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We propose a novel, information-based classification of elementary cellular automata. The classification scheme proposed
circumvents the problems associated with isolating whether complexity is in fact intrinsic to a dynamical rule, or if it arises merely
as a product of a complex initial state. Transfer entropy variations processed by cellular automata split the 256 elementary rules
into three information classes, based on sensitivity to initial conditions. These classes form a hierarchy such that coarse-graining
transitions observed among elementary rules predominately occur within each information-based class or, muchmore rarely, down
the hierarchy.

1. Introduction

Complexity is easily identified, but difficult to quantify.
Attempts to classify dynamical systems in terms of their com-
plexity have therefore so far relied primarily on qualitative
criteria. A good example is the classification of cellular
automaton (CA) rules. CA are discrete dynamical systems of
great interest in complexity science because they capture two
key features of many physical systems: they evolve according
to a local uniform rule and can exhibit rich emergent behavior
even from very simple rules [1]. Studying the dynamics of
CA therefore can provide insights into the harder problem of
how it is that the natural world appears so complex given that
the known laws of physics are local and (relatively) simple.
However, in the space of CA rules, interesting emergent
behavior is the exception rather than the rule.This has gener-
ated wide-spread interest in understanding how to segregate
those local rules that generate rich, emergent behavior, for
example, gliders and particles, computational universality,
and so on from those that do not (for the seminal paper on
Conway’sGame of Life cf. [2].The first outlines of proof of the
universality of a two-dimensional Game of Life can be found

in [3, 4]. Proofs of the universality of nonelementary, one-
dimensional cellular automata are instead in [5, 6]. For the
famous proof of the universality of elementary rule 110 cf. [7]).
A complication arises in that the complexity of the output of
a CA rule is often highly dependent on that of the input state.
Thismakes it difficult to disentangle emergent behavior that is
a product of the initial state from that which is intrinsic to the
rule.This has resulted in ambiguity in classifying the intrinsic
complexity of CA rules as one must inevitably execute a CA
rule with a particular initial state in order to express its com-
plexity (or lack thereof).

One of the first attempts to classify CA rules was pro-
vided by Wolfram in his classification of elementary cellular
automata (ECA) [8]. ECAare someof the simplest CAand are
1-dimensional with nearest-neighbor update rules operating
on the two-bit alphabet {◼, ◻}. Despite their simplicity, ECA
are known to be capable of complex emergent behavior.
Initializing an ECA in a random state leads some rules to
converge on fixed point or oscillatory attractors, while others
lead to chaotic patterns that are computationally irreducible
(such that their dynamics are impossible to predict from the
initial state and chosen rule without actually executing the
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Table 1: Wolfram’s classification of ECA, with only the 88 rule equivalence classes shown (only the lowest number rule of a given equivalence
class is listed) [28].

Wolfram’s Class I
0 8 32 40 128 136 160 168

Wolfram’s Class II
1 2 3 4 5 6 7 9 10 11
12 13 14 15 19 23 24 25 26 27
28 29 33 34 35 36 37 38 41 42
43 44 46 50 51 56 57 58 62 72
73 74 76 77 78 94 104 108 130 132
134 138 140 142 152 154 156 162 164 170
172 178 184 200 204 232

Wolfram’s Class III
18 22 30 45 60 90 105 122 126 146
150

Wolfram’s Class IV
54 106 110

full simulation). Based on these diverse behaviors, Wolfram
identified four distinct complexity classes, shown in Table 1.
Class I CA are those whose evolution eventually leads to cells
of only one kind. Class II CA lead to scattered stable or oscil-
lating behaviors. Class III CA show an irreducibly chaotic
pattern. Class IVCAcan exhibit any of the previous behaviors
simultaneously and seem to possess the kind of complexity
that lies at the interface between mathematical modeling and
life studies [9]. Wolfram’s classification stands as a milestone
in the understanding of CA properties and still represents the
most widely adopted classification scheme. Nonetheless, its
qualitative nature represents its main limitation. In fact, as
Culik II andYu showed, formally redefiningWolfram’s classes
[10] reveals that determiningwhich class a given ECAbelongs
to is actually undecidable.

Despite this no-go result, efforts to better classify CAhave
not diminished. Li and Packard [11] introduced a classifica-
tion scheme refining Wolfram’s originally proposed scheme,
with the explicit goal to better distinguish between locally
and globally chaotic behaviors. Langton introduced the first
attempt at a quantitative classification [12]. His classification
implemented a projection of the CA rule space over the 1D
closed interval [0, 1]: CA rules with similar qualitative fea-
tures are then roughly arranged in terms of comparable values
of the Langton parameter, with the most complex behav-
iors found at the boundary separating periodic rules from
chaotic ones. Alternative approaches to quantitative classifi-
cation include generalizations of concepts from continuous
dynamical systems applied to CA, such as the maximum
Lyapunov Exponent (MLE) [13]. For CA, MLE is defined in
terms of the Boolean Jacobian matrix [14] and captures the
main properties of its continuous counterpart: encoding the
tendency of a CA to reabsorb damage in its initial configura-
tion or to let it spread, as a consequence of chaotic dynamics.
This approach proved useful in more recent analysis of the
stability and the shift in complexity of CA in response to
changes in topology [15–18]. A number of other classification
schemes have been proposed over the years, based on index
complexity [19], density parameter with d-spectrum [20],

communication complexity [21], algorithmic complexity
[22], integrated information [23], and so on. A comprehen-
sive review is outside of the scope of this paper.The interested
reader is directed to the recent review by MartÍnez [24] and
the literature cited therein.

In this paper, we report on experiments demonstrating
new quantitative classification of the intrinsic complexity of
ECAs, which differs from earlier attempts by exploiting the
main weakness plaguing many approaches to quantitative
classification. That is, we explicitly utilize the sensitivity of
the expressed complexity of ECA rules to the initial input
state. In recent years, there has been increasing interest in
using information-theoretic tools to quantify the complexity
of dynamical systems, particularly in the context of under-
standing biological systems [25, 26]. A promising tool in this
context is transfer entropy (TE), Schreiber’s measure of the
directed exchange of information between two interacting
parts of a dynamical system [27]. In what follows, we adopt
TE as a candidate quantitative selection criterion to classify
the intrinsic complexity of ECAs by exploring the sensitivity
of TE to changes in the initial state of a CA.

The paper is structured as follows. In Section 2, we start
from the simplest, nontrivial, initial configuration of an ECA
and use it to identify the dynamical rules able to produce
a complex output (as quantified by TE) by virtue of their
intrinsic complexity. In Section 3, we repeat our analysis for-
more general inputs and identify those outputs whose com-
plexity is instead inherited by the complexity of the input, as
opposed to the rule. We then classify ECA rules according to
themaximumdegree of variability of the output they produce
for varying inputs. As we will show, three quantitatively
and qualitatively distinct classes naturally emerge from this
analysis. In Section 4, we show that this classification induces
a partially ordered hierarchy among the rules, such that
coarse-graining an ECA of a given class yields an ECA of the
same class, or simpler [1]. We conclude by proposing further
applications of the classification method presented.
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2. Intrinsic Complexity

In what follows we identify the complexity of a CA with the
amount of information it processes during its time evolution.
The concept of information processing presented herein is
adopted from information dynamics [29–32], a formalism
that quantifies computation in dynamical systems using
methods from information theory. In information dynam-
ics, Schreiber’s transfer entropy [27] is identified with the
information processed between two elements of a dynamical
system. In Schreiber’s measure, the transfer of information
between a source 𝑌 and a target𝑋 is quantified as the reduc-
tion in uncertainty of the future state of 𝑋 due to knowledge
of the state of 𝑌. In a CA, the source 𝑌 and target 𝑋 are both
cells of the CA.

Formally, TE is defined as the mutual information be-
tween the source𝑌 at a certain time 𝑡 and the target𝑋 at time𝑡 + 1, conditioned on a given number 𝑘 of previous states of𝑋:

𝑇𝑌→𝑋 = ∑
(x(𝑘)𝑡 ,𝑥𝑡+1 ,𝑦𝑡)∈S

𝑝 (x(𝑘)𝑡 , 𝑥𝑡+1, 𝑦𝑡)

× log2𝑝 (𝑥𝑡+1 | x(𝑘)𝑡 , 𝑦𝑡)
𝑝 (𝑥𝑡+1 | x(𝑘)𝑡 ) ,

(1)

where (see Figure 1)

(i) 𝑥𝑡+1 represents the state of cell𝑋 at time 𝑡 + 1;
(ii) 𝑦𝑡 is the state of cell 𝑌 at the previous time 𝑡;
(iii) x(𝑘)𝑡 is the vector (𝑥𝑡−𝑘+1, . . . , 𝑥𝑡) of the previous 𝑘

states of cell𝑋;
(iv) S represents the set of all possible patterns of sets of

states (x(𝑘)𝑡 , 𝑥𝑡+1, 𝑦𝑡).
To calculate TE, one must start with the time series of

states of a CA. Given the time series (see Figure 1), the occur-
rence numbers of patterns of states (x(𝑘)𝑡 , 𝑥𝑡+1, 𝑦𝑡) are counted
for each combination of cells 𝑋 and 𝑌 in the array. Once
normalized to the total number of (not necessarily distinct)
patterns appearing in the time series, these frequencies are
identified with the probabilities 𝑝(x(𝑘)𝑡 , 𝑥𝑡+1, 𝑦𝑡) appearing
in (1). The conditional probabilities 𝑝(𝑥𝑡+1 | x(𝑘)𝑡 , 𝑦𝑡) and𝑝(𝑥𝑡+1 | x(𝑘)𝑡 ) are calculated analogously.

Changing the value of the history length can affect the
value of TE calculated for the same time series data. We find
very similar values of TE for 𝑘 = 4 and 6 and observe a con-
siderable decrease in TE for 𝑘 < 4 and 𝑘 > 6 (cf. Section 4.2 of
[32]), relative to the value of TE for 𝑘 = 5. We therefore
consider 𝑘 = 5 as the optimal value of 𝑘 that properly cap-
tures the past history of 𝑋 for the results presented here (see
Section 3 for a visual explanation of why 𝑘 ∼ 5 represents the
optimal history length).

We first generated time series for the simplest initial state
for each of the 256 possible ECA rules, which we numerically
label following Wolfram’s numbering scheme [33, 34]. Here
and in the following, periodic boundary conditions are
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Figure 1: Time series of an ECA, with the pattern of cells relevant
to the evaluation of the transfer entropy from 𝑌 to 𝑋, 𝑇𝑌→𝑋, high-
lighted.

enforced.Therefore, the specific location of the different color
cell in the input array is irrelevant. Our initial state is either

◻ ⋅ ⋅ ⋅ ◻⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
50-times

◼◻ ⋅ ⋅ ⋅ ◻⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
50-times

(2)

or the equivalent state obtained through a ◻ ↔ ◼ conju-
gation. For example, rules 18 and 183 are equivalent under
a ◻ ↔ ◼ conjugation. The input ◻ ⋅ ⋅ ⋅ ◻◼◻ ⋅ ⋅ ⋅ ◻ is updated
using rule 18, and the conjugated input ◼ ⋅ ⋅ ⋅ ◼◻◼ ⋅ ⋅ ⋅ ◼ using
rule 183. A comprehensive study of the symmetry properties
of ECA can be found in [11], where the 256 possible ECA
rules are grouped into 88 different equivalence classes. Each
class contains no more than four rules, which show the same
behavior under ◻ ↔ ◼ exchange, left-right transformations,
or the combination of both transformations. The interested
reader can find such classification summarized in Table 1 of
the cited work. For Wolfram Classes III and IV (Wolfram’s
most recent ECA classification scheme is now implemented
in the Wolfram Alpha computational engine [28] and repro-
duced here (Table 1) for the convenience of the reader), the
equivalence classes are also shown in the legend of Figure 2.

We calculate the amount of information processed by a CA
in a space-time patch as the average of 𝑇𝑌→𝑋 calculated over
that region, designated as ⟨TE⟩. To do so, we evolve theCA for
250 time steps and then remove the first 50 time steps from
each generated time series.This allows us to evaluate TE over
a region of the CA in causal contact with the initial input at
each point in space and time. This ensures that the observed
dynamics over the relevant space-time patch are driven by
both the chosen rule and the initial state. The resulting time
series is then used to evaluate the 1012 values TE𝑌→𝑋. For
each rule, the average value ⟨TE⟩ is shown in Figure 2(a).
Equivalent rules, like rules 30, 86, 135, and 149, produce
the same values of ⟨TE⟩ and are represented by a common
marker. For clarity, individual Wolfram Classes I and II rules
are not shown and are instead replaced by a dashed line
corresponding to the highest ⟨TE⟩ of any individual Class I
or II rule. All Class III rules lie above the range of Classes I
and II. Interestingly, with only the exception of rule 110 and
its equivalent rules, all Class IV rules lie within the range of
Classes I and II rules.



4 Complexity

0 50 100 150 200 250

Rule number

0.00

0.05

0.10

0.15

0.20
Av

er
ag

ed
 tr

an
sfe

r e
nt

ro
py

 (b
its

)

18, 183
22, 151
30, 86, 135, 149
45, 75, 89, 101
60, 102, 153, 195
90, 165
105

122, 161
126, 129
146, 182
150
54, 147
106, 120, 169, 225
110, 124, 137, 193

Cl
as

se
s I

 &
 II

 ra
ng

e

(a) Single-cell input

0 50 100 150 200 250

Rule number

Cl
as

se
s I

 &
 II

 ra
ng

e

0.00

0.05

0.10

0.15

0.20

Av
er

ag
ed

 tr
an

sfe
r e

nt
ro

py
 (b

its
)

18, 183
22, 151
30, 86, 135, 149
45, 75, 89, 101
60, 102, 153, 195
90, 165
105

122, 161
126, 129
146, 182
150
54, 147
106, 120, 169, 225
110, 124, 137, 193

(b) Random input

Figure 2: ⟨TE⟩ for each rule, shown for two different inputs: single cell (a) (either one black cell or one white cell) and random (b). Equivalent
rules are represented by a common marker. The association of equivalent inputs with equivalent rules is chosen heuristically as the one that
maximizes the averaged TE. The dashed line corresponds to the highest value of ⟨TE⟩ for any Wolfram Class I or II rule. Individual markers
are shown only for Wolfram Classes III (black) and IV (orange) rules.

The single-cell input considered here is extremely rare
within the space of all possible initial inputs. The number
of black cells in a state randomly extracted among the 2101
different possible inputs follows a binomial distribution,
meaning that states containing 50 or 51 black and white cells
are about 2×1027 times more likely than our initially selected
input. Our motivation for considering the single-cell input
first is that it automatically excludes many trivial rules from
our search for the complex ones. Rules that duplicate the
input in a trivial way or annihilate it to produce all ◼ or all◻ naturally yield ⟨TE⟩ ≃ 0. This is the same approach that
has been recently assumed in algorithmic complexity based
classification of CAs [22]. It has the advantage of selecting
many rules according to their intrinsic complexity, and not
the complexity of the input. However, a major shortcoming
of choosing the single-cell input is that many Class IV rules
look simpler than what they truly are. Class IV rule 106 is
a good example. For the simple input of a single black bit,
rule 106 functions to shift the black cell one bit to the left
at each time-step, generating a trivial trajectory. However, in
cases where the input allows two black cells to interact, the
full potential of rule 106 can be expressed. This is an explicit
example of the sensitivity of the behavior of some ECA rules

to the complexity of their input, as discussed in the introduc-
tion. To isolate the complexity of the rule from that inherited
by the input, we must therefore consider a random sample of
initial states, as we do next.

3. Inherited Complexity and
Information-Based Classification

We next consider a more generic input, randomly selected
among the 2101 ≃ 2.5×1030 different possibilities. As the input
is no longer symmetric, we now need to consider reflec-
tions in selecting the equivalent input → rule associations.
The scenario changes completely in this case, as shown in
Figure 2(b), where the highest values of ⟨TE⟩ correspond
to Class II rules, including 15, 85, 170, and 240, which
generate trivial, wave-like behaviors. These rules behave
like rule 106 (especially 170 and 240) when initialized with
a single-cell input, but they do not contribute any new,
emergent nontrivial features when nearby cells interact. For
all purposes they appear less intrinsically complex. With only
the exception of rule 110 and its equivalent rules, Class IV
rules behave like many rules of Class II and exhibit a large
increase in complexity, as qualitatively observed and also
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as quantitatively captured by ⟨TE⟩, in response to a more
complex input.

It is worth noting that all of the rules whose initial value
of ⟨TE⟩ lay above the upper limit for Classes I and II of⟨TE⟩ = 0.024 bits in the simplest input scenario still have
calculated ⟨TE⟩ above this value under a change of input. In
particular, the rules with the highest values of ⟨TE⟩ are not
significantly affected by the change in the input. Let us naively
use the upper limit for Classes I and II rules emerging from
Figure 2(a) as the border line between what we call low and
high values of ⟨TE⟩. We can summarize the changes under
varying the input as follows. There are rules whose value of⟨TE⟩ is low for both the inputs. There are rules whose value
of ⟨TE⟩ is low in the simplest case, but high in the more
complex one. And, finally there are also rules with a high
value of ⟨TE⟩ in both cases. The interesting point is that we
find no rule whose value of ⟨𝑇𝐸⟩ is high for the simplest input
and low for the random input. This is equivalent to say that
there are no rules generating complexity for simple inputs,
but annihilating it for complex ones. The significance of this
observation lies in the fact that it enables classification in
terms of the shift of ⟨TE⟩ over a space-time region in response
to a change in its input by taking advantage of the main
limitation that makes quantitative classifications of ECAs so
difficult, that is, ECA sensitivity to their initial state, and
exploits it in order to achieve such classification.

To confirm this is indeed a viable method for quantitative
classification,wemust considermore than just two inputs.We
therefore first randomly selected twenty different ones. Being
interested in how much ⟨TE⟩ can vary as we vary the input,
for each rule we selected the maximum absolute value of the
percent change of ⟨TE⟩ between the random inputs (⟨TE⟩𝑟)
and the single-cell input (⟨TE⟩1) considered before:

max{⟨TE⟩𝑟 − ⟨TE⟩1⟨TE⟩𝑟 }
random
inputs

. (3)

The results are shown in Figure 3, where the maximum per-
cent change is plotted as a function of ⟨TE⟩1. Equivalent rules
are represented by a single marker and share the same value
for the maximum relative change of ⟨TE⟩. In fact, given two
rules 𝑟1 and 𝑟2 sharing a symmetry, it is always possible to find
two inputs 𝑖1 and 𝑖2 such that rule 𝑟1 initialized to 𝑖1 and rule𝑟2 initialized to 𝑖2 give rise to the same value of ⟨TE⟩.

The horizontal dashed line separates rules whose maxi-
mum ⟨TE⟩ change is less than one order of magnitude from
those that can undergo a change in ⟨TE⟩ of at least a factor 10.
The vertical dashed line denotes the highest value of ⟨TE⟩1 for
WolframClasses I and II, exactly as in Figure 2(a).The region
to the right of the vertical line and above the horizontal line is
void of anyECA rules. Points in that regionwould correspond
to values of ⟨TE⟩ that are both high for the simplest input and
capable of high variation, for example,CArules that can anni-
hilate the complexity of the input, which we do not observe.
This feature yields a distinctive L-shape in the distribu-
tion of ruleswith the rules in each region sharingwell-defined
properties.

As a result, a natural, information-based classification of
ECAs can be given as follows:

Class I1: ⟨TE⟩ is very small for the simplest input and
stays so for complex inputs.This is themost populated
class, including almost all Wolfram Classes I and II
rules, rules 18 and 146 and their equivalent Class III
rules.

Class I2: ⟨TE⟩ is small for the simplest input, but it
experiences a drastic change (one order of magnitude
or more) when the input is complex. This is the case
for many Wolfram Class II and some Class IV rules
(e.g., 54 and 106 and their equivalent rules).

Class I3: ⟨TE⟩ has a high value for the simplest input,
and this value is approximately unaffected by a change
in the input. Most Wolfram Class III rules belong to
this class, as well as Class IV rule 110 and its equivalent
rules.

Our classification is summarized in Table 2. Despite the
arbitrary placement of our boundary lines at the border of
the I1 region, it shows an unambiguous separation between
the most majority of rules classified as I2 and I3.

Randomly sampling inputs leads to a bias favoring nearly
fifty-fifty distributions of black and white cells, due to their
binomial distribution. We therefore also verified this clas-
sification using a different distribution of inputs, where the
number of black cells is increased in a regular way from 2
to 50, while keeping the specific positions of black cells in
the input array random. We considered 20 different inputs,
each containing exactly 2, 5, 7, 10, 12, . . . , 47, and 50 black
cells (higher numbers are not considered due to the ◻ ↔◼ conjugation). Apart from minor shifts of the data points,
applying the same procedure as above yields exactly the same
classification as Figure 3, indicating that our classification
scheme is robust.

We stress the importance of considering a large system
(order ∼ 100 cells) as opposed to a much smaller one (e.g.,
order∼ 10).While for the latter a scan over the entire space of
inputs is computationally feasible (and indeed we performed
these experiments), it hides one of the main features enabling
information-based classification, the existence of Class I3
rules, which form themost stable class with respect to our TE
based complexity measure. Class I3 rules produce time series
largely independent of the initial state, exemplified by rule
30 in Figure 3, a feature evident only in larger systems (being
the result of combinatorial calculus, TE computational time
grows exponentially with the number of cells considered. An
ECA array of about 100 cells is both the smallest size that we
could safely consider much larger than that of the domains
of Figure 3 and for which a complete scan over the rule space
and a large enough ensemble of inputs could be made. We
also considered individual runs with 200 and 400 cells and
noticed that our numerical results are stable for CA with 100
or more cells but are fluctuating for CA with 50 or less cells).

The typical, order 10, cell length of the domains appearing
in Figure 3 is also the reason why 𝑘 ∼ 5 is the most optimal
value for the history length parameter. Smaller and larger
values of 𝑘 would not be able to resolve this lattice size
independent feature of Class I3 rules [32] (Figure 4).
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Table 2: Information based classification of ECA, with only the 88 rule equivalence classes shown (represented by the lowest number rule).
Wolfram Class III rules are denoted in black, boldface type, and Class IV in italic.

Class I1
0 1 3 4 5 8 9 12 13 18
19 23 25 26 28 29 32 33 35 36
37 40 41 44 50 51 57 58 62 72
73 76 77 78 94 104 108 128 130 132
134 136 140 146 152 154 156 160 162 164
178 200 204 232

Class I2
2 6 7 10 11 14 15 24 27 34
38 42 43 46 54 56 74 106 138 142
168 170 172 184

Class I3
22 30 45 60 90 105 110 122 126 150
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Figure 3: Maximum percent change of ⟨TE⟩ as a function of ⟨TE⟩1
(3). Equivalent rules are represented by a singlemarker, colored as in
Figure 2 but with Wolfram Classes I and II in gray. Rules above the
horizontal dashed line can undergo a change of at least one order
of magnitude in ⟨TE⟩. The vertical dashed line is the same as in
Figure 2(a).

4. Coarse-Graining and
the Information Hierarchy

Perhaps the most interesting feature of our quantitative
classification is that Wolfram Class III and Class IV rules
are distributed over different information-based classes. This
behavior looks less surprising in the light of the coarse-
graining transitions among ECA uncovered by Israeli and
Goldenfeld [1]. One important aspect of the physical world
is that coarse-grained descriptions often suffice to make

Rule 30
single cell input

Rule 30
random input

Figure 4: Time series for rule 30 generated by the two initial states
of Figure 2. The similarity of the two outputs, each yielding color
domains with a typical linear size of about ∼10 blocks, does not
depend on the size of the CA and is responsible for the stability of
Class I3 rules to changes in input.

predictions about relevant behavior. Noting this, Israeli and
Goldenfeld adopted a systematic procedure to try to coarse
grain ECA rules. Their prescription consists in grouping
together nearby cells in theCAarray into a supercell of a given
size 𝑁, according to some specified supercell → single-cell
correspondence (for Boolean CAs, 22𝑁 possible applications
of this kind exist), and a given time constant 𝑇. The search
for a coarse-graining rule consists in looking for a new CA
rule such that running the original CA for 𝑇𝑡 time steps, and
then grouping the supercells, produces the same output as
grouping the initial array and then adopting the new CA rule
for 𝑡 time steps. The new CA rule, the time constant 𝑇, and
the size of the supercell 𝑁 are all unknown; therefore, this
search requires a scan over all the possible combinations of
these parameters. Israeli and Goldenfeld successfully coarse-
grained 240 of the 256 ECA rules, many to other ECA rules,
performing a complete scan of all the possibilities compatible
with 𝑁 ≤ 4. Importantly, the rule complexity was never
observed to increase under coarse-graining, introducing a
partial ordering among CA rules.
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Figure 5: Coarse-graining transitions within ECA found in [1], mapped onto a hierarchy of the information-based classes identified here.
Only the 88 rule equivalency classes are shown (represented by the lowest number rule). For simplicity, (nontrivial) transitions to rule zero
are not shown (isolated boxed with continuous border). Boxes with a dashed border include ECA rules for which a coarse-graining transition
to another ECA rule with supercell of size 4 or less does not exist [1].

The same ordering emerges from our information-based
classification, as shown in Figure 5, where arrows indicate
coarse-graining transitions uncovered in [1]. These transi-
tions introduce a fully ordered hierarchy I3 → I2 → I1
such that coarse-graining is never observed to move up the
hierarchy, and the vast majority of rules may only undergo
coarse-graining transitions within the same information class.
This ordering is sometimes expected, like in the case of many
of our Class I2 rules, where wave-like patterns are coarse-
grained to either self-similar, or very similar, patterns. Other
times it looks more profound, like in the case of Wolfram
Class III rule 146. Rule 146 is in I1, and it can be nontrivially
coarse-grained to I1 rule 128 (a Wolfram Class I rule), due
to a shared sensitivity of the information processed in a
given space-time patch to its input state. As noted in [1], the
fact that potentially (a conclusive proof of the computational
irreducibility of ECA rule 146 is stillmissing) computationally
irreducible rules [8] like elementary rule 146 can be coarse-
grained to predictable dynamics (e.g., rule 128) shows that
computational irreducibility might lack the characteristics
of a good measure of physical complexity. We are led to
conclude that the coarse-graining hierarchy is more likely
defined by conserved informational properties, with more
complex rules by Wolfram’s classification appearing lower in
the hierarchy if they can be coarse-grained to less complex
ones with common sensitivity to the input state.

5. Conclusions

Physical systems evolve in time according to local, uniform
rules but can nonetheless exhibit complex, emergent behav-
ior. Complexity arises either as a result of the initial state or
rule, or some combination of the two.The ambiguity of deter-
mining whether complexity is generated by rules or states has
confounded previous efforts to isolate complexity intrinsic
to a given rule. In this work, we introduced a quantitative,
information-based, classification of ECA. The classification
scheme proposed circumvents the difficulties arising due to

the sensitivity of the expressed complexity of ECA rules to
their initial state. The (averaged) directed exchange of infor-
mation (TE) between the individual parts of an ECA is used
as ameasure of its complexity.The identification of the single-
cell input (Section 2) as the nontrivial state with the least
complexity is assumed as a working hypothesis and provides
a reference point for our analysis of the degree of variability
of the complexity of ECA rules for varying inputs. We
identified three distinct classes based on our analysis, which
vary in their sensitivity to initial conditions. Class I1 ECA
always process little information, Class I3 always processes
high information, and Class I2 can be low or high depending
on the input. It is only for Class I3 that the expressed com-
plexity is intrinsic and not a product of the complexity carried
by the input.

The most complex rules by our analysis are in Class I3,
which includes the majority of Wolfram’s Class III rules and
Class IV rule 110 and its equivalent rules. These rules form a
closed group under the coarse-graining transitions found in
[1]. The truly complex rules are those that remain complex
even at a macrolevel of description, with behavior that is not
sensitive to the initial state.

We are currently investigating the possibility of extending
our measure to less elementary dynamical systems, as well as
to idealized biological systems (e.g., networks of regulatory
genes). Inspired by Nurse’s idea [35] that the optimization of
information storage and flow might represent the distinctive
feature of biological functions, we find interesting that infor-
mation dynamics identifies the most complex ECA dynamics
with the ones that least depend on their initial state. This
feature, evocative of the redundancy so ubiquitous in biology,
might represent a link between biology and information
dynamics [36] that we consider worth of further study.
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