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We investigate properties of partial exponents (in particular, the Lyapunov and Perron exponents) of discrete time-varying linear
systems. In the set of all increasing sequences of natural numbers, we define an equivalence relationwith the property that sequences
in the same equivalence class have the same partial exponent. We also define certain subclass of all increasing sequences of natural
numbers, including all arithmetic sequences, such that all partial exponents are achievable on a sequence from this class. Finally,
we show that the Perron and Lyapunov exponents may be approximated by partial exponents achievable on sequences in certain
sense similar to geometric sequences.

1. Introduction

Consider a discrete time-varying system:

𝑥 (𝑛 + 1) = 𝐴 (𝑛) 𝑥 (𝑛) , 𝑛 ≥ 0, (1)

where 𝐴 = (𝐴(𝑛))𝑛∈N is a bounded sequence of invertible𝑠-by-𝑠 real matrices such that (𝐴−1(𝑛))𝑛∈N is bounded. For the
coefficient matrices, denote the transition matrices

Φ (𝑚, 𝑛) = 𝐴 (𝑚 − 1) ⋅ ⋅ ⋅ 𝐴 (𝑛) for𝑚 > 𝑛 (2)

and Φ(𝑛, 𝑛) = 𝐼, where 𝐼 is the identity matrix. For an initial
condition 𝑥0 ∈ R𝑠, the solution of (1) is denoted by (𝑥(𝑛,𝑥0))𝑛∈N; that is,

𝑥 (𝑛, 𝑥0) = Φ (𝑛, 0) 𝑥0. (3)

If 𝑎 = (𝑎(𝑛))𝑛∈N is a sequence of real numbers, then the Perron
exponent 𝜋(𝑎) and the Lyapunov exponent 𝜆(𝑎) of 𝑎 are
defined in the following ways:

𝜋 (𝑎) = lim inf
𝑛→∞

1𝑛 ln 𝑎 (𝑛) ,
𝜆 (𝑎) = lim sup

𝑛→∞

1𝑛 ln 𝑎 (𝑛) .
(4)

By ‖ ⋅ ‖, denote the Euclidean norm in R𝑠 and the induced
operator norm. For an initial condition 𝑥0 ∈ R𝑠, the Perron𝜋(𝑥0) and the Lyapunov 𝜆(𝑥0) exponents of the solution(𝑥(𝑛, 𝑥0))𝑛∈N of system (1) are defined (see [1]) as

𝜋 (𝑥0) = lim inf
𝑛→∞

1𝑛 ln 𝑥 (𝑛, 𝑥0) ,
𝜆 (𝑥0) = lim sup

𝑛→∞

1𝑛 ln 𝑥 (𝑛, 𝑥0) .
(5)

It means that the Perron and Lyapunov exponents of the solu-
tion (𝑥(𝑛, 𝑥0))𝑛∈N are the Perron and Lyapunov exponents of
the sequence (‖𝑥(𝑛, 𝑥0)‖)𝑛∈N, respectively.

To characterize many properties of system (1) character-
istics exponents, for example the Lyapunov, Perron, Bohl,
general exponents may be used.These quantities describe the
different types of stability and trajectories growth rate. For
interesting summary on main properties of the Lyapunov,
Perron, Bohl, general exponents of the discrete time-varying
linear system, and relations between these exponents and
different types of stability of the considered system see [2].

The Lyapunov [3–15] and the Perron [16–23] exponents
are one of the most commonly used numerical character-
istics of dynamical systems. They describe, inter alia, such
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important properties like stability (exponential and Pois-
son). Numerical calculation of them is related to two main
problems. The first one is that they are very sensitive to
inaccuracies in the coefficients (they are not even continuous
functions of the coefficients; see [24–29]). The second prob-
lem is that these quantities are defined by the partial limits
(upper and lower one), and we do not know in advance what
time sequence they are achieved on; therefore, an a priori one
would need to look into all increasing sequences of natural
numbers [30, 31].

This paper is linked to the second problem. In the paper,
we try to describe a smaller class of all growing sequences
of natural numbers with the property that the Lyapunov or
Perron exponents are achieved on one of the sequences in this
class.

The paper is organized in the following way: in the next
paragraph, we establish certain properties of partial limits
of real sequences, in particular their Perron and Lyapunov
exponents. In the third section, containing themain results of
the work, the theorems from the second section are applied
to obtain properties of the Perron and Lyapunov exponents of
the solutions of system (1). The work ends with a paragraph
containing conclusions and suggestions for further research.

2. Preliminaries

Denote byS the set of all sequences of positive real numbers𝑎 = (𝑎𝑛)𝑛∈N such that there exist constants 𝑐1, 𝑐2 (in general
depending on the sequence 𝑎) such that

𝑐1 ≤ 𝑎 (𝑛 + 1)𝑎 (𝑛) ≤ 𝑐2, 𝑛 ∈ N. (6)

ByC we denote the set of all increasing sequences of natural
numbers. If 𝑏 = (𝑏𝑛)𝑛∈N is any sequence of real numbers and𝑚 = (𝑚𝑙)𝑙∈N ∈ C are such that there exists a finite limit

𝛽 = lim
𝑙→∞

𝑏 (𝑚𝑙) , (7)

then the number 𝛽 we will be called a partial limit or limit
point of sequence 𝑏 and we will say that it is achieved on the
sequence𝑚.

The next theorem shows that each number between
the Perron and Lyapunov exponents of the sequence 𝑎 =(𝑎𝑛)𝑛∈N∈S is a partial limit of the sequence ((1/𝑛) ln 𝑎(𝑛))𝑛∈N.
Theorem 1. For each sequence 𝑎 ∈ S and each number 𝛼 ∈[𝜋(𝑎), 𝜆(𝑎)] there exists sequence (𝑚𝑙)𝑙∈N ∈ C such that

𝛼 = lim
𝑙→∞

1𝑚𝑙 ln 𝑎 (𝑚𝑙) . (8)

Proof. If 𝛼 = 𝜋(𝑎) or 𝛼 = 𝜆(𝑎) then the conclusion follows
from the properties of the upper and lower limits. Suppose

that 𝛼 ∈ (𝜋(𝑎), 𝜆(𝑎)). Let us define sequence (𝑛𝑙)𝑙∈N in the
following way:

𝑛0 = 0,
𝑛1 = min {𝑛 ∈ N : 𝑛 > 0, 1𝑛 ln 𝑎 (𝑛) > 𝛼} ,
𝑛2 = min {𝑛 ∈ N : 𝑛 > 𝑛1, 1𝑛 ln 𝑎 (𝑛) < 𝛼} ,

𝑛2𝑙+1 = min {𝑛 ∈ N : 𝑛 > 𝑛2𝑙, 1𝑛 ln 𝑎 (𝑛) > 𝛼} ,
𝑙 = 1, 2, . . . ,

𝑛2𝑙+2 = min {𝑛 ∈ N : 𝑛 > 𝑛2𝑙+1, 1𝑛 ln 𝑎 (𝑛) < 𝛼} ,
𝑙 = 1, 2, . . . .

(9)

By the inequality 𝜋(𝑎) < 𝛼 < 𝜆(𝑎) and by the definition of the
upper and lower limits, it follows that the definition of (𝑛𝑙)𝑙∈N
is correct, the sequence (𝑛𝑙)𝑙∈N is increasing, and

1𝑛2𝑙+1 ln 𝑎 (𝑛2𝑙+1) > 𝛼, 𝑙 = 1, 2, . . . ,
1𝑛2𝑙+1 − 1 ln 𝑎 (𝑛2𝑙+1 − 1) ≤ 𝛼, 𝑙 = 1, 2, . . . .

(10)

From the above two inequalities we get

lim inf
𝑙→∞

1𝑛2𝑙+1 ln 𝑎 (𝑛2𝑙+1) ≥ 𝛼, (11)

𝑎 (𝑛2𝑙+1 − 1) ≤ exp (𝛼 (𝑛2𝑙+1 − 1)) ,
𝑙 = 1, 2, . . . . (12)

Since 𝑎 ∈ S, therefore there exists a constant 𝑐2 ∈ R, 𝑐2 > 0
such that

𝑎 (𝑛2𝑙+1) < 𝑐2𝑎 (𝑛2𝑙+1 − 1) , 𝑙 = 1, 2, . . . . (13)

By the last two inequalities, we obtain

𝑎 (𝑛2𝑙+1) < 𝑐2 exp (𝛼 (𝑛2𝑙+1 − 1)) ,
𝑙 = 1, 2, . . . , (14)

1𝑛2𝑙+1 ln 𝑎 (𝑛2𝑙+1) <
ln 𝑐2𝑛2𝑙+1 +

𝛼 (𝑛2𝑙+1 − 1)
𝑛2𝑙+1 ,

𝑙 = 1, 2, . . . .
(15)

Passing to the upper limit and taking into account that
lim𝑙→∞𝑛2𝑙+1 = ∞, we have

lim sup
𝑙→∞

1𝑛2𝑙+1 ln 𝑎 (𝑛2𝑙+1) ≤ 𝛼. (16)

Inequalities (11) and (16) imply that

lim
𝑙→∞

1𝑛2𝑙+1 ln 𝑎 (𝑛2𝑙+1) = 𝛼. (17)

It means that the sequence 𝑚𝑙 = 𝑛2𝑙+1, 𝑙 = 1, 2, . . . is that one
from the theorem’s thesis. The proof is completed.
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It is easy to construct an example showing that the
theorem is no longer true without the assumption that 𝑎 ∈ S.

Example 2. Let us define sequence 𝑎 = (𝑎(𝑛))𝑛∈N in the
following way:

𝑎 (𝑛) = {{{
𝑒𝑛 for even 𝑛
𝑒−𝑛 for odd 𝑛. (18)

It is clear that 𝑎 ∉ S. Moreover,

1𝑛 ln 𝑎 (𝑛) = {{{
1 for even 𝑛
−1 for odd 𝑛. (19)

Therefore, each convergent subsequence of the sequence((1/𝑛) ln 𝑎(𝑛))𝑛∈N may have as a limit only 1 or −1.
Theorem 1 may be generalized as follows.

Theorem 3. If (𝑇𝑛)𝑛∈N ∈ C is such that

lim
𝑛→∞

𝑇𝑛+1 − 𝑇𝑛𝑇𝑛 = 0, (20)

then for each sequence 𝑎 ∈ S and each number 𝛼 ∈[𝜋(𝑎), 𝜆(𝑎)] there exists sequence (𝑛𝑙)𝑙∈N ∈ C such that

𝛼 = lim
𝑙→∞

1𝑇𝑛𝑙 ln 𝑎 (𝑇𝑛𝑙) . (21)

Proof. This theorem may be obtained from the general
fact from the functional analysis as it was shown in [32,
Lemma 7.5]. Repeating the construction from the proof of
Theorem 1, we obtain instead of inequality (15) the following
one:

1𝑛2𝑙+1 ln 𝑎 (𝑛2𝑙+1) <
(𝑇𝑛2𝑙+1 − 𝑇𝑛2𝑙+1−1) ln 𝑐2𝑇𝑛2𝑙+1
+ 𝛼𝑇𝑛2𝑙+1−1𝑇𝑛2𝑙+1 , 𝑙 = 1, 2, . . . .

(22)

From this inequality and by assumption (20) the thesis
follows. The proof is completed.

Let us now introduce certain relation in the set C
(Definition 4). It will appear to be an equivalence relation
(Theorem 5) and if two sequences belong to the same
equivalence class, then corresponding to them subsequences
of (𝑎(𝑛))𝑛∈N have the same exponents (Theorem 6).

Definition 4. We say that the sequence 𝑚 = (𝑚𝑙)𝑙∈N ∈ C is
close to the sequence 𝑛 = (𝑛𝑙)𝑙∈N ∈ C if

lim
𝑘→∞

min {𝑚𝑘 − 𝑛𝑙 : 𝑙 ∈ N}
𝑚𝑘 = 0. (23)

This fact will be denoted in the following way𝑚 ∼ 𝑛.

Theorem 5. The relation ∼ is an equivalence relation in the set
C.

Proof. Reflexivity of the relation ∼ is obvious. Suppose that𝑚 ∼ 𝑛. For a 𝑘 ∈ N, denote by 𝑙(𝑘) any natural number
satisfying the condition𝑚𝑘 − 𝑛𝑙(𝑘) = min {𝑚𝑘 − 𝑛𝑙 : 𝑙 ∈ N} . (24)

We will show that the set {𝑙(𝑘) : 𝑘 ∈ N} is infinite. On the
contrary, suppose that it is finite and denote its elements by𝑙1, . . . , 𝑙𝑝. Then, there exists infinite set 𝐴 ⊂ N such that

𝑙 (𝑘) = 𝑙𝑖 (25)

for all 𝑘 ∈ 𝐴 and certain 𝑖 = 1, . . . , 𝑝. For 𝑘 ∈ 𝐴, denote
𝑎 = 𝑚𝑘 − 𝑛𝑙(𝑘) = 𝑚𝑘 − 𝑛𝑙𝑖  . (26)

Then,

𝑚𝑘 = 𝑛𝑙𝑖 + 𝑎
or 𝑚𝑘 = 𝑛𝑙𝑖 − 𝑎. (27)

The last two equalities are in contradiction with the facts that𝐴 is infinite and𝑚 tends to infinity. Now we show symmetry
of the relation ∼. Suppose that 𝑚 ∼ 𝑛 but the sequence 𝑛 is
not close to the sequence𝑚. Denote

𝛼 = lim sup
𝑘→∞

min {𝑛𝑘 − 𝑚𝑙 : 𝑙 ∈ N}
𝑛𝑘

= lim sup
𝑘→∞

min{1 −
𝑚𝑙𝑛𝑘

 : 𝑙 ∈ N} .
(28)

The fact that the sequence 𝑛 is not close to the sequence 𝑚
implies that 𝛼 > 0. Let us fix 𝛼 ∈ (0, 𝛼), 𝛼 < 1. By the
definition of upper limit we know that there exists sequence(𝑝(𝑘))𝑘∈N ∈ C such that

min{1 −
𝑚𝑙𝑛𝑝(𝑘)

 : 𝑙 ∈ N} > 𝛼. (29)

It means that 1 −
𝑚𝑙𝑛𝑝(𝑘)

 > 𝛼 (30)

or equivalently that

1 − 𝑚𝑙𝑛𝑝(𝑘) > 𝛼
or 1 − 𝑚𝑙𝑛𝑝(𝑘) < −𝛼 (31)

for all 𝑙, 𝑘 ∈ N. For the fixed 𝑙 ∈ N, the second inequality
may hold only for finite many 𝑘 ∈ N (in the opposite case,
after passing to the limit with 𝑘 → ∞ we obtain −1 > 𝛼).
Moreover, if for certain 𝑙, 𝑘 ∈ N the first inequality holds, then

1 − 𝑚𝑙𝑛𝑞 > 𝛼 (32)
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for all 𝑞 ∈ N, 𝑞 ≥ 𝑝(𝑘). Therefore, for all 𝑙 ∈ N there exists𝑞(𝑙) ∈ N such that

1 − 𝑚𝑙𝑛𝑘 > 𝛼 (33)

for all 𝑘 ∈ N, 𝑘 ≥ 𝑞(𝑙). By the definition of the relation ∼, the
fact that 𝑚 ∼ 𝑛 and the definition of the limit it follows that
there exists 𝑘1 ∈ N such that

min{1 −
𝑛𝑙𝑚𝑘

 : 𝑙 ∈ N} < 𝛼 (34)

for all 𝑘 ∈ N, 𝑘 > 𝑘1. The last inequality implies that
𝛼1 + 𝛼 > 1 − 𝑚𝑘𝑛𝑙(𝑘) (35)

for all 𝑘 > 𝑘1. Finally, notice that 𝛼 > 𝛼/(1 + 𝛼). It means that
the inequalities (33) and (35) are in contradiction. Therefore,
the relation ∼ is in fact symmetric.

Now we show the transitivity of the relation ∼. Suppose
that we have three sequences 𝑚, 𝑛, 𝑝 ∈ C such that 𝑛 ∼ 𝑚
and𝑚 ∼ 𝑝. From the fact 𝑛 ∼ 𝑚, we conclude that

lim
𝑘→∞

1 −
𝑚𝑙1(𝑘)𝑛𝑘

 = 0, (36)

where 𝑙1(𝑘) is any natural number satisfying the condition𝑛𝑘 − 𝑚𝑙1(𝑘) = min {𝑛𝑘 − 𝑚𝑙 : 𝑙 ∈ N} . (37)

Let us fix an arbitrary 𝜀 ∈ (0, 1). By the definition of the limit
and the equality (36), it follows that there exists 𝑘1 ∈ N such
that 1 −

𝑚𝑙1(𝑘)𝑛𝑘
 < 𝜀 (38)

for all 𝑘 ∈ N, 𝑘 ≥ 𝑘1.The last inequality implies that

1 + 𝜀 > 𝑚𝑙1(𝑘)𝑛𝑘 > 1 − 𝜀. (39)

From the fact that𝑚 ∼ 𝑝, it follows that
0 = lim
𝑘→∞

min{1 −
𝑝𝑙𝑚𝑘

 : 𝑙 ∈ N}
= lim
𝑘→∞

min{1 −
𝑝𝑙𝑚𝑙1(𝑘)

 : 𝑙 ∈ N} .
(40)

To obtain the last equality nondecreaseness of the sequence(𝑙1(𝑘))𝑘∈N is necessary. If this is not the case, then we can
choose the nondecreasing subsequence from (𝑙1(𝑘))𝑘∈N and
the further reasoning lead for it. Denote by 𝑙2(𝑘) any natural
number such that𝑝𝑙2(𝑘) − 𝑚𝑙1(𝑘) = min {𝑝𝑙 − 𝑚𝑙1(𝑘) : 𝑙 ∈ N} . (41)

Applying the introduced notation and the definition of the
limit, we conclude that there exists 𝑘2 ∈ N such that1 −

𝑝𝑙2(𝑘)𝑚𝑙1(𝑘)
 < 𝜀 (42)

for all 𝑘 ∈ N, 𝑘 ≥ 𝑘2.The last inequality implies that

1 + 𝜀 > 𝑝𝑙2(𝑘)𝑚𝑙1(𝑘) > 1 − 𝜀. (43)

From inequalities (39) and (43), we get

(1 + 𝜀)2 > 𝑝𝑙2(𝑘)𝑛𝑘 > (1 − 𝜀)2 (44)

for 𝑘 ∈ N, 𝑘 ≥ max{𝑘1, 𝑘2}; that is,
2𝜀 + 𝜀2 > 1 − 𝑝𝑙2(𝑘)𝑛𝑘 > 2𝜀 − 𝜀2. (45)

Due to arbitrariness of selection of 𝜀 ∈ (0, 1), the last
inequality means that

lim
𝑘→∞

1 −
𝑝𝑙2(𝑘)𝑛𝑘

 = 0. (46)

However, since

1 −
𝑝𝑙2(𝑘)𝑛𝑘

 ≥ min{1 −
𝑝𝑙𝑛𝑘
 : 𝑙 ∈ N} , (47)

then

lim
𝑘→∞

min{1 −
𝑝𝑙𝑛𝑘
 : 𝑙 ∈ N} = 0, (48)

that is, 𝑛 ∼ 𝑝. The proof of transitivity of the relation ∼ is
finished.

Theorem 6. If (𝑎(𝑛))𝑛∈N ∈ S, (𝑚𝑙)𝑙∈N, (𝑛𝑙)𝑙∈N ∈ C, and(𝑚𝑙)𝑙∈N ∼ (𝑛𝑙)𝑙∈N and there exists the limit

lim
𝑙→∞

1𝑚𝑙 ln 𝑎 (𝑚𝑙) , (49)

then there exists the limit

lim
𝑙→∞

1𝑛𝑙 ln 𝑎 (𝑛𝑙) (50)

and the limits are equal.

Proof. Since (𝑎(𝑛))𝑛∈N ∈ S, then there exists a constant 𝑐 such
that

𝑎 (𝑛)𝑎 (𝑚) < 𝑐|𝑛−𝑚|. (51)

For 𝑘 ∈ N, denote by 𝑙(𝑘) any natural number satisfying the
condition

𝑚𝑘 − 𝑛𝑙(𝑘) = min {𝑚𝑘 − 𝑛𝑙 : 𝑙 ∈ N} . (52)



Mathematical Problems in Engineering 5

We have
1𝑛𝑙(𝑘) ln 𝑎 (𝑛𝑙(𝑘)) −

1𝑚𝑘 ln 𝑎 (𝑚𝑘)
 =


1𝑛𝑙(𝑘) ln 𝑎 (𝑛𝑙(𝑘))

− 1𝑚𝑙 ln 𝑎 (𝑛𝑙(𝑘)) +
1𝑚𝑙 ln 𝑎 (𝑛𝑙(𝑘)) −

1𝑚𝑙 ln 𝑎 (𝑚𝑙)


≤ 
1𝑛𝑙(𝑘) ln 𝑎 (𝑛𝑙(𝑘)) −

1𝑚𝑙 ln 𝑎 (𝑛𝑙(𝑘))


+ 
1𝑚𝑙 ln 𝑎 (𝑛𝑙(𝑘)) −

1𝑚𝑙 ln 𝑎 (𝑚𝑙)
 =


𝑚𝑙 − 𝑛𝑙(𝑘)𝑚𝑙


⋅ 1𝑛𝑙(𝑘) ln 𝑎 (𝑛𝑙(𝑘)) +

1𝑚𝑙
ln

𝑎 (𝑛𝑙(𝑘))𝑎 (𝑚𝑙)
 ≤


𝑚𝑙 − 𝑛𝑙(𝑘)𝑚𝑙


⋅ 1𝑛𝑙(𝑘) ln 𝑎 (𝑛𝑙(𝑘)) +

𝑚𝑙 − 𝑛𝑙(𝑘)𝑚𝑙 |ln 𝑐| .

(53)

To obtain the last inequality, we used inequality (51). Since

lim
𝑙→∞

𝑚𝑙 − 𝑛𝑙(𝑘)𝑚𝑙 = 0 (54)

and there exists the limit

lim
𝑘→∞

1𝑛𝑙(𝑘) ln 𝑎 (𝑛𝑙(𝑘)) , (55)

then inequality (53) implies the thesis of the theorem. The
proof is completed.

Denote by [𝑥] the greatest integer no greater than 𝑥. The
next theorem describes 𝜆(𝑎) and 𝜋(𝑎) by the partial limits
of 𝑎 which correspond to time subsequences of the form([𝜃𝑛])𝑛∈N, where 𝜃 > 1, 𝜃 ∈ R.

Theorem 7. For any sequence (𝑎(𝑛))𝑛∈N ∈ S, the following
equalities hold:

𝜆 (𝑎) = lim
𝜃→1+

lim sup
𝑛→∞

1[𝜃𝑛] ln 𝑎 ([𝜃𝑛]) , (56)

𝜋 (𝑎) = lim
𝜃→1+

lim inf
𝑛→∞

1[𝜃𝑛] ln 𝑎 ([𝜃𝑛]) . (57)

Proof. Let (𝑛𝑙)𝑙∈N ∈ C be such that

𝜆 (𝑎) = lim
𝑙→∞

1𝑛𝑙 ln 𝑎 (𝑛𝑙) . (58)

Without loss of generality, for further consideration, we may
assume that, for fixed 𝜃 > 1 in each interval [[𝜃𝑛], [𝜃𝑛+1]), 𝑛 ∈
N, there are nomore than one element of the sequence (𝑛𝑙)𝑙∈N.
For 𝑙 ∈ N, denote by𝑚(𝑙) ∈ N such a number that

𝑛𝑙 ∈ [[𝜃𝑚(𝑙)] , [𝜃𝑚(𝑙)+1]) . (59)

Additionally, denote by 𝑓 : (1,∞) → R a function given by

𝑓 (𝜃) = lim sup
𝑛→∞

1[𝜃𝑛] ln 𝑎 ([𝜃𝑛]) . (60)

Since (𝑎(𝑛))𝑛∈N ∈ S, then there exists a constant 𝑐, such that

𝑎 (𝑛)𝑎 (𝑚) < 𝑐(𝑛−𝑚) for 𝑛,𝑚 ∈ N, 𝑛 ≥ 𝑚. (61)

In particular, taking 𝑛 = 𝑛𝑙 and𝑚 = [𝜃𝑛1(𝑙)], we get
𝑎 (𝑛𝑙) ≤ 𝑎 ([𝜃𝑚(𝑙)]) 𝑐𝑛𝑙−[𝜃𝑚(𝑙)]. (62)

Using this inequality, the introduced notation, and the defi-
nition of upper limit, we have

𝑓 (𝜃) ≤ 𝜆 (𝑎) = lim
𝑙→∞

1𝑛𝑙 ln 𝑎 (𝑛𝑙)

≤ lim
𝑙→∞

( 1𝑛𝑙 ln 𝑎 ([𝜃
𝑚(𝑙)]) + 𝑛𝑙 − [𝜃𝑚(𝑙)]

𝑛𝑙 ln 𝑐)
≤ (1 − 𝜃) ln 𝑐 + lim sup

𝑙→∞

1𝑛𝑙 ln 𝑎 ([𝜃
𝑚(𝑙)]) .

(63)

Denoting

𝑟𝜃 (𝑙) = [𝜃𝑚(𝑙)]
𝑛𝑙 (64)

we get

𝑓 (𝜃) ≤ (1 − 𝜃) ln 𝑐
+ (lim sup
𝑙→∞

𝑟𝜃 (𝑙) 1[𝜃𝑚(𝑙)] ln 𝑎 ([𝜃𝑚(𝑙)]))
≤ (1 − 𝜃) ln 𝑐
+ (lim sup
𝑙→∞

𝑟𝜃 (𝑙))(lim sup
𝑙→∞

1[𝜃𝑚(𝑙)] ln 𝑎 ([𝜃𝑚(𝑙)]))
≤ (1 − 𝜃) ln 𝑐 + 𝑟𝜃𝑓 (𝜃) ,

(65)

where
𝑟𝜃 = lim sup

𝑙→∞

𝑟𝜃 (𝑙) . (66)

From inequalities (63) and (65), we have

𝑓 (𝜃) ≤ 𝜆 (𝑎) ≤ (1 − 𝜃) ln 𝑐 + 𝑟𝜃𝑓 (𝜃) . (67)

Passing in the last inequality to upper limit with 𝜃 → 1+ and
taking into account that

lim
𝜃→1+

𝑟𝜃 = 1 (68)

we get

𝜆 (𝑎) = lim sup
𝜃→1+

𝑓 (𝜃) . (69a)

Analogically, passing to the lower limit with 𝜃 → 1+, we
obtain

𝜆 (𝑎) = lim inf
𝜃→1+

𝑓 (𝜃) . (69b)

Equality (56) follows from the equalities (69a) and (69b). In
the sameway, one can prove (57).The proof is completed.
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3. Main Results

Consider a solution (𝑥(𝑛, 𝑥0))𝑛∈N of system (1) and denote
by 𝑐 a common bound for the sequences (‖𝐴−1(𝑛)‖)𝑛∈N and(‖𝐴(𝑛)‖)𝑛∈N. We have

𝑥 (𝑛 + 1, 𝑥0)𝑥 (𝑛, 𝑥0) = 𝐴 (𝑛) 𝑥 (𝑛, 𝑥0)𝑥 (𝑛, 𝑥0) ≤ ‖𝐴 (𝑛)‖ ≤ 𝑐,
𝑥 (𝑛 + 1, 𝑥0)𝑥 (𝑛, 𝑥0) = 𝑥 (𝑛 + 1, 𝑥0)𝐴−1 (𝑛) 𝐴 (𝑛) 𝑥 (𝑛, 𝑥0)

= 𝑥 (𝑛 + 1, 𝑥0)𝐴−1 (𝑛) 𝑥 (𝑛 + 1, 𝑥0)
≥ 𝑥 (𝑛 + 1, 𝑥0)𝐴−1 (𝑛) 𝑥 (𝑛 + 1, 𝑥0) ≥ 1𝑐 .

(70)

The two above inequalities show that (𝑥(𝑛, 𝑥0))𝑛∈N ∈ S.
Applying Theorems 1, 3, and 6 to the sequence (‖𝑥(𝑛,𝑥0)‖)𝑛∈N, we get the following result.

Theorem 8. The set of limit points of the sequence ((1/𝑛)
ln ‖𝑥(𝑛, 𝑥0)‖)𝑛∈N is the interval [𝜋(𝑥0), 𝜆(𝑥0)]. If the sequence(𝑇𝑛)𝑛∈N ∈ C satisfies assumption (20), then for any number𝛼 ∈
there exists a sequence (𝑛𝑙)𝑙∈N ∈ C such that

𝛼 = lim
𝑙→∞

1𝑇𝑛𝑙 ln
𝑥 (𝑇𝑛𝑙 , 𝑥0) . (71)

Moreover, if𝑚 = (𝑚𝑙)𝑙∈N ∈ C and 𝑛 ∼ 𝑚, then

𝛼 = lim
𝑙→∞

1𝑇𝑚𝑙 ln
𝑥 (𝑇𝑚𝑙 , 𝑥0) . (72)

Notice that each arithmetic sequence satisfies condition
(20). Then, taking in the above theorem 𝛼 = 𝜋(𝑥0) or 𝛼 =𝜆(𝑥0) we conclude that the Lyapunov and Perron exponents
are achieved at a certain subsequence of any arithmetic
sequence. We do not know whether the analogous statement
is true for geometric sequences. But, applying Theorem 7 to
the sequence (‖𝑥(𝑛, 𝑥0)‖)𝑛∈N, we may formulate the following
result.

Theorem 9. For any solution (𝑥(𝑛, 𝑥0))𝑛∈N of system (1), we
have

𝜆 (𝑥0) = lim
𝜃→1+

lim sup
𝑛→∞

1[𝜃𝑛] ln 𝑥 ([𝜃𝑛] , 𝑥0) ,
𝜋 (𝑥0) = lim

𝜃→1+
lim inf
𝑛→∞

1[𝜃𝑛] ln 𝑥 ([𝜃𝑛] , 𝑥0) .
(73)

4. Conclusions

In the paper for the discrete time-varying linear sys-
tem, we described the limits points of the sequence((1/𝑛) ln ‖𝑥(𝑛, 𝑥0)‖)𝑛∈N. This set is equal to the interval[𝜋(𝑥0), 𝜆(𝑥0)].Moreover, we proved that each partial limit of
this sequence is achievable on a certain subsequence of any

sequence satisfying condition (20), in particular on certain
subsequence of any arithmetic sequence (Theorem8). Finally,
we showed that the Perron and Lyapunov exponents may
be approximated by subsequences in certain sense similar
to geometric sequences (Theorem 9). The objective of future
works will be the investigation of the possibility of omitting
limits with 𝜃 → 1+ in equalities (73).
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