more accurate and
continuous reliability estimation model, it is necessary to
make further study on fitting curve of failure data (researched
later).

3.2. Two-Parameter Model and Improved Maximum Entropy
Model Verification. If using two-parameter log-normal dis-
tribution and two-parameter Weibull distribution as reli-
ability model, it is required to verify the accuracy of
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FIGURE 5: Reliability model simulation of two-parameter log-normal distribution and improved maximum entropy distribution.

parameter estimation on two-parameter Weibull distribu-
tion and two-parameter log-normal distribution by maxi-
mum likelihood method. The improved maximum entropy
method does not take function distribution into account,
but using simulated data of two-parameter Weibull dis-
tribution and two-parameter log-normal distribution to

t1

=[29.09 30.22 3278 34.66 38.35 45.32 48.84 51.61 56.07 63.90 65.64 67.08 69.18 72.84 74.99 7545 77.45 82.25 82.55 84.01 95.65 103.22 103.85 111.42 124.51 132.89 133.01 137.55 167.45 225.53].

Use the reliability empirical equation (3) for empirical
value (RO) to implement point estimation on these 30 random
numbers.

Use maximum likelihood method’s equation (8) for two-
parameter log-normal (TWPLN) to implement parameter
estimation on these 30 random numbers:

(= 43024,
(43)
o = 0.5088.

Use internal mapped method’s equation (35) for im-
proved maximum entropy (ME) to implement probability
density estimation on these 30 random numbers.

Substitute the estimated parameters into (5) and (37) to
obtain relevant reliability function, and substitute 1 into
(3) to obtain empirical point RO. The results are shown in
Figure 5.

t2

verify the practicability of improved maximum entropy
method.

First, generate a group of two-parameter log-normal
distributed random numbers by computer, with parameter
setting as (4,0) = (4,0.4), n = 30, and # is the number of
simulated data.

(42)

From Figure 5, it is observed that reliability curve of two-
parameter log-normal distribution conforms to the distribu-
tion of empirical points. Let significance level &« = 0.05. We
can get the k-s test values of log-normal distribution fitting
model and improved maximum entropy model which are
0.07 and 0.09, respectively, and the critical value is Dc =
0.2417, which shows that the test values are all less than
critical values. Furthermore, this proves that using maximum
likelihood method to make parameter estimation on two-
parameter log-normal distribution can get better effect, and
improved maximum entropy probability distribution model
can be well applied in two-parameter log-normal distribu-
tion.

Generate a group of random numbers on two-parameter
Weibull distribution by computer, with parameter setting as
(4,0) = (60,2.5), n = 30.

(44)

=[10.2 1576 17.91 22.11 28.86 32.11 36.24 37.83 39.54 40.82 43.79 46.44 47.32 47.4 48.79 50.85 55.76 59.56 59.64 61.19 61.42 64.26 67.89 69.02 71.94 76.63 76.76 77.27 85.23 114.4].
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FIGURE 6: Reliability model simulation of two-parameter Weibull distribution and improved maximum entropy distribution.

Use the reliability empirical equation (3) for empirical
value (RO) to implement point estimation on these 30 random
numbers.

Use maximum likelihood method’s equation (9) for two-
parameter Weibull (TWPW) to implement parameter esti-
mation on these 30 random numbers:

u = 58.8290,
(45)
0 = 24744,

Use internal mapped methods equation (35) for im-
proved maximum entropy (ME) to implement probability
density estimation on these 30 random numbers.

Substitute the estimated parameters into (7) and (37) to
obtain relevant reliability function, and substitute 2 into
(3) to obtain empirical point RO. The results are shown in
Figure 6.

From Figure 6, it is observed that reliability curve of two-
parameter Weibull distribution conforms to the distribution
of empirical points. Use k-s test method, and let significance
level « = 0.05. With estimated parameters of maximum
likelihood method, we can get the k-s test values of two-
parameter Weibull distribution fitting model and improved
maximum entropy fitting model which are 0.06 and 0.07,
respectively, and the critical value is Dc = 0.2417, which
shows that the test values are all less than the critical values.
Furthermore, this proves that using maximum likelihood

t3

method to make parameter estimation on two-parameter
Weibull distribution is feasible, and improved maximum
entropy probability distribution model can be well applied in
two-parameter Weibull distribution.

To sum up, from the results of parameter estimation on
random numbers of two-parameter log-normal distribution
and two-parameter Weibull distribution, it is known that
taking maximum likelihood method as parameter estimation
method is feasible for these two models with highly accurate
estimation results; improved maximum entropy reliability
function basically completely coincides with empirical value
vector, which proves that this model is suitable for the above
two distributions and has small error and high precision.

3.3. Three-Parameter Model and Improved Maximum
Entropy Model Verification

3.3.1. Three-Parameter Log-Normal Distribution and Improved
Maximum Entropy Distribution. If using integral transfor-
mation moment method, linear moment method, and proba-
bility weighted moment method as the parameter estimation
method of three-parameter log-normal distribution, it is a
must to verify the feasibility of these three-parameter estima-
tion methods to three-parameter log-normal distribution.

Let distribution parameter (¢4, 0, 7) = (4, 0.4, 10) generate
a group of three-parameter log-normal distributed random
numbers by computer (n = 30):

(46)

=[24.05 24.36 24.69 27.19 28.97 30.58 31.38 32.34 34.85 36.61 36.80 37.42 37.74 44.16 45.62 46.79 54.68 55.41 57.81 61.06 62.04 63.48 63.87 64.42 67.65 69.73 70.56 72.37 83.01 116.64].

Empirical value (RO) uses the reliability empirical equa-
tion (3) for point estimation on this random numbers

group.

Three-parameter log-normal uses integral transforma-
tion moment (ITM) method’s equation (14) for parameter
estimation on this random numbers group:
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FIGURE 7: Reliability model simulation of three-parameter log-normal distribution and improved maximum entropy model.

T = -12.6478,
4 = 4.0870, (47)
o =0.3283.

Three-parameter log-normal uses linear moment (LM)
method’s equation (17) for parameter estimation on this
random numbers group:

T = —13.4789,
4 = 44101, (48)
o = 0.3287.

Three-parameter log-normal uses probability weighted
moment (PWM) method’s equations (18), (19), and (20) for
parameter estimation on this random numbers group:

T = 1.5063,
u = 3.7966, (49)
o =0.4222.

Improved maximum entropy (ME) uses internal mapped
method’s equation (35) for probability density estimation on
this random numbers group.

Substitute the estimated parameters into (11) and (37) to
obtain relevant reliability function, and substitute ¢3 into (3)
to obtain empirical point R0, as shown in Figure 7.

t4

Itis observed in Figure 7 that the reliability curve basically
conforms to the distribution of empirical points, and three-
parameter estimation methods and improved maximum
entropy probability distribution demonstrate perfect fitting
degree. Use k-s test method and let significance level & =
0.05 to make hypothesis testing on the results, as shown in
Table 1.

In reliability function image, it can be found that three
estimation methods have good fitting degree. And it is
known from k-s test that the k-s test values of three-
parameter estimation methods are less than critical values;
thus, three methods are all suitable for three-parameter
log-normal distribution. So, when we conduct parame-
ter estimation of three-parameter log-normal distribution
on test failure data, the above three estimation methods
can be used for estimation. Meanwhile, k-s test value
of improved maximum entropy is also less than critical
value, indicating that improved maximum entropy proba-
bility distribution model can be perfectly applied in three-
parameter log-normal distribution with perfect estimation
effect.

3.3.2. Three-Parameter Weibull Distribution and Improved
Maximum Entropy Distribution. In order to verify the fea-
sibility of k-order exceeding probability weighted moment
based parameter estimation method to three-parameter
Weibull distribution, let Weibull parameter (y,0,7) =
(60,2.5,10), and simulate three-parameter Weibull distribu-
tion and life data by computer system (n = 25) as below:

(50)

= [22.60,29.71,34.91, 38.15,41.42, 44.38,47.12,49.72, 52.23, 54.66, 57.06, 59.44, 61.82, 64.23, 66.68, 69.21, 71.85, 74.62, 77.59, 80.83, 84.45, 88.63, 93.76, 100.75, 113.54] .
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FIGURE 8: Reliability simulation of three-parameter Weibull distribution and improved maximum entropy model.

TaBLE 1: Comparison of three-parameter log-normal distribution
and improved maximum entropy distribution.

Estimation method  k-s critical value  k-s test value  Results
IT™ 0.2417 0.1126 Valid
LM 0.2417 0.1063 Valid
PWM 0.2417 0.1131 Valid
ME 0.2417 0.0916 Valid

Empirical value (RO) uses the reliability empirical equa-
tion (3) for point estimation on this group of random
numbers.

Three-parameter Weibull (THPW) distribution uses k-
order exceeding probability weighted moment method’s
equation (27) for parameter estimation on this group of
random numbers:

T =10.8908,
p = 59.0072, (51)
o =2.3293.

Improved maximum entropy (ME) uses internal mapped
method’s equation (35) for probability density estimation on
this group of random numbers.

Substitute the estimated parameters into (13) and (37) to
obtain relevant reliability function, and substitute ¢4 into (3)
to obtain empirical point R0, as shown in Figure 8.

From Figure 8, it is observed that reliability curves of
three-parameter Weibull distribution and improved maxi-
mum entropy probability distribution basically conform to
the distribution of empirical points. Use k-s test method, and
let significance level &« = 0.05. We can get the k-s test value of
three-parameter Weibull distribution model which is 0.01, the

values of improved maximum entropy fitting model are 0.02,
and the critical value is Dc = 0.2641. As the test values are all
less than critical values, it is feasible to use k-order exceeding
probability weighted moment method in parameter estima-
tion on three-parameter Weibull distribution, and improved
maximum entropy probability distribution model can be well
applied in three-parameter Weibull distribution.

To sum up, it can be known from the simulation
results of random numbers obeying three-parameter Weibull
distribution, three-parameter log-normal distribution, and
improved maximum entropy probability distribution that the
reliability estimation methods of the above three models are
all feasible with highly accurate estimation results. Improved
maximum entropy reliability function basically completely
coincides with empirical value vector and is suitable for the
above two distribution models with small error and high
precision. Meanwhile, it also proves that the distribution of
sample data can be ignored in improved maximum entropy
application process, and its major feature is that it applies
to the poor information issues with unknown probability
distribution, trends, or prior information. This is because the
improved maximum entropy model does not need param-
eter estimation or consider any distribution, but objectively
processing experimental data. That is to say, there is no ideal
model artificially presupposed before data processing, which
overcomes the influence produced by subjective factor and
parameter estimation error, so that the certainty rule in data
change can be directly reflected.

At the same time, median rank empirical model can
effectively assess the reliability of product failure data with
high precision, so, in the following experimental research
section, this empirical value should be taken as a criterion to
decide whether the reliability model is good or bad; in two-
parameter and three-parameter reliability model verification,
multiple parameter estimation methods are feasible and
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effective with high precision and small error; therefore,
they are safe and reliable in the following practical case
applications; the novel improved maximum entropy model
is suitable for all the above conditions, which has laid a
foundation to search for quasi-ideal model in the following
sections.

4. Experimental Research

4.1. Experimental Facility and Conditions. This bearing life
reliability research adopted NTN bearing life experimental
facility and material samples. The experimental facility is
®12 point-contact life testing machine, and the material
samples are cylindrical roller of ®12 mm x 22 mm obtained
by processing different batches of material under the same
heat treatment conditions. The experiment was conducted at
motor speed of 3900 r/min, indoor temperature of 26°C, and
humidity of 53%. By applied load from compression spring,

T1

13

the stress imposed on roller and steel ball is 2.55 KN, and the
experimental applied maximum contact stress is 5.88 GPa.
In the timing from the start of experiment, when surface
peeling occurs on contact region of cylindrical roller and steel
ball, it will make cylindrical roller vibrate more. And if the
vibration value reaches certain amplitude, the inductor switch
will automatically jump up, the motor will stop to run, and the
experiment ends. At this time, read the test run time of testing
machine, which is the failure life of this roller material.

4.2. Test Data. There are 3 groups of failure data test in total.
The fajlure time recorded by experimental facility is initial
data with unit in minute. For easy calculation, failure data is
conversed into data with unit in hour and sorted from small
to large into a group of vector.

In the first batch of test, the failure data is expressed by T'1
with n = 26:

=[0.38 1.685 1.687 1.71 1.8 1.86 1.89 2.06 2.14 2.2 2.42 2.46 3.88 4.89 6.2 7.73 12.46 12.5 12.88 13.33 31.97 38.57 47.5 50.2 51.77 58.71].

In the second batch of test, the failure data is expressed
by T2 with n = 30:

T2

=[0.61 0.69 1.66 1.81 1.91 1.93 2.34 2.36 2.38 3.07 3.075 3.08 3.63 11.80 12.67 14.18 14.29 16.27 17.84 18.83 26.10 28.00 29.79 47.52 47.86 52.91 53.15 53.57 80.20 90.11].

In the third batch of test, the failure data is expressed by
T3 withn = 23:

T3

=[1.46 1.685 1.687 1.88 2.06 2.13 2.25 2.257 2.39 2.48 2.58 4.32 4.97 8.55 11.34 12.78 15.75 22.66 32.49 69.72 71.54 86.36 86.91].

4.3. Experimental Investigation of Two-Parameter Model and
Improved Maximum Entropy Method.

Example 1. Substitute failure data T1 into the reliability
empirical equation (3) for empirical value (R0) estimation.

Substitute failure data T'1 into two-parameter log-normal
(TWPLN) distribution model’s equation (8) for parameter
estimation:

u=17859,
(55)
o= 13713,

Substitute failure data T'1 into two-parameter Weibull
(TWPW) distribution model’s equation (9) for parameter
estimation:

(52)

(53)

(54)
u = 12.0224,

(56)
o =0.7589.

Substitute failure data T'1 into improved maximum
entropy (ME) model’s equation (35) for probability density
estimation.

Their reliability curves are shown in Figure 9.

Example 2. Substitute failure data T2 into the reliability
empirical formula for empirical value estimation.

Substitute failure data T2 into two-parameter log-normal
distribution for parameter estimation:

p = 2.2075,
(57)
0 = 1.4681.
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FIGURE 9: Reliability function image of failure data T'1.

z
2
o)
2

Failure data

— ME --- TWPLN
* RO e TWPW

FIGURE 10: Reliability function image of failure data T2.

Substitute failure data T2 into two-parameter Weibull
distribution for parameter estimation:

u = 18.6897,
(58)
o =0.7861.

Substitute failure data T2 into improved maximum
entropy model for probability density estimation.
Their reliability curves are shown in Figure 10.

Example 3. Substitute failure data T'3 into the reliability
empirical formula for empirical value estimation.

Substitute failure data T'3 into two-parameter log-normal
distribution for parameter estimation:

p=1.9509,
(59)
0 = 1.4091.
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FIGURE 11: Reliability function image of failure data T'3.

Substitute failure data T3 into two-parameter Weibull
distribution for parameter estimation:

u=14.7678,
(60)
0 = 0.6938.

Substitute failure data T3 into improved maximum
entropy model for probability density estimation.
Their reliability curves are shown in Figure 11.

From Figures 9 to 11, it can be discovered that three reli-
ability curves basically conform to distribution of empirical
points and show good fitting degree. Use k-s test method and
let significance level &« = 0.05, to make hypothesis testing of
parameter estimation results; the results are shown in Table 2.
The research indicates that k-s test values of three failure
data distribution models in each example are all less than the
critical values, so three curves can describe the distribution
rule of failure data.

Calculate the standard deviation of reliability function
value and empirical points and substitute failure data into
empirical equation (3), two-parameter log-normal distribu-
tion reliability equation (5), two-parameter Weibull distribu-
tion reliability equation (7), and improved maximum entropy
probability distribution reliability equation (37). Then we can
obtain reliability empirical value vector RO and reliability
estimated truth vectors R;, R,, and R; and substitute them
into standard deviation equation:

o; = li(Ro—Rj)z, (61)

ni3

where 7 is the number of failure data of each group and j =
1,2,3.

According to (61), we can get the standard deviation when
each failure data group takes two-parameter log-normal
(TWPLN) distribution, two-parameter Weibull (TWPW)
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TaBLE 2: Comparative results of three reliability models of failure data.
Distribution model k-s test value Critical value Standard deviation P1 P2
T1 TWPLN 0.2024 0.2591 0.0802 1.0295 5.9662
T1 TWPW 0.2024 0.2591 0.0899 0.6197 7.4173
T1 ME 0.1631 0.2591 0.0737 0.2483 5.8670
T2 TWPLN 0.1547 0.2417 0.0757 1.3854 9.0933
T2 TWPW 0.1696 0.2417 0.0685 1.0675 11.7251
T2 ME 0.1140 0.2417 0.0498 1.2390 9.7120
T3 TWPLN 0.2400 0.2749 0.0950 1.1562 7.0353
T3 TWPW 0.2205 0.2749 0.1008 0.5763 8.7075
T3 ME 0.1872 0.2749 0.0701 1.6342 4.9040
TABLE 3: Relative errors of each group data under different distributions.

Relative error T1 TWPLN T1 TWPW T2 TWPLN T2 TWPW T3 TWPLN T3 TWPW
fl 314.62% 149.58% 11.81% 13.84% 29.25% 64.74%
fz 1.69% 26.42% 6.37% 20.73% 43.46% 77.56%

distribution, and improved maximum entropy (ME) prob-
ability distribution as reliability models. At the same time,
figure out the life value of three distributions when their life
failure probability is 10% and 50%, respectively. That is to say,
when reliability function R(t) = 0.9, the value of life ¢ is
P1, and when R(t) = 0.5, t value is P2. Comparing the life
values under these two failure probabilities, and integrating
standard deviation, we can determine which reliability model
has small error and high precision; the results are shown
in Table 2. This is the main problem with this article to be
revealed; the difference of the standard deviation for each
model may be small, but the difference of life value t under
life reliability of 90% and 50% may be extremely large. Thus,
an accurate reliability model of bearing failure data is vital
and necessary.

It can be known from Table 2 that the k-s test values of
the three reliability models are all less than critical values,
and all models conform to these failure data groups and
thus can be taken as their reliability model. There is very
small difference between the calculated standard deviations
of each data group by three models, all at 0.01 orders of
magnitude (except 0.1008), which indicates that three models
have high precision in reliability estimation. However, in
comparison with P1 or P2 value of each example, it is not
difficult to discover that there is large difference between
P1 and P2 values for different distribution models. That is
also the greatest distinction in numerical solution by three
models. In other words, under equivalent reliability, different
estimation model will cause different bearing failure life.

In addition, the life value ¢ under life reliability of 90%
and 50% is an important indicator to study reliability. We
took the distribution of small standard deviation, that is,
the improved maximum entropy probability distribution, as
datum to calculate the relative error of other two distributions
under failure probability of 10% and 50%. When reliability is
90%, the relative error of T'l log-normal distribution is

1.0295 - 0.2483
0.2483

f(T1), = = 3.1458 = 314.62%.  (62)

When reliability is 50%, the relative error of T'1 log-normal
distribution is

5.9662 - 5.8670
5.8670

f(T1), = =0.0169 = 1.69%. (63)

Similarly, the relative errors of each data group under differ-
ent distributions can be obtained as shown in Table 3.

From Table 3, though there is very small difference
between the standard deviations of three models, under
reliability of 90% and 50%, their life values can be far different
and the maximum relative error reaches 314.62%. Hence,
the selection of distribution model will directly affect the
precision of predicted reliability, which should not be blindly
chosen in practical applications. That is to say, in reliability
function image, provided a small change in ordinate value,
it may bring very large change in abscissa value. To reduce
life estimation error, this article judged the fitting degree of
reliability model by whether standard deviation is large or
small.

In the table, the standard deviations of reliability estima-
tion truth-value vector and reliability empirical value vector
for T'1 and T'3 two-parameter log-normal distribution groups
are less than those of two-parameter Weibull distribution. But
T2 groups are the opposite. This illustrates that on premise
of that both distributions satisfy this failure data group,
sometimes, the two-parameter log-normal distribution being
taken as a reliability model may have higher fitting and
smaller error than two-parameter Weibull distribution. So,
in daily reliability analysis on bearing life, people should not
merely use two-parameter Weibull distribution as reliability
model for analysis, in order to prevent large error in bearing
reliability predication and the occurrence of vicious accident.
Regarding the above three examples, all the improved max-
imum entropy curves participate in the fitting, and fitting
curves almost coincide with empirical values. What is more
important is that the standard deviations of this model are
all the smallest in reliability estimation on T1, T2, and T3
failure data groups. In summary, compared to two-parameter
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TaBLE 4: Comparison results of failure data T'1 by three models.

Estimating method k-s test value

k-s critical value

Result

Standard deviation

I™ 0.2127
LM 0.3715
PWM 0.4615
THPW 0.1847
ME 0.1631

0.2591
0.2591
0.2591
0.2591
0.2591

Valid
Invalid
Invalid

Valid

Valid

0.1116
0.1486
0.2183
0.0773
0.0737

log-normal distribution and Weibull distribution, the novel
improved maximum entropy reliability estimation model is
more accurate to reflect the general change rule of failure data
and it possesses the smallest error and the highest precision
in bearing reliability prediction.

4.4. Experimental Research of Three-Parameter Model and
Improved Maximum Entropy Method.

Example 1. Empirical value (RO) uses the reliability empirical
equation (3) for point estimation on failure data T'1.

There-parameter log-normal uses integral transforma-
tion moment (ITM) method’s equation (14) for parameter
estimation on failure data T'1:

T = —8.0525,
[ = 2.8467, (64)
o =0.7287.

There-parameter log-normal uses linear moment (LM)
method’s equation (17) for parameter estimation on failure
data T'1:

T = -8.4671,
4 = 2.5606, (65)
o = 1.0676.

There-parameter log-normal uses probability weighted
moment (PWM) method’s equation (18) for parameter esti-
mation on failure data T'1:

T = 3.3308,
= 15137, (66)
o = 13358,

Three-parameter Weibull (THPW) uses k-order exceed-
ing probability weighted moment method’s equation (27) for
parameter estimation on failure data T'1:

T = 0.3655,
u=10.5119, (67)
o =0.6631.

Improved maximum entropy (ME) uses internal mapped
method’s equation (35) for probability density estimation on
failure data T'1.
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FIGURE 12: Reliability function image of failure data T'1.

Their reliability images are shown in Figure 12 and model
comparative results are shown in Table 4.

Example 2. Empirical value uses the reliability empirical
formula for point estimation on failure data T2.

There-parameter log-normal uses integral transforma-
tion moment method for parameter estimation on failure
data T2:

T = —14.4719,
4 = 3.3865, (68)
o = 0.6245.

There-parameter log-normal uses linear moment method
for parameter estimation on failure data T2:

T = —18.7008,
u=3.3481, (69)
o = 0.8303.

There-parameter log-normal uses probability weighted
moment method for parameter estimation on failure data T2:

T =1.1823,
(= 2.4503, (70)
o = 1.0573.



Mathematical Problems in Engineering

TaBLE 5: Comparison results of failure data T2 by three models.

17

Estimating method k-s test value k-s critical value Result Standard deviation
IT™ 0.2172 0.2417 Valid 0.0813
LM 0.3204 0.2417 Invalid 0.1160
PWM 0.3627 0.2417 Invalid 0.1541
THPW 0.1795 0.2417 Valid 0.0651
ME 0.1140 0.2417 Valid 0.0498
1 1
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FIGURE 13: Reliability function image of failure data T2.

Three-parameter Weibull uses k-order exceeding proba-
bility weighted moment method for parameter estimation on
failure data T2:

T =-1.0515,
p = 20.4337, (71)
o =0.8334.

Improved maximum entropy uses internal mapped
method for probability density estimation on failure data T2.

Their reliability images are shown in Figure 13 and model
comparative results are shown in Table 5.

Example 3. Empirical value uses the reliability empirical
formula for point estimation on failure data T'3.

There-parameter log-normal uses integral transforma-
tion moment method for parameter estimation on failure
data T'3:

T = —9.4007,
4 = 3.0202, (72)
o =0.8322.

There-parameter log-normal uses linear moment method
for parameter estimation on failure data T'3:

T = —9.2346,
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FIGURE 14: Reliability function image of failure data T3.

p = 2.5617,
o =1.2641.
(73)

There-parameter log-normal uses probability weighted
moment method for parameter estimation on failure data T'3:

T =5.8718,
= 1.4258, (74)
o = 1.5440.

Three-parameter Weibull uses k-order exceeding proba-
bility weighted moment method for parameter estimation on
failure data T'3:

7 = 0.6897,
u=11.7192, (75)
o = 0.5706.

Improved maximum entropy uses internal mapped
method for probability density estimation on failure data T'3.

Their reliability images are shown in Figure 14 and model
comparative results are shown in Table 6.
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TABLE 6: Comparison results of failure data T'3 by three models.
Estimating method k-s test value k-s critical value Result Standard deviation
I™ 0.2304 0.2749 Valid 0.1207
LM 0.4397 0.2749 Invalid 0.1727
PWM 0.5652 0.2749 Invalid 0.2533
THPW 0.1907 0.2749 Valid 0.0831
ME 0.1872 0.2749 Valid 0.0702

Three failure data groups were estimated by three-
parameter log-normal distribution, three-parameter Weibull
distribution, and improved maximum entropy probability
distribution. Their reliability images are shown in Figures
12-14, in which, three-parameter log-normal distribution
used integral transformation moment, linear moment, and
probability weighted moment methods for parameter esti-
mation, three-parameter Weibull distribution used k-order
exceeding probability weighted moment methods for param-
eter estimation, and the novel improved maximum entropy
directly made probability fitting operation without consid-
ering failure data distribution condition. Then, the k-s test
method is used with significance level « = 0.05 to implement
hypothesis testing on each method and results; finally, it
figured out standard deviations according to (61), so as to
easily analyze and compare the precision of reliability models;
the results are shown in Tables 4-6.

In Tables 4-6, it can be known from hypothesis test
results that, in three methods on parameter estimation of
three-parameter log-normal distribution, only k-s test values
of integral transformation moment method are less than
critical values: namely, only integral transformation moment
method is suitable for three-parameter log-normal distri-
bution model. But such “Suitable” only satisfies hypothesis
test of data verification; in practical applying, the location
parameter 7 of three-parameter log-normal distribution
means the minimum failure data; that is, 7 should be larger
than zero. While the location parameter 7 obtained by using
integral transformation moment method is all less than zero
in three groups of failure life tests, which goes against the
practical significance of this formula in life test application,
so integral transformation moment method does not apply
to these failure data groups. That is to say, none of the above
three-parameter estimations can be taken as an estimation
approach for three-parameter log-normal distribution in
failure data reliability model application. As a result, at
present stage, it is considered that three-parameter log-
normal distribution cannot be perfectly used in reliability
estimation of bearing life, and its parameter estimation
approach needs further exploration.

The k-s test values of three-parameter Weibull distribu-
tion are less than the critical values with good fitting; namely,
k-order exceeding probability weighted moment method
performs well when it is used for parameter estimation of
three-parameter Weibull distribution. But for T2 failure data
group, the location parameter of three-parameter Weibull
distribution is T = -1.0515 < 0, which goes against
real meaning of life. This also indicates that three-parameter
Weibull distribution performs better on bearing life failure

than three-parameter log-normal distribution does, but it
does not be the same with all situations. However, in engi-
neering practices, it is widely believed that three-parameter
Weibull distribution can better describe the distribution rule
of bearing performance failure data, because it has more
parameters and comprehensive information mining so that
we can consider the general characteristics of research object
from multiple aspects. But this research shows that three-
parameter Weibull distribution has a large misunderstanding
during its wide application in engineering practices, and it
may not accurately recognize product’s performance reliabil-
ity in all cases.

Improved maximum entropy reliability curves participate
in fitting in three examples, and the fitting curves almost
coincide with empirical values. Its standard deviation is the
minimum in three groups of life test compared to previous
two models, declaring its highest fitting degree. It is observed
in Figures 12-14 that the novel improved maximum entropy
reliability curves trend to be deck chair shape, directly show-
ing the change trend of initial failure data. The obtained curve
does not require parameter estimation, thus preventing cal-
culation error that may be brought by traditional mathemat-
ical hypothesis definition and condition limitation. In sum-
mary, relative to three-parameter log-normal distribution
and Weibull distribution, the improved maximum entropy
probability distribution can make reliability estimation with
the highest precision and minimum error and directly reflect
the general change rule of failure data. No matter there is truly
distribution model (quasi-ideal distribution model) to calcu-
late bearing failure data reliability or not, at least, the novel
improved maximum entropy probability distribution is a pre-
cise simulation of quasi-ideal failure data distribution model.

4.5. Improved Maximum Entropy Reliability Test. Through
calculation in test examples, it can be obtained that the
reliability estimation method of improved maximum entropy
probability distribution is suitable for all situations, and it is
observed that improved maximum entropy reliability model
estimation approach has a perfect effect on reliability estima-
tion on bearing failure data. In reliability model estimation on
three failure data groups, the two-parameter log-normal dis-
tribution of T'1 and T'3 is superior to two-parameter Weibull
distribution, and the two-parameter log-normal distribution
of T2 is inferior to two-parameter Weibull distribution; the
three-parameter Weibull distribution of T'1 and T'3 is superior
to three-parameter log-normal distribution, and both distri-
butions of T2 group are not satisfactory. So we compared
the two-parameter log-normal (TWPLN) distribution of T'1
and T3, two-parameter Weibull (TWPW) distribution of T2,
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TaBLE 7: Compare the standard deviations of three groups of experimental feasible reliability models.

Group number 2-parameter std. deviation

3-parameter std. deviation ME std. deviation

T1 0.0802 (TWPLN)
T2 0.0685 (TWPW)
T3 0.0950 (TWPLN)

0.0773 (THPW) 0.0737
N/A 0.0498
0.0831 (THPW) 0.0702

TaBLE 8: Compare the relative life errors of three groups of experimental feasible models.

Group number 2-parameter f,

2-parameter f,

3-parameter f; 3-parameter f,

T1 314.62% 1.69% 189.37% 9.32%
T2 13.84% 20.73% N/A N/A
T3 29.25% 43.46% 43.91% 39.78%

and three-parameter Weibull (THPW) distribution of T'1
and T3 with improved maximum entropy (ME) method,
respectively, and the results are shown in Tables 7 and 8.

The results display that, in comparison with three reliabil-
ity models, the standard deviation between estimated truth-
value of improved maximum entropy reliability model and
empirical value vector is the smallest. Taking the improved
maximum entropy model as datum, other two models possess
a larger relative life error under failure probability of 10%
and 50%, with maximum relative error of 314.58%, which
means the log-normal distribution and Weibull distribution
possess low precision and large error in reliability prediction
of bearing failure data. Once again, this proves that the novel
improved maximum entropy probability distribution being
taken as reliability model estimation method possesses the
best effect and lowest error in estimating bearing failure life
data.

In order to verify that the novel proposed model of
maximum entropy distribution can be applied to poor infor-
mation problem with small sample and unknown probability
distribution, another T4 group test was carried out, with data
number n = 5.

Initial data series are

T4 =[4.36 14.68 43.08 64.26 71.54]. (76)

With the help of improved maximum entropy
method, the reliability estimation results of this
bearing failure data group are shown in Figure I5.
The reliability empirical value vector of this example
is RO = [0.8704 0.6852 0.5000 0.3148 0.1296], and
the reliability estimation truth-value vector obtained
by improved maximum entropy method is R3 =
[0.9425 0.7509 0.5486 0.2800 0.0895].

Depending on reliability empirical value vector R0 and
reliability estimation truth-value vector R3 of improved
maximum entropy method, it can be figured out that the
standard deviation between R3 and R0 is very small at 0.0542,
and the maximum difference value between both reliabilities
is only 0.072L. The research results show that it is effective
and feasible to use the reliability estimation truth-value
function obtained by improved maximum entropy method
to assess the reliability of small sample failure data with
unknown probability distribution. In the condition of having
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FIGURE 15: Improved maximum entropy reliability function image
of small sample data T'4.

failure data but without probability distribution or any prior
information, the improved maximum entropy method can
perfectly estimate the reliability function. And, at the same
given life, the difference value between the reliability obtained
by improved maximum entropy method and that obtained by
empirical value is very small. This method also remedies the
defect of existing method to only solve reliability estimation
with known probability distribution.

To sum up, in simulation test, three reliability models
display good fitting. In other words, in theoretical state,
log-normal distribution, Weibull distribution, and improved
maximum entropy model can be applied in reliability analysis
on product performance failure problems. But in experiment
part, we made comparative analysis of three reliability esti-
mation methods according to actual bearing failure data,
with the results showing that both standard deviation and
relative error are the smallest between reliability empirical
value vector RO and reliability estimation truth-value vector
R3 of improved maximum entropy method. Besides, this
method can solve the poor information issue with small
sample and unknown distribution that cannot be assessed by
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classical statistics. Therefore, based on all failure data series
in this article, maximum reliability estimation method is the
optimal reliability estimation approach due to its best fitting
and highest precision.

5. Conclusions

Though the reliability estimation of bearing performance
failure data can be realized by the above models, their
prediction precision is far different. In practical application,
we cannot rush to a conclusion by reliability obtained from
single model.

The standard deviations of two-parameter log-normal
distribution for T1 and T3 failure data groups are 0.0802
and 0.0950, respectively, whose performance is superior to
two-parameter Weibull distribution. Although the three-
parameter Weibull distribution taken as reliability model in
example test of T'1 and T'3 groups performs better than three-
parameter log-normal distribution, it cannot be applied to
all analysis cases. So, in daily reliability analysis of bearing
life, we should not only use Weibull distribution as reliability
model for analysis.

For a novel improved maximum entropy model com-
pared to Weibull distribution and log-normal distribution,
the relative life error and standard deviation of its truth-
value vector and empirical value vector are the smallest,
in which, the maximum relative error of log-normal dis-
tribution reaches 314.58%, and Weibull distribution reaches
189.37%.

Whether there are really other distribution models
(quasi-ideal distribution model) to calculate bearing failure
performance reliability or not, at least, the improved maxi-
mum entropy probability distribution is a precise simulation
to such quasi-ideal distribution model.

The novel proposed model of maximum entropy proba-
bility distribution does not take parameter distribution into
account and allows poor information issues with unknown
probability distribution, unknown prior information, or
trends. This provides important theoretical reference to
many uncertain information and poor information issues
in engineering and even aerospace field and remedies the
deficiency of classic statistics.
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