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ABSTRACT

Simple stochastic models fit to time series of daily precipitation amount have a marked tendency to under-
estimate the observed (or interannual) variance of monthly (or seasonal) total precipitation. By considering
extensions of one particular class of stochastic model known as a chain-dependent process, the extent to which
this ‘‘overdispersion’’ phenomenon is attributable to an inadequate model for high-frequency variation of pre-
cipitation is examined. For daily precipitation amount in January at Chico, California, fitting more complex
stochastic models greatly reduces the underestimation of the variance of monthly total precipitation. One source
of overdispersion, the number of wet days, can be completely eliminated through the use of a higher-order
Markov chain for daily precipitation occurrence. Nevertheless, some of the observed variance remains unex-
plained and could possibly be attributed to low-frequency variation (sometimes termed ‘‘potential predictability’’).
Of special interest is the fact that these more complex stochastic models still underestimate the monthly variance,
more so than does an alternative approach, in which the simplest form of chain-dependent process is conditioned
on an index of large-scale atmospheric circulation.

1. Introduction

It is well known that when simple stochastic models
are fitted to time series of daily precipitation amount,
there is a marked tendency to underestimate the ob-
served (or interannual) variance of monthly (or season-
al) total precipitation (Buishand 1978; Wilks 1989). In
the statistics literature, this situation in which the ob-
served variance exceeds that for the fitted model is
termed ‘‘overdispersion’’ (e.g., Cox 1983). The expla-
nation for the overdispersion phenomenon of precipi-
tation, however, is not agreed upon. Some researchers
view this discrepancy as evidence of an inadequate mod-
el for high-frequency variation of precipitation (Gregory
et al. 1993). Others regard it as attributable to low-
frequency variation that these models do not account
for and, as such, constitutes a measure of the ‘‘potential
predictability’’ of monthly total precipitation on an in-
terannual timescale (Shea and Madden 1990; Shea et
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al. 1995; Singh and Kripalani 1986). But, if the first
explanation were valid, then this approach would over-
estimate the degree of potential predictability.

In the present paper, we examine the first explanation,
identifying and eliminating the various sources of vari-
ance underestimation for one particular class of sto-
chastic model for high-frequency variation of precipi-
tation, known as a chain-dependent process (Katz
1977a). This model involves dividing the precipitation
process into two component models, one for its occur-
rence and another for its intensity (i.e., amount of pre-
cipitation conditional on its occurrence). Limited ex-
tensions of such models, including higher-order Markov
chains for the daily occurrence process and autocorre-
lation of intensities on consecutive wet days, will be
considered. In the literature on stochastic modeling of
precipitation, evidence exists in support of making these
adjustments, but the specific focus has not been on how
well the variance of monthly total precipitation is ap-
proximated. So the present approach should provide ad-
ditional insight concerning the relationship between dai-
ly and monthly variation of precipitation.

In section 2, some properties of stochastic models for
time series of daily precipitation amount are reviewed.
Essential to the present study is the representation of
monthly total precipitation as a ‘‘random sum,’’ en-
abling its variance to be decomposed into two terms,
one of which involves the variance of the number of
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wet days. In section 3, these theoretical results are ap-
plied to a time series of daily precipitation amount in
January at Chico, California. The same dataset was pre-
viously analyzed by Katz and Parlange (1993, 1996),
in conjunction with a statistical downscaling study of
the effect of large-scale atmospheric circulation on local
precipitation. These studies raised the possibility that a
more complex model for high-frequency variation of
precipitation at Chico might reduce the extent of the
overdispersion phenomenon. Through a combination of
analytical expressions, computational algorithms, and
simulation techniques, the variance of January total pre-
cipitation and related statistics are estimated for various
extensions of a chain-dependent process. Some tech-
nical details are relegated to appendices. Finally, section
4 consists of a discussion.

2. Stochastic models

In this section, the probabilistic representation of total
precipitation as a random sum is utilized. Loosely speak-
ing, the basic idea is that monthly total precipitation
consists of a sum of precipitation amounts contributed
by individual storms. This representation enables the
variance of total precipitation to be related to the various
components of particular stochastic models for daily
precipitation amount. For this reason, the approach has
the advantage of applying more generally than just for
the simplest form of chain-dependent process for pre-
cipitation (Katz 1977a).

a. Random sum representation

The total precipitation over some time period of
length T days (e.g., a month), denoted by S(T) say, can
be expressed as

S(T) 5 Z1 1 Z2 1 . . . 1 ZN(T ) . (1)

Here the number of occurrences of precipitation within
the time period (i.e., the number of ‘‘wet days’’), de-
noted by N(T), is itself a random variable. The ‘‘inten-
sities’’ Zk . 0 corresponding to the kth occurrence (i.e.,
amount of precipitation on kth wet day), k 5 1, 2, . . . ,
N(T), are taken independent and identically distributed
(i.i.d.) with mean m 5 E(Zk) and variance s 2 5 Var(Zk).
The counting process N(T) is assumed independent of
the Zk’s, with p denoting the unconditional probability
of occurrence of precipitation on a given day (i.e., the
rate of occurrence of the ‘‘counts’’). For simplicity and
because attention will be restricted to time periods of a
single month in duration, any annual cycles in these
parameters are ignored.

Through conditioning on the number of wet days, the
variance of monthly total precipitation is given by

Var[S(T )]

5 E{Var[S(T ) z N(T )]} 1 Var{E[S(T ) z N(T )]}
25 E[N(T )] Var(Z ) 1 Var[N(T )][E(Z )]k k

2 25 Tps 1 Var[N(T )]m . (2)

The first expression actually holds for any two random
variables (e.g., Lindgren 1968, 118), the second is spe-
cialized to a random sum (e.g., Feller 1968, chap. XII),
and the third utilizes some simplifying notation. Thus,
(2) provides a decomposition of the variance of total
precipitation into two terms, one that corresponds to the
variance of an ordinary (i.e., nonrandom) sum of Tp
intensities (note that the expected number of wet days
is E[N(T)] 5 Tp) and another that involves the variance
of the number of wet days, Var[N(T)].

b. Chain-dependent process

A chain-dependent process (Katz 1977a; Todorovic
and Woolhiser 1975) has the desirable feature of re-
quiring only a relatively small number of parameters,
while still accounting for the most important statistical
features of precipitation time series. Its simple structure
enables the analytical determination of many of its prop-
erties, including the variance of monthly total precipi-
tation (Katz 1977b). In particular, the random sum rep-
resentation for total precipitation, introduced in section
2a, applies to this class of stochastic model.

The tendency of wet spells (i.e., runs of consecutive
days on which precipitation occurs) or of dry spells to
persist is represented by a two-state, first-order Markov
chain model for daily precipitation occurrence. Let {Jt:
t 5 1, 2, . . .} denote the sequence of daily precipitation
occurrence (i.e., Jt 5 1 indicates a wet day, Jt 5 0 a
dry day). This model is characterized by the transition
probabilities

Pij 5 Pr{Jt11 5 j z Jt 5 i}, i, j, 5 0, 1, (3)

with the constraint that Pi0 1 Pi1 5 1, i 5 0, 1.
It is convenient to reparameterize the Markov chain

in terms of the probability of a wet day, denoted as in
section 2a by p 5 Pr{Jt 5 1}, and the first-order au-
tocorrelation coefficient (or persistence parameter), d 5
Corr(Jt, Jt11). These two parameters, p and d, are related
to the transition probabilities by

p 5 P01/[1 2 (P11 2 P01)], d 5 P11 2 P01. (4)

Note that d . 0 for time series of daily precipitation
occurrence.

The number of wet days can be represented as a sum,
N(T) 5 J1 1 J2 1 . . . 1 JT. Its variance, as appears
in the general expression (2) for the variance of total
precipitation, can be approximated (for large number of
days T) by

Var[N(T)] ø Tp(1 2 p)[(1 1 d)/(1 2 d)], (5)

under the assumption of a first-order Markov chain (3)
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(Gabriel 1959). It is evident that the Markovian depen-
dence inflates this variance (provided d . 0) relative to
independence [i.e., the variance of a binomial distri-
bution is Tp(1 2 p)], as the factor (1 1 d)/(1 2 d)
appears on the right-hand side of (5). The exact variance
for the number of wet days can be determined via a
recursive calculation of the exact distribution for N(T)
(Katz 1974).

As already defined in section 2a in conjunction with
a general random sum, the daily precipitation intensities
Zk for a chain-dependent process are assumed i.i.d. Nev-
ertheless, it is convenient to introduce alternative no-
tation, letting {Xt: t 5 1, 2, . . .} denote the time series
of daily precipitation amount (i.e., Xt assumes both zero
and positive values). The equivalent assumption in
terms of the intensities Xt . 0 (i.e., on days t for which
Jt 5 1) is that they are conditionally i.i.d., given the
states of the Markov chain model for daily precipitation
occurrence. In particular, the intensity mean and vari-
ance can be defined in terms of Xt as m 5 E(Xt z Jt 5
1) and s 2 5 Var(Xt z Jt 5 1). The daily intensity has a
positively skewed distribution, taken to be exponential
by Todorovic and Woolhiser (1975), gamma by Katz
(1977a), and based on a power transformation to nor-
mality by Katz and Parlange (1993).

The unconditional mean, variance, and autocorrela-
tion function of the Xt process are related to the intensity
mean and variance, as well as the parameters of the
Markov chain, by

E(X ) 5 pm,t

2 2Var(X ) 5 ps 1 p(1 2 p)m ,t

2 lCorr(X , X ) 5 p(1 2 p)m d /Var(X ),t t1l t

l 5 1, 2, . . . (6)

(Katz and Parlange 1995). It is evident that the auto-
correlations for the Xt process are induced through the
autocorrelations of the Markov chain [i.e., Corr(Jt, Jt1l)
5 dl, l 5 1, 2, . . . , appears in (6)].

Of course, the monthly total precipitation also has the
more conventional representation of an ordinary, non-
random sum, S(T) 5 X1 1 X2 1 . . . 1 XT. So its
variance involves a sum of the autocorrelations of the
Xt process [see (A1) and (A2) in appendix A]. Either
substitution of the approximate expression (5) for the
variance of the number of wet days into (2) or substi-
tution of the expression (6) for the autocorrelation func-
tion into (A2) yields

Var[S(T)]
ø T(ps 2 1 p(1 2 p)[(1 1 d)/(1 2 d)]m2) (7)

for the variance of total precipitation for large T (Katz
and Parlange 1993). By comparing (7) to the corre-
sponding observed variance, an estimate of the extent
of overdispersion can be obtained. Because a chain-
dependent process fit to daily precipitation amount will
effectively reproduce the daily variance, it is only

through extensions affecting the autocorrelation func-
tion that the estimated variance of monthly total pre-
cipitation can be increased.

c. Extensions

1) HIGHER-ORDER MARKOV CHAINS

It is natural to permit the stochastic model for the
daily occurrence of precipitation to be a Markov chain
whose order is higher than first (Chin 1977; Gates and
Tong 1976). For example, a second-order Markov chain
is characterized by transition probabilities that depend
on whether or not precipitation has occurred on the pre-
vious two days:

Pijk 5 Pr{Jt11 5 k z Jt 5 j, Jt21 5 i},

i, j, k 5 0, 1. (8)

Note that a first-order chain is a special case of (8), with
the constraint that Pijk 5 Pjk, i, j, k 5 0, 1. The prob-
ability of a wet day p and the persistence parameter d
(still interpreted as the first-order autocorrelation co-
efficient) can be derived from the second-order transi-
tion probabilities (8) (see appendix B).

Because of the state-space representation of a higher-
order Markov chain as a first-order chain with vector
states, this model is equivalent to a first-order chain with
more than two states. Thus, if the stochastic model for
daily precipitation amount described in section 2b is
extended to incorporate a higher-order Markov chain,
the more general theory of chain-dependent processes
can be employed (Katz 1977b). Specifically, the ex-
pression (7) for the variance of a sum of a chain-de-
pendent process is a special case of a formula that in-
volves the inverse of a matrix, an approach taken by
Klugman and Klugman (1981).

Alternatively, the random sum representation (1) can
be exploited, again applying the decomposition (2) for
the variance of monthly total precipitation. The ap-
proximate expression (5) for the variance of the number
of wet days, Var[N(T)], is based on a first-order Markov
chain and requires modification. Although no simple
analog to (5) exists, the exact variance can be calculated
via recursive methods. Appendix C gives an algorithm
for determining the exact distribution of the number of
wet days for a second-order Markov chain (8), a gen-
eralization of the method given in Katz (1974). It is
anticipated that allowing for higher-order Markov
chains would increase the estimated variance of the
number of wet days, thus increasing the estimated vari-
ance of monthly total precipitation.

2) AUTOCORRELATED INTENSITIES

Another, less common, extension of a chain-depen-
dent process involves allowing the intensities within a
given wet spell to be autocorrelated. Formally, the in-
tensities are assumed to follow a first-order autoregres-
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sive [AR(1)] process with autocorrelation coefficient f
. 0. This process ‘‘randomly’’ terminates when the end
of a wet spell is reached. In Katz and Parlange (1995),
the AR(1) process is actually fitted to power transformed
intensities to allow for skewness as well. They used this
approach in modeling hourly precipitation amount, a
situation in which the autocorrelation of intensities is
more apparent. Previous attempts to allow for depen-
dence among intensities have relied on a multistate Mar-
kov chain, an approach that requires the estimation of
a large number of transition probabilities (Gregory et
al. 1993; Haan et al. 1976).

If the first-order Markov chain model for the occur-
rence process is retained as in section 2b, then the au-
tocorrelation function of the Xt process is given by

2 l 2 lCorr(X , X ) 5 [ps (P f) 1 p(1 2 p)m d ]/Var(X ),t t1l 11 t

l 5 1, 2, . . . (9)

(Katz and Parlange 1995). Note that the transition prob-
ability that appears in (9) can be expressed as P11 5 p
1 (1 2 p)d from (4). Here Var(Xt) is still as given in
(6), but now the autocorrelation function (9) is a weight-
ed average of two terms, one related to the autocorre-
lation function of the intensities (i.e., f l) and the other
to the autocorrelation function of the occurrences (i.e.,
dl).

It follows from (9) and (A2) that the variance of
monthly total precipitation is approximately

2Var[S(T )] ø T^p[(1 1 P f)/(1 2 P f)]s11 11

21 p(1 2 p)[(1 1 d)/(1 2 d)]m &, (10)

for large T. We note that (10) generalizes (7), increasing
the variance (provided f . 0) because the right-hand
side now includes the factor (1 1 P11f )/(1 2 P11f ).
Although no longer strictly speaking involving a random
sum because the intensities that appear in (1) are as-
sumed independent, (10) still constitutes a variance de-
composition somewhat analogous to (7). The first term
corresponds to the variance of a nonrandom sum of an
AR(1) process with autocorrelation coefficient P11f, the
factor P11 arising because it governs the random ter-
mination of wet spells.

3) NONIDENTICAL DISTRIBUTIONS

The original formulation of a chain-dependent pro-
cess for daily precipitation actually allowed for another
complication, permitting the daily intensity distribution
to depend on whether or not precipitation occurred on
the previous day (Katz 1977a). Specifically, define con-
ditional means and variances

m 5 E(X z J 5 i, J 5 1),i t t21 t

2s 5 Var(X z J 5 i, J 5 1), i 5 0, 1. (11)i t t21 t

Besides Katz (1977a), Chin and Miller (1980) and Klug-

man and Klugman (1981) have fitted this model to daily
precipitation data (see also Chapter 2 of Guttorp 1995).

For this form of chain-dependent process, the mean,
variance, and autocorrelation function of daily precip-
itation amount are given by (Katz 1977a,b):

E(X ) 5 (1 2 p)P m 1 pP m ,t 01 0 11 1

2 2Var(X ) 5 (1 2 p)P (s 1 m )t 01 0 0

2 2 21 pP (s 1 m ) 2 [E(X )] ,11 1 1 t

l21Corr(X , X ) 5 [p(1 2 p)m(P m 2 P m )d ]t t1l 11 1 01 0

4 Var(X ) l 5 1, 2, . . . . (12)t

Note that the unconditional intensity mean m [that ap-
pears in (12)] and variance s 2 can be related to the
conditional intensity means and variances, mi’s and ’s2s i

[see (B3) in appendix B]. These expressions in (12)
reduce to those in (6) when m0 5 m1 and 5 .2 2s s0 1

Finally, the approximate variance of monthly total pre-
cipitation can be derived from the autocorrelation func-
tion in (12) and (A2) as

Var[S(T )]

ø T^Var(X ) 1 [2p(1 2 p)m(P m 2 P m )]t 11 1 01 0

4 (1 2 d)&, (13)

for large T. To the extent that the two conditional in-
tensity means and variances differ, this variance (13)
will exceed that for an ordinary chain-dependent process
(7).

4) COMBINATIONS OF EXTENSIONS 1), 2), AND 3)

Naturally, various combinations of these three types
of extensions of a chain-dependent process could be
applied simultaneously. As noted previously, the general
theory for chain-dependent processes (Katz 1977b) al-
ready encompasses both extensions 1) and 3), and con-
sequently their combination (i.e., higher-order Markov
chain for occurrences and nonidentically distributed in-
tensities). Although a closed-form expression exists for
the variance of monthly total precipitation, it involves
large state spaces and matrix inversion (Klugman and
Klugman 1981). A theory that encompasses all three
extensions has yet to be devised. Nevertheless, in ap-
pendix A it is shown how to derive the first- and second-
order autocorrelation coefficients of daily precipitation
amount for this general situation.

3. Results

A time series of daily precipitation amount in January
for 78 yr (during the period 1907–88, with 4 yr elim-
inated because of missing observations) at Chico, Cal-
ifornia, is analyzed. Because of its long record, a rea-
sonably reliable estimate of the interannual variance of
January total precipitation can be obtained. Chico is
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TABLE 1. Transition probability estimates for Markov chains of
various orders fit to 78 yr of time series of daily precipitation oc-
currence in January at Chico, California.

States on previous days

Jt23 Jt22 Jt21 Jt

Pr{Jt11 5 1 | Jt , Jt21, Jt22, Jt23}

Order 1 Order 2 Order 3 Order 4

0
0
0
0
0

0
0
0
0
1

0
0
1
1
0

0
1
0
1
0

0.2109
0.5705
0.2109
0.5705
0.2109

0.1838
0.5882
0.3105
0.5576
0.1838

0.1691
0.5767
0.2541
0.5806
0.2488

0.1584
0.5541
0.2857
0.6083
0.2184

0
0
0
1
1

1
1
1
0
0

0
1
1
0
0

1
0
1
0
1

0.5705
0.2109
0.5705
0.2109
0.5705

0.5882
0.3105
0.5576
0.1838
0.5882

0.6344
0.3523
0.5415
0.1691
0.5767

0.5161
0.3188
0.4857
0.2039
0.5918

1
1
1

0
0
1

1
1
0

0
1
0

0.2109
0.5705
0.2109

0.3105
0.5576
0.1838

0.2541
0.5806
0.2488

0.2000
0.5254
0.2679

1
1
1

1
1
1

0
1
1

1
0
1

0.5705
0.2109
0.5705

0.5882
0.3105
0.5576

0.6344
0.3523
0.5415

0.7167
0.3922
0.5882

TABLE 2. Parameter estimates for various forms of model fit to daily precipitation intensities in January at Chico, California
(787 wet days).

Form of model

Identical
distribution? Autocorrelation?

Means

m0

(mm)
m1

(mm)

Standard
deviations

s0

(mm)
s1

(mm)

Autocorrelation

f

Yes
Yes
Yes

No
Yes
Inflated

13.36
13.36
13.36

13.36
13.36
13.36

14.68
14.68
14.68

14.68
14.68
14.68

0
0.161
0.411

No
No
No

No
Yes
Inflated

11.62
11.62
11.62

14.84
14.84
14.84

12.15
12.15
12.15

16.28
16.28
16.28

0
0.145
0.298

situated near the west coast of the United States, a region
where large-scale atmospheric circulation patterns have
a dominant influence on local weather during the winter
season. Thus, the precipitation process is expected to
be relatively persistent, making this a stringent test for
simple stochastic models. For these data, Katz and Par-
lange (1993) have already established that an ordinary
chain-dependent process has a substantial degree of ov-
erdispersion.

a. Fitted models

The fitted models for the daily occurrences and in-
tensities are presented separately. We reiterate that our
focus is not on whether more complex models neces-
sarily provide an improved fit (i.e., in terms of parameter
estimates that are deemed ‘‘statistically significant’’),
but rather on the ability of these models to estimate the
variance of January total precipitation and related sta-
tistics.

1) OCCURRENCE PROCESS

Table 1 gives the estimated transition probabilities
(based on the criterion of approximate maximum like-

lihood) for two-state Markov chains of orders 1–4 fit
to the time series of daily precipitation occurrence in
January at Chico. Because of the constraints on the tran-
sition probabilities (as noted in section 2b), only the
conditional probability of a wet day is listed. To facil-
itate comparisons and because any lower-order chain
can be viewed as a special case of a higher-order chain
(as explained in section 2c), the estimates for all orders
are presented in a form corresponding to a fourth-order
chain. For each row in Table 1, the transition probability
estimates would be constant (except for sampling errors)
if the time series of precipitation occurrence were ac-
tually generated by a first-order chain. Some evidence
is present in the table that dry spells exhibit a form of
persistence that cannot be modeled by a first-order
chain. For instance, the estimated conditional probabil-
ity of a wet day decreases from about 0.211, given only
that the previous day is dry, to about 0.158, given that
the last 4 days are dry (these two probabilities would
be identical for a first-order chain). The pattern is less
clear for wet spells.

For a first-order Markov chain, the transition proba-
bility estimates can be converted [via (4)] into the cor-
responding estimates for the unconditional probability of
a wet day and the persistence parameter, 5 0.3293 andp̂

5 0.3596 (where denotes the estimator of a pa-d̂ ‘‘ ˆ ’’
rameter). As the order is increased, only slight differences
in the numerical values of p and d arise (e.g., for a
second-order chain, 5 0.3290 and 5 0.3603; deter-ˆp̂ d
mined by method in appendix B). The situation is some-
what analogous to that for autoregressive processes, in
which a higher-order model contributes to an improved
fit only through adjustments in the autocorrelations at
higher lags.

2) INTENSITY PROCESS

Table 2 gives the estimated parameters for the con-
ditional means, conditional standard deviations, and
first-order autocorrelation coefficient of daily precipi-
tation intensity in January at Chico. For convenience,
these estimates are presented in a general form for non-
identical intensity distributions, recalling that the iden-
tically distributed case corresponds to the constraint that
m0 5 m1 and 5 (see section 2c). It is evident2 2s s0 1
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from Table 2 that the estimated conditional intensity
mean and standard deviation are smaller given that the
previous day was dry as opposed to wet. To facilitate
comparison of estimates of the variance of monthly total
precipitation, these parameters were estimated by the
method of moments. An alternative approach would be
to base the parameter estimates on a power transfor-
mation to normality, allowing for the positively skewed
distribution of daily intensity (Katz and Parlange 1993).
But the use of a nonlinear transformation introduces
some degree of bias, implying that the sample mean and
variance of the original, untransformed daily intensities
are not exactly reproduced by this technique. Taking
into account this skewness would only matter if the
shape of the distribution of monthly total precipitation,
not just its variance, were being studied.

The estimates of the first-order autocorrelation co-
efficient f for daily intensity in Table 2 are relatively
small positive values, 0.161 or 0.145, depending on
whether or not the intensity distribution is assumed iden-
tical. More generally, the estimated autocorrelation is
quite sensitive to any differences in the intensity dis-
tribution depending on the position within the wet spell
(first vs second day of wet spell, etc.), a refinement of
the model for nonidentical distributions described in
section 2c. To circumvent this problem, an alternative
method of estimating f is also included in Table 2,
predicated upon reproducing the sample first-order au-
tocorrelation coefficient of daily precipitation amount.
In the case of identically distributed intensities, this
method involves substituting the estimates for m and s
(along with p, d, and P11 for a first-order Markov chain)
into the right-hand side of (9) with lag l 5 1, equating
this expression with the sample first-order autocorre-
lation coefficient for daily precipitation amount of 0.279
and then solving for f. In the case of nonidentically
distributed intensities, the same approach is taken, but
now mi and , i 5 0, 1 (along with p, P01, and P011

2s i

5 P111 5 P11 for a first-order Markov chain) are sub-
stituted into (A4). Quite a bit larger estimates of f are
obtained, termed ‘‘inflated’’ in Table 2, 0.411 versus
0.161 for identical distributions, with the degree of in-
flation being somewhat less, 0.298 versus 0.145, for
nonidentical distributions. A more complex model for
nonidentical distributions (i.e., explicitly taking into ac-
count the position within a wet spell) could eliminate
these discrepancies entirely.

b. Overdispersion estimates

Through use of these fitted stochastic models for time
series of daily precipitation amount, the variance of
monthly total precipitation can be estimated. Because
of their diagnostic capability, the variance of the number
of wet days and the autocorrelation function of daily
precipitation amount are also examined. To obtain es-
timates of these statistics, either an explicit formula, a
computational algorithm, or stochastic simulation

(based on the generation of 10 000 yr of January daily
precipitation amount) is employed. All of these ap-
proaches require numerical values for the parameters of
the fitted models. We simply substitute the correspond-
ing parameter estimates (given in section 3a), ignoring
the sampling errors associated with those estimates. The
large number of daily observations of precipitation (i.e.,
2418 5 78 3 31) suggests that such uncertainties are
relatively small.

1) NUMBER OF WET DAYS

In view of the variance decomposition (2), we now
focus on how well the observed standard deviation of
the number of wet days in January at Chico is matched
by the Markov chain model for the daily occurrence of
precipitation. Table 3 includes the estimated standard
deviation of the number of wet days for Markov chains
of order 1–4 whose parameter estimates are given in
Table 1. These estimated standard deviations were ob-
tained through the computational algorithm outlined in
appendix C.

For a first-order Markov chain, the standard deviation
of the number of wet days is estimated as 3.76 days
[the approximate expression (5) yields nearly the same
value, 3.81], well below the observed value of 4.33
days, or an overdispersion of about 25% in terms of
variance (Table 3). As the order of the chain is increased,
this estimated standard deviation increases as well, be-
ing only slightly below the observed value for a third-
order chain and slightly above for a fourth-order chain.
This overestimate for a fourth-order chain most likely
does not reflect real ‘‘underdispersion,’’ but rather just
the sampling error in both the observed and model-
estimated standard deviations.

Most importantly, the overdispersion phenomenon
with respect to the number of wet days has been com-
pletely eliminated through the use of a higher-order
chain. One drawback is that the number of transition
probabilities required to be estimated increases at a rapid
rate as the order is increased (e.g., 16 parameters for a
fourth-order chain—see Table 1). So the possibility of
overfitting is present. An alternative, not explored here,
would be to fit a more parsimonious model for a higher-
order chain in which certain constraints are placed
among the parameters (Raftery 1985).

2) AUTOCORRELATION

In view of the representations (A1) and (A2) of the
variance of monthly total precipitation, we now focus
on how well the autocorrelation function of daily pre-
cipitation amount is reproduced by the various forms of
a stochastic model. The lag l 5 1 and 2 day autocor-
relation coefficients, calculated through use of (A4) and
(A5), are included in Table 3. The ordinary form of the
chain-dependent process has a marked tendency to un-
derestimate the first-order autocorrelation coefficient of
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TABLE 3. Overdispersion estimates and related statistics for January precipitation at Chico, California, based on daily stochastic models
(parameter estimates in Tables 1 and 2), along with corresponding observed values.

Form of model

Markov chain
order

Identical
intensity

distribution?
Intensity

autocorrelation?

Derived statistics

Std dev no.
wet days

Amount
autocorrelation

(lag 1)

Amount
autocorrelation

(lag 2)

Std dev total
precipitation

(mm)

1
1
1
1
1

Yes
Yes
Yes
No
No

No
Yes
Inflated
No
Yes

3.76
3.76
3.76
3.76
3.76

0.128
0.187
0.279
0.160
0.218

0.046
0.052
0.082
0.058
0.062

68.7
71.8
77.6
71.4
74.5

1
2
2
2
2

No
Yes
Yes
Yes
No

Inflated
No
Yes
Inflated
No

3.76
4.00
4.00
4.00
4.00

0.279
0.129
0.188
0.279
0.160

0.078
0.065
0.071
0.100
0.073

77.3
71.1
74.5
79.5
73.2

2
2
3
3
3

No
No
Yes
Yes
Yes

Yes
Inflated
No
Yes
Inflated

4.00
4.00
4.23
4.23
4.23

0.217
0.278
0.129
0.189
0.281

0.078
0.093
0.065
0.071
0.100

76.4
78.4
73.5
76.9
81.0

3
3
3
4
4

No
No
No
Yes
Yes

No
Yes
Inflated
No
Yes

4.23
4.23
4.23
4.42
4.42

0.160
0.218
0.279
0.129
0.189

0.073
0.078
0.093
0.068
0.073

76.5
79.5
82.5
75.4
79.4

4
4
4
4

Yes
No
No
No

Inflated
No
Yes
Inflated

4.42
4.42
4.42
4.42

0.281
0.160
0.218
0.278

0.103
0.076
0.080
0.095

83.7
79.0
80.6
83.9

Observed 4.33 0.279 0.113 88.6

daily precipitation amount (i.e., 0.128 vs an observed
value of 0.279 in Table 3). Permitting either nonident-
ically distributed or autocorrelated intensities increases
this estimate somewhat, with their combination pro-
ducing a value of 0.218, still well below the observed
value. Necessarily, the ‘‘inflated’’ intensity autocorre-
lations do reproduce the desired value. Increasing the
order of the Markov chain has no effect on the first-
order autocorrelation coefficient, with the very slight
numerical differences being attributable to the manner
in which the lower-order probabilities are derived (ap-
pendix B).

Likewise, the second-order autocorrelation coeffi-
cient is underestimated by the ordinary form of the
chain-dependent process (i.e., 0.046 vs 0.113 in Table
3). In this case, increasing the order of the Markov chain
from one to two, as well as allowing for nonidentically
distributed and autocorrelated intensities, all contribute
to increases in this estimate, with their combination pro-
ducing a value of 0.078. When the intensity autocor-
relation is inflated as well, the largest value produced
is 0.103 (for a fourth-order chain with identical distri-
butions), still slightly below that observed. It is impor-
tant to recognize that this approach of inflating the pa-
rameter f is not constrained to reproduce the autocor-
relation at lags l $ 2 days. This deficiency in estimating
the autocorrelations was also found by Gregory et al.
(1993) for precipitation in the United Kingdom.

Figure 1 shows the autocorrelation function up to lag

l 5 5 days for a subset of these stochastic models (i.e.,
Markov chain order restricted to first or fourth), with
the lags l 5 3, 4, and 5 days being estimated by sto-
chastic simulation. For a first-order chain, it is evident
that the higher-order autocorrelations (i.e., lags l $ 2)
are substantially underestimated, no matter whether the
intensities are identically distributed or not or autocor-
related or not (Figs. 1a,b). On the other hand, not much
underestimation is evident for a fourth-order chain, no
matter what the other model assumptions, provided the
apparent increase of the observed fifth-order autocor-
relation over the fourth is not regarded as real (Figs.
1c,d).

3) TOTAL PRECIPITATION

Table 3 also includes the estimated standard deviation
of January total precipitation at Chico for the various
forms of stochastic model, and the same numbers are
displayed in Fig. 2. For identically distributed intensities
without any autocorrelation, the estimates are obtained
from (2) for any order Markov chain (using the cal-
culation of the variance of the number of wet days). For
a first-order chain with identically distributed, autocor-
related intensities, the estimates are obtained from (A1)
and (9) [for nonidentically distributed, uncorrelated in-
tensities from (A1) and (12)]. Otherwise, the estimates
are based on stochastic simulation.

As anticipated from Katz and Parlange (1993), the
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FIG. 2. Estimated standard deviation of January total precipitation
at Chico, California, for various forms of stochastic model for daily
precipitation amount, shown as function of order of Markov chain
model for occurrence (curves correspond to six versions for intensity
distribution and autocorrelation, and horizontal line depicts observed
value).

←

FIG. 1. Autocorrelation functions for daily precipitation amount in January at Chico, California, derived from various forms of stochastic
model (curves indicate three versions for intensity autocorrelation), along with sample autocorrelation function (solid curve): (a) first-order
Markov chain for occurrences and identical distributions for intensities, (b) first-order and nonidentical, (c) fourth-order and identical, and
(d) fourth-order and nonidentical.

estimated standard deviation for the ordinary form of
chain-dependent process is well below that observed,
68.7 mm [the approximate expression (7) yields nearly
the same value, 69.2 mm] as compared to 88.6 or an
overdispersion of about 40% in terms of variance (Table
3). The highest estimate is 80.6 mm (17% overdisper-
sion) for a fourth-order chain with nonidentically dis-
tributed, autocorrelated intensities, or 83.9 (10% over-
dispersion) if inflated autocorrelation is permitted as
well. Figure 2 illustrates that increasing the Markov
chain order has the greatest effect on the estimated stan-
dard deviation, with the intensity autocorrelation having
a lesser effect (roughly comparable if autocorrelations
are allowed to be inflated), and with nonidentical dis-
tributions making the smallest contribution (but recall
that inflated autocorrelations may well be a surrogate
for a more complex form of nonidentically distributed
intensities).

In any event, it is evident that the extent of overdis-

persion can be greatly reduced, if not eliminated,
through use of a more complex form of stochastic model
for high-frequency variation of precipitation. We note
that Klugman and Klugman (1981) also found that the
estimated standard deviation of seasonal total precipi-
tation at a site in Oregon is sensitive to the assumed
form of model. The question remains whether even more
complex models than those considered here could com-
pletely eliminate this overdispersion.

4. Discussion

It has been established that much of the overdisper-
sion for January total precipitation at Chico, California,
could be attributable to an inadequate stochastic model
for high-frequency variation of precipitation. A higher-
order Markov chain model for daily precipitation oc-
currence completely eliminates one source of overdis-
persion, the number of wet days. The allowance for
autocorrelated and nonidentically distributed intensities
also contributes to this reduction in overdispersion. Al-
though the appropriate form of stochastic model for dai-
ly precipitation at other locations might well differ from
that for Chico, it is anticipated that the estimated vari-
ance of monthly total precipitation would likewise be
sensitive to the assumed form of model.

Could the overdispersion for monthly total precipi-
tation be further reduced? Results obtained through re-
lating daily precipitation statistics to large-scale atmo-
spheric circulation shed some light on this question.
Katz and Parlange (1993) fit the simplest version of
chain-dependent processes conditionally, given an index
of large-scale atmospheric circulation, to the same daily
precipitation data for Chico in January. When these con-
ditional models are combined into a single overall ‘‘in-
duced’’ model, the overdispersion of January total pre-
cipitation is reduced to about 4%, smaller yet than the
reductions obtained in the present paper (i.e., 10% or
17% for best models). Of interest is the fact that the
induced model completely eliminates the overdispersion
in the number of wet days, in agreement with the result
obtained here (Katz and Parlange 1996).

The implications of the present work for estimating
potential predictability remain to be explored. Although
the two approaches are not equivalent, the induced mod-
el resembles in some respects a single, more complex
stochastic model that could have been directly fitted to
the data (Katz and Parlange 1996). Future work will
seek ways in which these two approaches could be uni-
fied. One possibility would involve so-called hidden
Markov models and their generalizations (Guttorp 1995,
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chap. 2). These models involve a hidden state, like an
index of atmospheric circulation but unobserved. The
variance in monthly total precipitation associated with
the hidden states could perhaps be construed as an es-
timate of potential predictability.
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APPENDIX A

Autocorrelation Function of Generalized
Chain-Dependent Process

For any stationary stochastic process {Xt: t 5 1, 2,
. . .}, its sum, S(T) 5 X1 1 X2 1 . . . 1 XT, has variance
that is related to its autocorrelation function by

Var[S(T )]

T21

5 T Var(X ) 1 1 2 (1 2 l/T ) Corr(X , X ) .Ot t t1l[ ]l51

(A1)

For large T, (A1) can be approximated as

`

Var[S(T )] ø T Var(X ) 1 1 2 Corr(X , X ) ,Ot t t1l[ ]l51

(A2)

provided the autocorrelation function is absolutely
summable (e.g., Brockwell and Davis 1991, chap. 7).

We outline a general approach to deriving expressions
for the autocorrelations, as appear in (A1) and (A2), that
applies to any of the extensions of a chain-dependent
process considered. It is always the case that

E(X , X )t t1l

5 Pr{J 5 1, J 5 1}E(X X z J 5 1, J 5 1),t t1l t t1l t t1l

l 5 1, 2, . . . . (A3)

For lag l 5 1, (A3) can be expanded in terms of the
model parameters as

E(X X ) 5 (1 2 p)P P (m m 1 s s f)t t11 01 011 0 1 0 1

2 21 pP P (m 1 s f). (A4)11 111 1 1

This expression (A4) is written in a form that involves
transition probabilities of order two (i.e., Pijk’s) and or-
der one (i.e., Pij’s).

For lag l 5 2, a somewhat more complex expression
can be obtained:

E(X , X )t t12

25 (1 2 p)P P P (m )01 010 0101 0

21 (1 2 p)P P P (m m 1 s s f )01 011 0111 0 1 0 1

2 2 21 pP P P m m 1 pP P P (m 1 s f ).11 110 1101 0 1 11 111 1111 1 1

(A5)

This expression (A5) is written in a form that involves
transition probabilities of order 3 [denoted by Pijkl’s in
(A5) analogous to (3) and (8)] or lower. Derivations of
higher-order autocorrelation coefficients by this ap-
proach are more tedious.

APPENDIX B

Relationships among Parameters

a. Second- versus first-order Markov chain

For a second-order Markov chain, define the joint
probabilities

qij 5 Pr{Jt 5 i, Jt11 5 j} 5 piPij,

i, j, 5 0, 1, (B1)

where p1 5 p, p0 5 1 2 p, and Pij is still defined as
in (3). These qij’s can be determined from the transition
probabilities for the second-order chain (8) through the
following system of equations:

qij 5 q0iP0ij 1 q1iP1ij, i, j 5 0, 1. (B2)

Once (B2) is solved for the qij’s, the lower-order prob-
abilities can be derived by first obtaining pi 5 q0i 1
q1i, i 5 0, 1, and then solving (B1) for Pij, i, j 5 0, 1.
It is straightforward but requires more complex notation
to obtain analogous relationships for higher than second-
order chains. Although (B2) is simple enough that
closed-form expressions for the qij’s can be obtained,
numerical techniques would be required for higher- than
second-order chains.

b. Nonidentically versus identically distributed
intensities

For nonidentically distributed intensities, the condi-
tional means and variances are related to the uncondi-
tional mean and variance, m and s 2, as defined in section
2b, by

m 5 (1 2 P )m 1 P m ,11 0 11 1

2 2 2 2s 5 (1 2 P )s 1 P s 1 P (1 2 P )(m 2 m ) .11 0 11 1 11 11 1 0

(B3)

The formula for the mean m in (B3) is obtained by
equating the two expressions for E(Xt), (6) and (12),
and using the fact that (1 2 p)P01 5 p(1 2 P11). The
formula for the variance s 2 in (B3) can be derived by
a similar approach.
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APPENDIX C

Distribution of Number of Wet Days for
Second-Order Markov Chain

Define the following conditional probability distri-
butions for the number of wet days (here it is convenient
to condition on the two days prior to time t 5 1):

p (k ; i, j) 5 Pr{N(T ) 5 k z J 5 j, J 5 i},T 0 21

i, j 5 0, 1 ; k 5 0, 1, . . . , T. (C1)

Now the unconditional probability distribution of the
number of wet days can be determined from (C1) by

Pr{N(T ) 5 k} 5 q p (k; i, j), k 5 0, 1, . . . , T,O ij T
i,j

(C2)

where qij is as defined in (B1).
The conditional probability distributions (C1) satisfy

the following recursion for T 5 2, 3, . . . :

pT(k; i, j) 5 Pij0pT21(k; j, 0) 1 Pij1pT21(k 2 1; j, 1),
(C3)

i, j 5 0, 1; k 5 0, 1, . . . , T. The initial conditions for
this recursion are

p1(k; i, j) 5 Pijk, i, j, k 5 0, 1. (C4)

The following boundary conditions also need to be im-
posed on (C3):

p (T 1 1; j, 0) 5 p (21; j, 1) 5 0,T T

j 5 0, 1; T 5 1, 2, . . . . (C5)

These expressions are straightforward extensions of the
approach for a first-order chain (Katz 1974), with the
extension to a higher than second-order chain being like-
wise straightforward.
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