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This paper uses a real options approach to address optimal timing and size of a logistics park investment with logistics demand
volatility. Two important problems are examined: when should an investment be introduced, and what size should it be? A real
optionmodel is proposed to explicitly incorporate the effect of government subsidies on logistics park investment. Logistic demand
that triggers the threshold for investment in a logistics park project is explored analytically. Comparative static analyses of logistics
park investment are also carried out. Our analytical results show that (1) investors will select smaller sized logistics parks and
prepone the investment if government subsidies are considered; (2) the real option will postpone the optimal investment timing of
logistics parks compared with net present value approach; and (3) logistic demands can significantly affect the optimal investment
size and timing of logistics park investment.

1. Introduction

Various logistics centers have recently been established for
quickly distributing freight [1]. However, this raises many
important issues, such as traffic congestion, air pollution,
and high energy consumption. It has been shown that
freight transportation contributes to about 5.5% of global
greenhouse gas emissions [2]. To respond to these issues
efficiently, it has been proposed to combine multiple distri-
bution centers and logistic operators into a logistics park. A
logistics park, also known as a “logistics village” in Germany,
“distribution park” in Japan, and “logistics platform” in Spain,
is a particularly important component of a city logistics
network [3]. In general, a city logistics network is composed
of different types of logistics nodes (e.g., distribution centres
and logistics parks) and logistics links. A distribution center
is a logistics node mainly for end customers to provide
distribution services, which remains as the following several
characteristics, that is, small service radiation range and
multispecies, small batch, multibatch, and short cycle, while
a logistics park is a comprehensive logistics node with large
size, which is commonly located in a strategic area that

can easily be accessed from main highways, railways, and
airports. Moreover, a logistics park typically has a large space
for ample trucks, mass warehousing, office parking, and
logistics services such as information transaction, distribu-
tion processing, multimodal function, and support service
functions. It is also a hub for different transportation modes
and local and long-distance traffic [4, 5].

Logistics parks have led to significant environmental
effects (e.g., reducing CO2 emissions and air pollution) in
Germany [6]. Owing to successful logistics park operations
in Germany and Japan, there is a growing trend to introduce
logistics parks in other developing countries. In China, for
example, the number of logistics park projects has continued
to increase, from 207 in 2006 to 457 in 2008, 754 in 2012, and
1210 in 2015 according to the fifth survey report conducted by
the China Federation of Logistics & Purchasing [7]. However,
there are some important problems in the planning and
operation of logistics park projects in China. China’s logistics
park planning and construction has great blindness due to
the lack of systematic theoretical and scientific planning
means and assessment. There are many factors that affect the
development of logistics parks. An important factor is how to
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determine the size of logistics park [8]. Moreover, the design
of logistics parks has seldom considered the uncertainty of
logistic demands and logistic users’ behavioral responses to
project investment, leading to a lower usage rate of logistics
parks. Investment in logistics parks also involves a high level
of risk because of the length of the construction period and
the volatility of logistic demands. Hence, the timing and size
of logistics parks should be carefully considered.

There are a number of related studies on logistics parks
design and investment.

A logistics park is an important logistics facility and
can have a significant impact on the corresponding city
logistics network. Therefore, the location of logistics parks
should be integrated into the entire city logistics network
design. Taniguchi et al. [11] proposed a bilevel model to
determine the optimal size and location of public logistics
terminals and solved the model using queuing theory and
nonlinear programming techniques. Nguyen et al. [12] noted
that logistics efficiency and cost were related not only to the
structure of supply chains but also to the logistics network
design and logistics infrastructure. Soysal et al. [13] presented
a networkmodel ofwagonload traffic that aimed to determine
hub location and size considering the total cost and efficiency
of the network system. Vieira et al. [14] investigated a hub
location problem from the perspective of network design
while also considering the transportation cost and travel time
and proposed a mixed integer programming formulation.
Tang et al. [15] presented an optimization model for the
location planning problem of logistics parks with variable
capacity. Their model sought to determine optimal locations
and allocate customers to the logistics parks using a hybrid
heuristic algorithm. Chen et al. [16] addressed the facility
layout problem in nonrectangular logistics parks with split
lines, proposing corresponding mathematical programming
models to obtain competitive solutions for the facility layout
problem in a logistics park, solving the optimal model with
an adaptive genetic algorithm with scatter search.

A logistics park is an important provider of logistic activ-
ities, linking long-haul transportation in different regions of
a distributed city [17]. This facility plays an important role
in promoting regional economic development, enhancing
the level of logistics services, improving intensive land use,
relieving pressure from roads and the environment, and
increasing employment opportunities. Zacharias and Zhang
[18] addressed a two-tiered freight distribution system in a
big city, presenting a location-routingmodel to determine the
optimal locations of logistics facilities (primary facilities and
secondary facilities) and optimal sizes and routes for different
vehicle fleets. Rivera et al. [8] considered the logistics agglom-
eration arising from logistics parks based on data from a
survey conducted in the Zaragoza (Spain) Logistics Cluster
and using structural equation modeling, demonstrating that
further agglomeration into a logistics park positively impacts
collaboration, specifically transportation capacity sharing.

In recent years, green logistics network design has
attracted the attention of more practitioners and researchers,
given that freight transportation is a major contributor
to climate change and various pollution emissions. Green
logistics network design focuses on improving logistics

service efficiency, decreasing corresponding logistics costs,
and reducing externalities while achieving a sustainable bal-
ance between economic, environmental, and social objectives
(McKinnon et al. [19]. Sadjadi et al. [20] addressed a mul-
ticommodity, capacitated intermodal freight transportation
network planning problem,which considered greenhouse gas
emissions as the primary objective. Rudi et al. [21] assessed
the effect of the traditional cost optimization approach
to strategic modeling on overall logistics costs and CO2
emissions by considering the supply chain structure and
different freight vehicle utilization ratios. Rao et al. [22]
addressed the selected sustainable location of city logistic
centers and proposed a fuzzy, multiattribute group decision-
making technique based on a linguistic 2-tuple. Zhang et al.
[3] proposed a model to address the design problem of a city
logistics network; they considered the interaction between
logistics authority and users, as well as the effect of economy
size and taxes for CO2 emissions. Their results showed that
the optimal location and size of logistics parks depend on the
realized logistic demand and the size of the economy.

The aforementioned studies on design issues of logistics
parks mainly focused on a static and deterministic problem.
However, the regional economy, industrial structure, popu-
lation size, and regional trading pattern will keep changing
in the future, leading to logistics demand uncertainty that
dynamically fluctuates over time. This is particularly true
for some of the fastest-growing cities and the corresponding
city logistics service demand pattern. It is therefore necessary
to incorporate the dynamics and uncertainty of logistics
demand over time into city logistics network design models.

Previous studies tended to use the net present value
(NPV) approach. However, the traditional NPV approach
does not consider the change of project value in investment;
this approach also ignores the impact of postponement,
abandonment, or expansion of an investment opportunity
on project value in an irreversible and uncertain investment
environment [23]. The real option (RO) valuation approach
considers the opportunity during an investment period
that goes unrecognized in NPV analysis [24]. There is a
compelling need to account for time-dependent uncertainty
within network designs and project investment due to their
irreversible characteristics [25, 26]. Li et al. [10] proposed
a RO model to address investment and selection in transit
technology given a volatile city population by considering
the spatial use equilibrium of a city. Chow et al. [27]
investigated the management of a transportation network in
an uncertainmarket, applying the RO approach and dynamic
programming to obtain the value of flexibility and to defer
and redesign a network. Chow and Regan [28] proposed two
models that incorporate RO into network modeling: the first
is the network option design problem, which maximizes the
expanded NPV of a network investment; the second model
decomposes the deferral option of a network investment into
individual, interacting links, or project investments. Xiao et
al. [29] studied the airport capacity choice problem using a
real option model.They point out that if demand uncertainty
is low and capacity and reserve costs are relatively high,
an airport will not acquire a real option for expansion.
Gao and Driouchi [30] examined rail transit infrastructure
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investment by treating population scale and the attitudes
of decision-makers or social planners as sources of risk
and ambiguity. They developed an alpha-max-min multiple-
priors expected utility framework to solve for the option
value of rail transit investment under knighting uncertainty.
Li et al. [31] proposed a real options approach for valuing
the investment of a new technology for producing cellulosic
biofuels based on construction lead times and uncertain
fuel prices. Chow and Sayarshad [32] investigated the ref-
erence policies for nonmyopic sequential network design
and timing problems, proposing a scalable reference policy
value defined from theoretically consistent real option values
based on sampled sequences that are estimated using extreme
value distributions. Cortazar et al. [33] presented a model
to determine the optimal timing for a firm to invest in
environmental technologies and analyzed the key parameters
affecting the optimal decisions. Bockman et al. [34] con-
sidered investment timing and optimal capacity choice for
small hydropower projects using a real options-basedmethod
with continuous scaling; they found a unique price limit for
initiating the project. Boomsma et al. [35] adopted a real
options approach to analyze investment timing and capacity
choice for renewable energy projects under different support
schemes, aiming to examine investment behavior under the
most extensively employed support schemes, namely, feed-
in tariffs and renewable energy certificate trading. Welling
[36] investigated the size and timing of a renewable elec-
tricity investment, analyzing the effects of governmental
support on the optimal capacity of a renewable electricity
generating system. Li and Cai [37] applied a real option
model to address the impacts of government incentives on
the private investment behaviors with uncertain demand,
including the choices of investment timing, capacity, and
price.

To the best of our knowledge, existing studies that inte-
grate the economic scales of logistics parks construction
and operator and government subsidies based on a real
option method are still scarce. This study aims to address the
above knowledge gap by attaining two objectives. The first
objective is to prove conjectures on determining the optimal
investment timing and size of a logistics park project simul-
taneously under logistics demand uncertainty. The second
objective is to address the impacts of government subsidies
on the logistics parks investment timing and size.

The main contributions of this paper are as follows.
First, a real option model is proposed that incorporates

economics of scale on logistics park projects and government
investment subsidies to determine the optimal investment
timing and size simultaneously.Themodel captures the effect
of logistic demand volatility and economies of scale of a logis-
tics park on investment timing and size decisions. Second,
the thresholds of logistics demand that trigger investments
in a logistics park with different sizes are explored. Third, we
conduct comparative statistical analyses of investments in a
logistics park. Sensitivity analyses are also conducted to assess
the effect of key model parameters, such as logistics volatility,
duration of construction, and discount rate. We also estimate
loss in project value as a result of the adoption of the NPV
method instead of the RO.

The rest of the paper is organized as follows. Section 2
presents the formulation of the model and the solution
algorithm. Section 3 presents two numerical examples of the
application of the model. Section 4 concludes the paper.

2. Model Formulation

2.1. Cost of a Logistics Park Project. Economies of scale in
the construction of logistics parks refers to the phenomenon
wherein the average construction cost per unit area of a
logistics park decreases as the size of the logistics park
increases [38–41]. Economies of scale in the operation of
logistics parks refer to the phenomenon wherein the average
operating cost per unit of shipment decreases as the size
of the logistics park increases because of clustering and
synergetic effects among logistics service providers [42, 43].
These effects should be considered in the design of logistics
parks, particularly in an era of (capital and land) resource
shortages and climate change.

Two kinds of costs are involved in the construction and
operation of a logistics park (i.e., annual construction and
annual operation costs). Both factors include economies of
scale. We denote the average annual construction cost and
operator cost as 𝐶𝐿 and 𝐶0, respectively. They are described
in detail as follows:

𝐶𝐿 = 𝜆𝑀𝜌, (1)

where𝜆 is the unit construction cost and𝜌 captures the effects
of the economies of scale for a logistics park.

The annual average operation cost of a logistics park is
expressed in the following:

𝐶0 = 𝜔𝑀𝜌, (2)

where 𝜔 is the variable operator cost relevant to the corre-
sponding size of logistics park𝑀.

2.2. Joint Optimal Timing and Size Problem of a Logistics
Park. Regarding the logistics park as a firm, the logistic
demand is equivalent to the product and the service charge
is the product price; therefore, the service charge for unit
transfer should be proportional to logistics demand in service
and inversely proportional to the size of the logistics park.
According to logistics service demand function, we can use
the following logistics service supply function to capture the
above relationships.

𝜉 (𝑡) = 𝑞 (𝑡) − 𝛾𝑀, (3)

where 𝑞(𝑡) is the external logistics service demand of the
market, 𝑀 is the size of the logistics park that the firm
intends to build, and 𝛾 is a nonnegative constant that indicates
the slope of the liner demand function and is used for the
sensitivity of the service charge to the size of logistics park.
As seen in (3), the size of the logistics park is inversely
proportional to the service charge for unit transfer, and the
function form of this assumption implies that the change of
the logistic demand will directly react to the reverse demand
curve.
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The revenue of a logistics park is directly affected by the
potential logistics demand.The derived value from a logistics
park is not defined because of the uncertainty of the annual
potential logistic demand. To describe the change in potential
logistic demand over time, we denote 𝑞(𝑡) as logistic demand
of market at time 𝑡. Given that the logistics demand follows
the geometric Brownian motion, which can be captured by
[23, 24]

𝑑𝑞 (𝑡) = 𝜂𝑞 (𝑡) 𝑑 (𝑡) + 𝜎𝑞 (𝑡) 𝑑𝜔 (𝑡) , (4)

where 𝜂 is the growth rate of logistics demand, 𝜎 is the
volatility rate of logistic demand, 𝑑(𝑡) is infinitesimal time
increment, and 𝑑𝜔(𝑡) is an increment of a standard Wiener
process, for any given period 𝑡, 𝑑𝜔(𝑡) satisfies the equation𝑑𝜔(𝑡) = 𝜀𝑡√Δ𝑡, where 𝜀𝑡 is a random variable that follows
the standard normal distribution of mean 0 and standard
deviation 1.

The value of investment is the duration of a project
operation, which is equal to the corresponding expected
discounted producer surplus.We let Γ(𝑞(𝑡),𝑀)denote the net
present value of the project, which can be expressed as

Γ (𝑞 (𝑡) ,𝑀) = 𝐸[∫+∞
Δ

(𝜉𝑀 + 𝑟𝑀𝜌) 𝑒−𝑘𝑡𝑑𝑡
− ∫Δ
0
𝐶𝐿𝑒−𝑘𝑡𝑑𝑡 − ∫+∞

Δ
𝐶𝑂𝑒−𝑘𝑡𝑑𝑡] ,

(5)

where Δ is the duration of the entire construction project,
which is assumed to be a constant in this study, and 𝑟 is the
coefficient of unit government subsidy.

By calculating (5), we can obtain the following equation
(the proof procedure is shown in Appendix A).

Γ (𝑞 (𝑡) ,𝑀)
= 𝑀𝑒(𝜂−𝑘)Δ𝑘 − 𝜂 𝑞 (𝑡)

+ (𝑟 − 𝜔)𝑀𝜌𝑒−𝑘Δ − 𝛾𝑀2𝑒−𝑘Δ − 𝜆𝑀𝜌 (1 − 𝑒−𝑘Δ)
𝑘 .

(6)

When project value exceeds investment cost, investment
through NPV is the prudent course of action. Investment
should be accomplished immediately when Γ𝑗(𝑞∗,𝑀) = 0.
Based on (5), the logistics demand in NPV approach is
obtained as

𝑞∗NPV

= (𝑘 − 𝜂) [𝛾𝑀𝑒−𝑘Δ + 𝜆𝑀𝜌−1 (1 − 𝑒−𝑘Δ) + (𝜔 − 𝑟)𝑀𝜌−1𝑒−𝑘Δ]
𝑘𝑒(𝜂−k)Δ

(7)

However, the logistics project faces many uncertainties
caused by the external logistics demand, price of logis-
tics service land price, operator cost, and duration of
the investment process. In this study, we focus on the
volatility in logistics demand and use RO method to ana-
lyze the optimal investment timing and size of a logis-
tics park project. Unlike the NPV approach, the options
value accounts for the uncertainty of investment, which
leads to the uncertainty of the project value and loss
of opportunity for future repeat investment. This method
considers the opportunity cost in the project, namely, the
value of investment opportunities or the options value. This
study compares the logistics demand obtained by RO and
NPV.

According to RO theory [24], the expected value of an
investment opportunity is equal to its expected rate of capital
appreciation over the short time 𝑑𝑡. This relationship is
represented by the Bellman equation for option value 𝐹 and
can be expressed as

𝑘𝐹𝑑𝑡 = 𝐸 [𝑑𝐹] . (8)

Equation (8) actually represents the Bellman equation
for the option value 𝐹(𝑞(𝑡)). Applying Ito’s lemma, we can
determine the logistic demand threshold 𝑞∗ and the option
value function 𝐹(𝑞(𝑡)), which are shown as in(9) and (10),
respectively. The proof procedure is shown in Appendix B.

𝑞∗ = 𝛼 (𝑘 − 𝜂) [𝛾𝑀𝑒−𝑘Δ + 𝜆𝑀𝜌−1 (1 − 𝑒−𝑘Δ) + (𝜔 − 𝑟)𝑀𝜌−1𝑒−𝑘Δ]
𝑘 (𝛼 − 1) 𝑒(𝜂−𝑘)Δ , (9)

𝐹 (𝑞 (𝑡) ,𝑀) =
{{{{{{{{{

(𝛾𝑀2 + (𝜔 − 𝑟)𝑀𝜌) 𝑒−𝑘Δ + 𝜆𝑀𝜌 (1 − 𝑒−𝑘Δ)
𝑘 (𝛼 − 1) ( 𝑞𝑞∗)

𝛼 , 𝑞 < 𝑞∗
𝑀𝑒(𝜂−𝑘)Δ𝑘 − 𝜂 𝑞 (𝑡) + (𝑟 − 𝜔)𝑀𝜌𝑒−𝑘Δ − 𝛾𝑀2𝑒−𝑘Δ − 𝜆𝑀𝜌 (1 − 𝑒−𝑘Δ)

𝑘 , 𝑞 ≥ 𝑞∗
(10)

(1)When 𝑞 < 𝑞∗, the best strategy is to defer the project
investment due to smaller logistics demand. Waiting for the
future optimal investment time is a sensible strategy, and the
value of investment is the option value at that time.

(2)When 𝑞 ≥ 𝑞∗, investing immediately is the best action,
and the value of making the investment is NPV.

There are several methods for determining the optimal
size of logistics park.Thefirstmethodmaximizes the intrinsic
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value of the project. The second method which selects the
optimal size of the logistics park by maximizing the option
value determines the capital density of investment. The third
method is to determine the optimal size and the optimal
output based on the corresponding maximal net present
value (NPV). The first method may be better because the
option value is equal to the intrinsic value at the moment
of investment, while the value of the second choice is the
option value before investment.The net present value is more
suitable for the deterministic environment, but it ignores
the opportunity cost in the process of investment in an
uncertain environment. Therefore, this paper adopted the
first method to determine the optimal size of a logistics
park.

Let𝑉(𝑞) be the intrinsic value at the state of implementing
the option. That is,

𝑉 (𝑞) = max
𝑀

{𝑀𝑒(𝜂−𝑘)Δ𝑘 − 𝜂 𝑞 (𝑡)

+ (𝑟 − 𝜔)𝑀𝜌𝑒−𝑘Δ − 𝛾𝑀2𝑒−𝑘Δ − 𝜆𝑀𝜌 (1 − 𝑒−𝑘Δ)
𝑘 } .

(11)

The optimal size of a logistics park must satisfy the first-
order condition of (12) in order to maximize the intrinsic
value:

(2 − 𝛼) 𝛾𝑀𝑒−𝑘Δ + [𝛼 − 𝜌 (𝛼 − 1)] ((𝜔 − 𝑟) 𝑒−𝑘Δ + 𝜆 (1 − 𝑒−𝑘Δ))𝑀𝜌−1
𝑘 (𝛼 − 1) = 0. (12)

Calculating (9) and (12), we can obtain the optimal
investment size of a logistics park and the investment
demand threshold as the follows:

𝑀∗ = ([𝜌 (𝛼 − 1) − 𝛼] [(𝜔 − 𝑟) 𝑒−𝑘Δ + 𝜆 (1 − 𝑒−𝑘Δ)]
(2 − 𝛼) 𝛾𝑒−𝑘Δ )

1/(2−𝜌)

(13)

𝑞∗ = 𝛼 (𝑘 − 𝜂) (𝜌 − 2) 𝛾𝑒−𝑘Δ
𝑘 [𝜌 (𝛼 − 1) − 𝛼] 𝑒(𝜂−𝑘)Δ (

[𝜌 (𝛼 − 1) − 𝛼] [(𝜔 − 𝑟) 𝑒−𝑘Δ + 𝜆 (1 − 𝑒−𝑘Δ)]
(2 − 𝛼) 𝛾𝑒−𝑘Δ )

1/(2−𝜌)

. (14)

As we know, the optimal investment size should be
positive. In other words, the parameters in (13) and (14) need
to satisfy the following conditions:

𝜌 (𝛼 − 1) − 𝛼 > 0, 𝜌 − 2 > 0, 2 − 𝛼 > 0
or 𝜌 (𝛼 − 1) − 𝛼 < 0, 𝜌 − 2 < 0, 2 − 𝛼 < 0. (15)

Solving these two inequalities, we know that the parame-
ters need to meet the conditions 𝜌 > 𝛼/(𝛼 − 1) and 𝛼 < 2 or
meet the conditions 𝜌 < 𝛼/(𝛼 − 1) and 𝛼 > 2.

Given the model parameters, we can obtain the rela-
tionship between logistics demand under NPV and RO
approaches from (7) and (9), as follows:

𝑞∗ = 𝛼𝛼 − 1𝑞∗NPV. (16)

Equation (16) implies that the logistic demand under
the RO approach is always larger than that under the NPV
approach because the RO approach incorporates the value of
flexibility through the option to wait and defer investment.

2.3. Static Analysis of Threshold of Logistics Demand. The
effects of key model parameters, such as interest rate 𝑘, con-
struction period Δ, logistic demand 𝜎, government subsidy

𝑟, sensitive coefficient 𝛾, and the change rate of demand𝜂 are investigated. In accordance with (13), the following
inequalities will hold, 𝜕𝑀∗/𝜕𝜎 > 0, 𝜕𝑀∗/𝜕Δ > 0, 𝜕𝑀∗/𝜕𝑟 <0, and 𝜕𝑀∗/𝜕𝛾 < 0. Similarly, we can find that 𝜕𝑞∗/𝜕𝜎 > 0
and 𝜕𝑞∗/𝜕𝑟 < 0; however, the symbols of 𝜕𝑞∗/𝜕Δ and 𝜕𝑞∗/𝜕𝛾
are difficult to determine. The proof procedure is shown in
Appendix C.

The signs of 𝑞∗ and 𝑀∗ with regard to the growth rate
of logistics demand and discount rate (i.e., 𝜕𝑞∗/𝜕𝜂, 𝜕𝑞∗/𝜕𝑘,𝜕𝑀∗/𝜕𝜂 and 𝜕𝑀∗/𝜕𝑘) are also difficult to determine analyti-
cally.Therefore, a simulationmethod is used to ascertain their
relations in the later numerical example.

3. Case Study

3.1. Data and Parameter Settings. In this section, two test
examples are used to illustrate the application model and the
contribution of this study. The first example is designed to
reveal the effect on the investment of a logistics park with and
without consideration of government subsidies. The effect
of the key model parameters (e.g., the growth rate of the
demand, discount rate, the construction of the project, and
the demand volatility) on the trigger logistics demand thresh-
old and the optimal investment size are also investigated.
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Table 1: Freight transportation volume of Changsha City.

Year Freight transportation volume (million tons)
2000 59.10
2001 75.50
2002 87.66
2003 106.32
2004 110.66
2005 109.91
2006 124.78
2007 161.84
2008 171.58
2009 210.74
2010 229.47
2011 256.51
2012 261.45
2013 280.48
2014 304.49
Source. Changsha Statistical Yearbook (2000–2014) [9].

The second example illustrates the real application of the
proposed model for Jinxia logistics park project located in
Changsha, Hunan Province. We can obtain the investment
timing and the optimal size of the logistics park to confirm
the validity of the model. Table 1 provides statistics data of
logistics service demand of Changsha City from 2000 to 2014.
Table 2 shows the other input parameters.

3.2. Simulation Results and Analysis. In Section 3.2.1, we
address the effect of government subsidies to the logistic
demand that triggers the threshold of investment in a logistics
park under the RO and NPV approaches. The effects of the
key model parameters are analyzed. Moreover, we examine
the optimal investment timing for different sizes of logistics
parks under the RO and NPV methods in Section 3.2.2.

3.2.1. Comparison of Investment Decisions with and without
Government Subsidies under the RO and the NPV Methods.
Figure 1 describes the difference between the curves for
option value and NPV, which can be calculated by (6) and
(10), respectively. In Figure 1, intersection points 𝐷1 and 𝐷2
between the NPV curve and the horizontal line represent
demand threshold𝑌∗NPV in the NPV approach in terms of (7).

Intersection points 𝐸1 and 𝐸2 between the curves for the
option value and NPV of a given logistics park size represent
logistics demand 𝑌∗ under the RO approach in accordance
with (9). The solutions for demand and size threshold under
the RO and NPV approaches are shown in Table 3.

The main insights obtained from Figure 1 and Table 3 are
summarized as follows.

First, ignoring the effects of the government subsidy on
the construction of logistics parks will lead to a later invest-
ment due to an underestimation of investment benefits or
returns. We take the RO solution as an example. When con-
sidering government subsidies, the trigger logistics demand
threshold 𝑞∗ for the logistics park is 472.22 million tons per
year, denoted by point 𝐸1 in Figure 1. The corresponding

Table 2: Input parameters for model application.

Parameter Definition Baseline value
𝜌 Parameters of scale economic effect 0.900
𝛽 Parameters in the service charge 0.800

𝛾 The sensitivity of the service charge
to the size of logistic park 6.000

𝑟 Government subsidy (million
RMB/million tons) 0.580

𝜂 Growth rate of logistics demand 0.011

𝜎 The volatility rate of logistics
demand 0.190

𝜆 Unit construction cost (million
RMB/million tons) 15.000

𝜔 Unit operating cost (million
RMB/million tons) 4.500

Δ Construction duration (years) 5.000
𝑘 Discount rate 0.060
(Source. Data adapted from Li et al. [10] and Zhang et al. [3]).

Table 3: Demand threshold with and without consideration of
government subsidies under the RO and NPV models.

Government subsidy Method 𝑞∗ (million tons)

𝑟 = 0 NPV 252.21
RO 499.30

𝑟 = 0.58 NPV 239.48
RO 472.22

value of 𝑞∗ without the government subsidy is 499.30 million
tons. Similar results can be observed for the NPV solution.
However, the curves for the option value with and without
consideration of the government subsidy reach coincidence,
as noted in Figure 1. The optimal size of a logistics park and
the logistic demand threshold with a government subsidy are
smaller than the threshold where the government subsidy is
ignored. It can be seen from (10) that the size of logistics
park is in direct proportion to the option value and the
demand threshold is inversely proportionate to the option
value. Therefore, the overlap of positive impact of 𝑞∗ and the
negative impact of 𝑀 makes the small change of the option
value with and without considering the government subsidy.

Second, the demand threshold calculated through the
RO method is higher than that obtained through the NPV
method. The opportunity cost during the entire invest-
ment process is considered in the RO method because the
uncertainty of logistics demand and the irreversibility of
logistics park projects. Generally speaking, the opportu-
nity cost is highly sensitive to uncertainty over the future
logistics demand. The greater the uncertainty, the greater
the opportunity cost. This implies that the investors should
adjust the strategic investments according to changes in the
uncertain logistics demand environment in order to enhance
the investment value of project.

3.2.2. Effects of Key Parameters on DemandThreshold and the
Optimal Size of a Logistics Park. The analysis of the effects of
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Figure 1: Option value curves and NPV value curves with different
government subsidies.

keymodel parameters for triggering the investment threshold
in logistics parks is as follows.

(1) Effects of Demand Growth Rate and Logistics Demand
Volatility on Demand Threshold and the Optimal Size of a
Logistics Park. Figures 2 and 3 plot the change in logistics
demand threshold and optimal size of the logistics park as the
growth rate of demand and demand volatility change, respec-
tively. The plots show that the trigger for demand threshold
and the optimal investment size for a given growth rate and
volatility of logistics demand and vice versa. A greater growth
rate of the demandmeans a greater growth rate of the logistic
demand; therefore, investors will wait for a greater demand to
invest in order to gain greater option value. Similarly, when
demand volatility increases under a fixed growth rate, the
trigger for the demand threshold and the optimal investment
size also increases. In other words, when investors are faced
with greater uncertainty, they will postpone investment and
invest a larger size logistics park.This trendmay be attributed
to the notion that increased demand volatility denotes higher
uncertainty in the investment environment and increased
the option value of investment in a logistics park. During
this period, deferring investment is a better strategy than
immediate investment.

(2) Effects of the Discount Rate and the Duration of Construc-
tion on DemandThreshold and the Optimal Size of a Logistics
Parks. Figures 4 and 5 show the effects of the discount rate
and the duration of construction on demand threshold and
the optimal investment size, respectively. For a given discount
rate, the threshold of logistics demand and corresponding
investment size will become larger with the increase of
the duration of construction on a logistics park. A long

10 11
0

6 7 8 9

50

100

150

200

250

300

350

400

450

500

Lo
gi

sti
c d

em
an

d 
th

re
sh

ol
d 

(m
ill

io
n 

to
ns

)

Growth rate of logistic demand �휂 ×10−3

�훿 = 0.19

�훿 = 0.16

�훿 = 0.013
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Figure 3: Change of the optimal size with the growth rate of logistic
demand and volatility.

duration of construction implies a high cost of investment
opportunity, which reduces the appeal of the investment
project. Postponing the investment and selecting a larger
logistics park to invest in are a better strategy. Moreover,
for a given duration of construction, the demand threshold
and optimal investment size will decrease sharply with the
increasing of discount rate and then increase slightly with the
increasing of discount rate. This implies that a wise decision
is to invest a larger size logistics park project earlier, so as to
reduce the investment cost in this case.

(3) Effects of Sensitive Coefficient and Government Subsidies
on DemandThreshold and the Optimal Size of a Logistics Park.
Figures 6 and 7 plot the change of the demand threshold and
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Figure 5: Change of the optimal size with the discount rate and
project construction duration.

the optimal investment size as the sensitive coefficient and
government subsidy change. For a given sensitive coefficient,
the trigger demand threshold and the optimal investment size
decrease with an increase in the government subsidy level.
Thismeans that investors will choose smaller sizes of logistics
parks and invest earlier if the government gives a larger
subsidy. In contrast, for a fixed government subsidy, as the
sensitive coefficient increases, the trigger demand threshold
decreases, and the optimal investment size of logistics park
decreases, according to (13) and (14). An increase in the
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sensitive coefficient leads to the decrease of trigger demand
threshold and size of logistics parks. Deferring investments
and selecting a smaller size for investment comprise a better
strategy than immediate investment.

3.2.3. Analysis of Optimal Timing and Size of a Logistics Park
Investment. For further illustration, we apply the proposed
logistics park investment model to a real-world case, Jinxia
logistics park project located in Changsha, Hunan, China.We
assume that since 2014, the change in the logistic demand of
the market over time follows a geometric Brownian motion.
Without the loss of generality, we generate three trajectories
(or paths) of the logistic demand size over time according to
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Figure 8: Actual and simulated logistics demand between 2000 and
2020.

the geometric Brownian motion, as indicated on the right-
hand side of Figure 8.

We examine the optimal timing of investment and invest-
ment size in logistics parks using the NPV and RO methods.

Figures 9 and 10 show that the change curves of the annual
option value and annual NPV with and without government
subsidy consideration, respectively. Figure 9 shows that the
option value and NPV curves intersect at point 𝑄, which is
associated with an investment in 2020.00. This investment
yields a project value of RMB 119.70 billion at the optimal
investment size of 40.25 million tons. Point 𝑄 is the result
estimated with the RO approach in terms of (14), and the
optimal investment size is estimated with the RO approach
in terms of (13). Figure 9 also shows that the NPV curves
intersect with the horizontal axis at point 𝑃, which is the
result estimated with the NPV approach in terms of (7). This
intersection suggests investment timing in 2010.40 with a
logistic demand of 239.48 million tons. Similarly, Figure 10
shows that the optimal investment decision generated with
the RO approach occurs at point 𝐹, with investment in
2021.00 and an optimal investment size of 42.56 million
tons and a project value of RMB 133.90 billion. The optimal
investment timing generated with the NPV approach is
2010.85, which is associated with point 𝐸.

Table 4 summarizes the estimated optimal investment
timing and optimal investment size for logistics parks under
the RO and NPV approaches. The NPV approach induces
earlier investments than the RO approach at 9.60 years and
10.15 years with and without government subsidy consider-
ations, respectively. In addition, government subsidies will
stimulate investors to select smaller sizes of logistics parks for
investment.

In Figures 9 and 10, we calculate and compare the total
project values accrued from the optimal timing of investment
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Figure 9: Option value and NPV of introducing different sizes of
logistics parks with government subsidies.

Table 4: Estimated timing of investment and optimal investment
size in logistics park.

Government
subsidy Method Estimated investment

timing (year)
Optimal investment
size (million tons)

𝑟 = 0 NPV 2010.85 —
RO 2021.00 42.56

𝑟 = 0.58 NPV 2010.40 —
RO 2020.00 40.25

using the NPV approach compared with that obtained by
the RO approach. We also determine the corresponding
loss in the project values because the timing of investment
occurs at the time estimated with the NPV approach but
not at that estimated with the RO approach. The total loss
of project value is equal to RMB 119.70 billion and RMB
133.90 billion when the NPV approach is used instead of
the RO approach with and without government subsidy
considerations, respectively. The corresponding difference
on total loss of the project value is equal to RMB 14.20
billion. These results further illustrate that the RO approach
compensates for the defect of the NPV approach. The RO
approach is more effective for investors than NPV when
estimating the optimal investment time for logistics parks.
Moreover, government subsidies will affect the decision of
investors.

3.3. Managerial Recommendations. There are several key
results of this research that have direct managerial implica-
tions. Results show that the government subsidy, volatility of
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Figure 10: Option value and NPV of introducing different sizes of
logistics parks without government subsidies.

logistics demand, duration of construction, and discount rate
have significant impacts on timing and size of logistics park
project investment.

First, investors should carefully analyze the growth rate
and volatility of logistics parks before they invest a logistics
park project. In highly volatility logistics service market,
choosing a larger size (i.e., a higher trigger threshold of
logistics demand) becomes even more important, which will
benefit to obtain more real option value. In other words,
when investors are faced with greater uncertainty, they will
postpone investment and invest a larger size logistics park.
For a fixed volatility of logistics demand, the size of a
candidate logistics parkwill slightly increasewith the increase
of the growth rate of logistics demand. On the contrary, the
size of a candidate logistics park increases sharply with the
increase of the volatility of logistics demand under a fixed
logistics demand growth rate. This implies that the investors
should determine a rational invest timing and size based on
the analysis of the logistics demand growth rate and volatility,
which are close related to development trend of regional
economic and industrial structure.

Second, ignoring the effects of the government subsidy
on the construction of logistics parks will lead to a later
investment due to an underestimation of investment benefits
or returns.This means that the optimal size of a logistics park
and the logistic demand thresholdwith a government subsidy
are smaller than the threshold where the government subsidy
is ignored. Hence, the governments should provide some
subsidy to promote city logistics efficiency and decrease the
negative effects (e.g., traffic congestions and CO2 emissions)
by inducing logistics park projects. But it should be kept
in mind that the higher subsidy leads to a smaller project,

in which less economies of scale in the construction and
operator exist.

Third, investors should keep in mind that discount rate
and duration of construction have some impacts to invest
timing and size of logistics parks. For a given discount
rate, the threshold of logistics demand and corresponding
investment size will become larger with the increase of the
duration of construction on a logistics park. Postponing the
investment and selecting a larger logistics park to invest
in is a better strategy. Moreover, for a given duration of
construction, the demand threshold and optimal investment
size will decrease sharply with the increasing of discount rate
and then increase slightly with the increasing of discount rate.
This implies that a wise decision is to invest a larger size
logistics park project early, so as to reduce the investment cost
in this case.

Lastly, improving the economies of scale of logistics
parks operator will decrease unit transfer charge, which leads
to the decrease of trigger demand threshold and size of
logistics parks.This implies that the investors should improve
the logistics operator efficiency by logistics clustering and
logistics service innovation methods, so as to achieve the
economies of scale of logistics park operator.

4. Conclusion and Future Studies

This paper proposed an RO model to address size selection
problems in logistics park investments by considering the
uncertainty of the logistic demand of a city. The properties
of the proposed model are explored analytically, including
triggering demand thresholds for investment, optimal invest-
ment size in logistics parks, and the impact of government
subsidies on investors. The impact of government subsidies
and comparative static analyses of investment in logistics
park were calculated. To illustrate the application of the
proposed model, we use a logistics park in Changsha as
an example. The investment decisions for a logistics park
with the RO approach are compared with that of the NPV
approach. The loss in project value caused by the NPV
approach was estimated, but not the loss caused by the RO
approach.

The proposed model offers new insights and important
findings. First, the investment benefit curves of logistics parks
significantly differ between the NPV and RO approaches.
Compared with the RO approach, the NPV approach under-
estimates the value of investment in a logistics park, which
results in premature investment and therefore loss in project
value. Second, investors will select smaller investment sizes
earlier if the government gives subsidy to the project whether
it is considered an NPV approach or RO approach.Third, the
optimal timing of investment and optimal investment size
in a logistics park are dependent on the duration of con-
struction, discount rate, rate of demand change, government
subsidy, and demand volatility. The proposed methodology
can serve as a useful tool for making decisions with regard to
investing in a logistics park.

Although the proposed model provides useful insights
for logistics park investment decisions, we recommend the
following points for future study.
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(1)The correlation effect between different areas in a city
was not explicitly considered in the logistics park investment
problem.The logistic demands in each area of a city influence
each other, and establishing a logistics park in one area
affects investments in others. This phenomenon limits the
RO approach in uncertain environments. However, game
theory can adjust investment strategy in accordance with the
investment behaviors of competitors. Therefore, introducing
game theory into the RO approach as investment strategy in
a logistics park is scientifically sound and reasonable.(2) In this study, the variation of demand logistics
demand of a city is considered the major source of uncer-
tainty that influences investment decisions in a logistics park.
Other sources of uncertainty, such as population size and
attitude of decision-makers, should also be studied. These
factors affect the returns on investment in a logistics park.
Incorporating the investment risk derived from other sources
of uncertainty is important in determining the mode of
logistics investment.
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