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Bank crisis is grabbing more serious attention as several financial turmoils have broken out in the past several decades, which leads
to a number of researches in this field. Comparing with researches carried out on basis of degree distribution in complex networks,
this paper puts forward a mathematical model constructed upon dynamic systems, for which we mainly focus on the stability of
critical point. After the model is constructed to describe the evolution of the banking market system, we devoted ourselves to find
out the critical point and analyze its stability. However, to refine the stability of the critical point, we add some impulsive terms in
the former model. And we discover that the bank crisis can be controlled according to the analysis of equilibrium points of the
modified model, which implies the interference from outside may modify the robustness of the bank network.

1. Introduction

The subprime mortgage crisis firstly occurred in 2007, which
triggered a severe global recession and caused significant
disruption in the finance industry [1]. The financial crisis
exposed the existing problems in the financial supervision
theory and practice. Being the backbone of the financing
industry, banking industry not only imposes significant
influence on the economy and society of the country, but also
shares an intimate relationship to the lives of ordinary people.
And since asset allocation is the main business of financial
institutions like commercial banks, owing to this business,
complex debt relationships have formed among financial
institutions, so the asset allocation risk is highly infectious.
When a financial institution makes a mistake on asset
allocation and cannot guarantee normal liquidity position,
then partial financial difficulty may evolve into a big financial
catastrophe.Therefore, the bank crisis has a domino effect [2].

Consequently, exploring banking crisis diffusion and
transmission mechanism will be greatly helpful to control
banking crisis. Going over the development of banking, after
the crisis took place, immediate and accurate crisis appraisal
and crisis discovery is exceedingly critical for successful
recovery from the crisis. As a global theoretical issue, banking
crisis has caught the attention of economists all around

the world. But it is not always feasible to use dynamic system
and complex network theories to cope with banking crisis
[3, 4].

Plenty of systems in the real world, like the metabolic
and protein interaction networks, scientific collaboration
networks, food chains, and chemical reaction networks,
can be regarded as a complex network, in which nodes
represent individuals or organizations and edges represent
the interactions among them [5, 6]. Moreover, the result can
be precise according to some empirical study. The research
of dynamics and asymptotical behavior of spreading process
conducted in complex networks is of practical importance for
the purpose of controlling them, such as computer viruses
[7] and sexually transmitted diseases [8]. It is reasonable to
suppose that the bank network can be regarded as a complex
network based on some empirical research. In fact, structure
of bank network has already been considered in the work of
many scholars. Boss et al. studied the bank in Austria [9] and
Upper and Worms studied Germany’s [10].

In our opinion, topology properties are set aside firstly
and the whole network will be regarded as homogeneous. In
the following part, we always assume that models of bank
crisis are similar to models of how infectious diseases spread
[11]. There have been many achievements in the field of
epidemic model [12, 13]. And the studies mainly focus on
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system of ordinary differential equations or delay differential
equations. Based on known models under dynamical system
and considering the characteristics of bank network, we
establish epidemic model of bank crisis. All banks 𝑁 are
divided into three parts which are normally functioned banks
𝑆, banks with possibility of crisis 𝐸, and banks in crisis
represented by 𝐼. There is an assumption that normally
functioned banks have a rate to change into banks with
possibility of crisis after getting influence of crisis. At the
same time, with the help of better management and adjusting
macroeconomic policy, part of 𝐸 will be cured into normally
functioned banks 𝑆 or banks in crisis 𝐼. Moreover, part of
banks in crisis will be cleaned out or cured into normally
functioned banks. And ones assume that the sum of normally
functioned banks 𝑆(𝑡), banks with possibility of crisis 𝐸(𝑡),
and banks in crisis 𝐼(𝑡) equals the number of all the banks
𝑁(𝑡) at time 𝑡.

In this paper, much attention is paid to the system of
impulsive differential equation. Firstly, we analyze the char-
acteristic of the spread of bank crisis among homogeneous
network and get the condition to ensure the stability of the
critical point. Then the impulse is added into the model,
which may be a new way to control the banking markets.The
analysis is similar to the systemwithout impulse, in which the
existence and stability of the considered model are discussed.
Impulse can be interpreted as intervention of government
or other related bank supervisors in order to control the
occurrence or spread of bank crisis. Only periodically, control
of banking industry is considered for convenience. In the end,
we get the primary consequences through the comparison
between the properties of equilibrium points in two different
situations and make a plan about future work.

The rest of the paper is organized as follows. And
Section 2 is the analysis of the stability of the equilibrium
of the original model. Then we consider the critical point
of the new model with impulse. In Section 3, the difference
between the two situations is discussed, and some strategies
are suggested.

2. The SEI Model without Protection
Mechanisms

Take the following model into account [14]:

𝑆
󸀠
= 𝑏𝑁 − 𝑑𝑆 − 𝐾

𝑆𝐼

𝑁
+ 𝛾𝐼,

𝐸
󸀠
= 𝐾

𝑆𝐼

𝑁
− 𝑑𝐸 − 𝜖

𝐸𝐼

𝑁
,

𝐼
󸀠
= 𝜖

𝐸𝐼

𝑁
− (𝑑 + 𝛾 + 𝛼) 𝐼.

(1)

In (1), the meaning of 𝑆, 𝐸, and 𝐼 has been explained
above. 𝑏 is the proportion of new-born banks and 𝑑 is the
proportion of the bank suffering bank failure.𝐾 is interpreted
as the contact rate between 𝑆 and 𝐼, while 𝑒 is defined as
the contact rate between 𝐸 and 𝐼. 𝑆/𝑁 and 𝐸/𝑁 are the
proportion of normal banks and banks in condition𝐸 among
all the banks, respectively. 𝐾(𝑆𝐼/𝑁) denoted the average

number of banks that are infected to be in condition 𝐸 by all
banks in condition 𝐼 in a unit time, and 𝜖(𝐸𝐼/𝑁) denote the
figure for banks that are infected to be in condition 𝐼. 𝛾 is the
proportion of banks in condition 𝐼 changing into condition
𝑆. 𝛼 is the proportion of banks that is shift out of the system
due to bank crisis. The total number of all banks meets the
following:

𝑁
󸀠
= (𝑏 − 𝑑)𝑁 − 𝛼𝐼. (2)

Let 𝑠 = 𝑆/𝑁, 𝑒 = 𝐸/𝑁, 𝑖 = 𝐼/𝑁, and the original system can
be transferred into

𝑠
󸀠
= (𝛼 − 𝐾) 𝑠𝑖 + 𝛾𝑖 − 𝑏𝑠 + 𝑏

𝑒
󸀠
= 𝐾𝑠𝑖 − 𝑏𝑒 + (𝛼 − 𝜖) 𝑒𝑖

𝑖
󸀠
= 𝛼𝑖
2
+ 𝜖𝑒𝑖 − (𝛾 + 𝛼 + 𝑏) 𝑖

(3)

in which 𝑠, 𝑒, 𝑖 represent the ratio of banks under normal
conditions, banks in period of incubation, and banks under
crisis, respectively.

Adding some protection mechanism to the original sys-
tem simultaneously, we will achieve the following impulsive
differential equations:

𝑠
󸀠
= (𝛼 − 𝐾) 𝑠𝑖 + 𝛾𝑖 − 𝑏𝑠 + 𝑏

𝑒
󸀠
= 𝐾𝑠𝑖 − 𝑏𝑒 + (𝛼 − 𝜖) 𝑒𝑖

𝑖
󸀠
= 𝛼𝑖
2
+ 𝜖𝑒𝑖 − (𝛾 + 𝛼 + 𝑏) 𝑖

(4)

when 𝑡 = 𝑡
𝑛

𝑠 (𝑡
+
) = 𝑠 (𝑡) + (1 − 𝑝) 𝑒 (𝑡)

𝑒 (𝑡
+
) = 𝑝𝑒 (𝑡)

𝑖 (𝑡
+
) = 𝑖 (𝑡) ,

(5)

where 1 − 𝑝 represents the proportion of the banks diverted
from 𝐸 to 𝐼 due to financial aid given by some organization.
Then it is obvious to verify that 0 < 𝑝 < 1. 𝑡+ is a abbreviation
of right-hand limit; that is, 𝑓(𝑡+) = lim

𝑥→ 𝑡
+𝑓(𝑥).

Here, 𝑡
𝑛
represents time needed when implementing the

protection mechanism. Then the equilibrium points of these
two systems are discussed, respectively, and the condition of
the stability of the equilibrium is derived. After comparing
the discrepancies between these two situations, we draw some
consequential conclusions.

Apparently, this system has a non-crisis-state critical
point, which is (1, 0, 0). Under some certain conditions, there
exists an endemic crisis-state critical point (𝑠∗, 𝑒∗, 𝑖∗).

Here, we define

𝑅
0
=
𝑏 (𝛾 + 𝛼 + 𝑏)

𝐾𝜖
. (6)

Theorem 1. If 𝑅
0
> 1, then the non-crisis-state critical point

of system (3) is locally asymptotically stable.
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Proof. We calculate the corresponding Jacobian matrix of
system (3) at the endemic equilibrium point (1, 0, 0),

J = (
−𝑏 0 𝛼 − 𝐾 + 𝛾

0 −𝑏 𝐾

0 0 −𝛾 − 𝛼 − 𝑏

) . (7)

In consideration of its characteristic polynomial

(𝜆 + 𝑏)
2
(𝜆 + 𝛾 + 𝛼 + 𝑏) = 0. (8)

Provided that the roots of the polynomial are all negative,
the system is locally asymptotically stable. It is easy to achieve
the following equations and notice that 𝑅

0
> 1; we have

𝜆
1
= −𝑏

𝜆
2
= −𝑏 < 0

𝜆
3
= −𝛾 − 𝛼 − 𝑏 < 0.

(9)

This completes the proof of Theorem 1.

Theorem 2. If 𝑅
1
< 1, then the endemic crisis-state equilib-

rium exists. Besides, under the condition 2𝛼 − 𝐾 − 𝜖 > 0 and
(𝛾 + 𝛼 + 𝑏)(2𝛼 − 𝐾 − 𝜖) < 𝛼𝑏, the critical point of system (3) is
locally asymptotically stable if 𝐹((𝛾 + 𝛼 + 𝑏)/𝛼)𝐹(𝑏/(2𝛼 − 𝐾 −
𝜖)) < 0. (The definition of 𝐹 is contained in the proof.)

Proof. When it turns to endemic crisis-state equilibrium, the
corresponding polynomial is

− (𝑏 − 𝑖𝛼) (𝑖
2
(−𝐾𝛼 + 𝛼

2
+ 𝐾𝜖 − 𝛼𝜖)

+ 𝑖 (𝑏𝐾 − 2𝑏𝛼 + 𝐾𝛼 − 𝛼
2
+ 𝐾𝛾 − 𝛼𝛾

+ 𝑏𝜖 − 𝐾𝜖 + 𝛼𝜖 + 𝛾𝜖)

+ 𝑏
2
+ 𝑏𝛼 + 𝑏𝛾) = 0.

(10)

The numerical solutions of this equation can be found
with the help of the Mathematic software. However, the
solutions are too much complex and most of them are of no
value. Therefore, we just discuss the sufficient condition to
guarantee that the equation is solvable on the interval [0, 1].

Define 𝐹 as the function corresponding to (10) (with
respect to 𝑖). Since

𝐹 (0) = −𝑏
2
(𝛾 + 𝛼 + 𝑏) < 0 (11)

𝐹 (1) = − (𝛾 + 𝑏) [(𝑏 − 𝛼 + 𝐾) (𝑏 − 𝛼 + 𝜖) − 𝐾𝜖] . (12)

Now if 𝐹(1) > 0, this cubic equation is solvable on the
interval (0, 1). In the expression of𝐹(1), there exists a concave
parabolawith respect to 𝑏; namely,𝑔(𝑏) = (𝑏−𝛼+𝐾)(𝑏−𝛼+𝜖)−
𝐾𝜖. Notice that 𝑏 ∈ (0, 1); it can only achieve the maximum
value on the two endpoints of the interval. In fact, we just
require the maximum value to be negative. The numerical
value of the equation on 0 and 1 is (𝛼 − 𝐾)(𝛼 − 𝜖) − 𝐾𝜖 and
(1 − 𝛼 + 𝐾)(1 − 𝛼 + 𝜖) − 𝐾𝜖, so we define

𝑅
1
= max {(𝛼 − 𝐾) (𝛼 − 𝜖)

𝐾𝜖
,
(1 − 𝛼 + 𝐾) (1 − 𝛼 + 𝜖)

𝐾𝜖
} . (13)

If 𝑅
1
< 1, then the endemic crisis-state equilibrium exists.

The next target is to discuss the stability of the endemic
crisis-state equilibrium point. With the restriction of 𝑠 + 𝑒 +
𝑖 = 1, we can simplify the model to two-dimensional one

𝑒
󸀠
= 𝐾𝑖 + (𝛼 − 𝐾 − 𝜖) 𝑒𝑖 − 𝐾𝑖

2
− 𝑏𝑒

𝑖
󸀠
= 𝛼𝑖
2
+ 𝜖𝑒𝑖 − (𝛾 + 𝛼 + 𝑏) 𝑖.

(14)

The Jacobi matrix at the critical point (𝑒∗, 𝑖∗) is

J = (
(𝛼 − 𝐾 − 𝜖) 𝑖

∗
− 𝑏 𝐾 + (𝛼 − 𝐾 − 𝜖) 𝑒

∗
− 2𝐾𝑖

∗

𝜖𝑖
∗

2𝛼𝑖
∗
+ 𝜖𝑒
∗
− (𝛾 + 𝛼 + 𝑏)

) . (15)

It is easy to verify that

trace (𝐽) = (𝛼 − 𝐾 − 𝜖) 𝑖∗ − 𝑏 + 2𝛼𝑖∗ + 𝜖𝑒∗ − (𝛾 + 𝛼 + 𝑏)

det (𝐽) = [(𝛼 − 𝐾 − 𝜖) 𝑖
∗
− 𝑏] [2𝛼𝑖

∗
+ 𝜖𝑒
∗
− (𝛾 + 𝛼 + 𝑏)]

− 𝜖𝑖
∗
[𝐾 + (𝛼 − 𝐾 − 𝜖) 𝑒

∗
− 2𝐾𝑖

∗
] .

(16)

And tomake the critical point stable, the following conditions
are satisfied:

(2𝛼 − 𝐾 − 𝜖) 𝑖
∗
− 𝑏 < 0

[𝛼 (𝛼 − 𝐾 − 𝜖) + 𝐾𝜖] 𝑖
∗2

− 𝜖𝑏𝑒
∗
> 0.

(17)

In fact, with union of the stable conditions of system (14) and
the two conditions given above, we can get that trace(𝐽) < 0
and det(𝐽) > 0, which ensure that the critical point is stable.

There exists a root of 𝐹(𝑖) = 0 according to the existence
theorem of zero points under the condition 𝐹((𝛾 + 𝛼 +

𝑏)/𝛼)𝐹(𝑏/(2𝛼−𝐾−𝜖)) < 0. To get a rough range of the solution
explicitly, conditions 2𝛼−𝐾−𝜖 > 0 and (𝛾+𝛼+𝑏)(2𝛼−𝐾−𝜖) <
𝛼𝑏 are needed. If they hold, the zero of𝐹 can be bounded from
(17). This completes the proof of Theorem 2.

Remark 3. It is reasonable to assume that 2𝛼 > 𝐾 + 𝜖 if we
have found that 𝐾 and 𝜖 represent the spreading rate of the
crisis. In fact, we make an assumption that the spreading rate
of the crisis is quite small to make it more suitable to describe
the realistic world.

3. The Model with Impulsive Control

What we shall consider in the next part is the change of the
stability of the critical point when there is no crisis, which is
caused by the addition of impulse. Andwe could get themain
conclusion of this paper from the new result. Because of the
restriction of 𝑠 + 𝑒 + 𝑖 = 1, in the later analysis the system
consisting of only two variables 𝑒 and 𝑖 is considered:

𝑒
󸀠
= 𝐾𝑖 + (𝛼 − 𝐾 − 𝜖) 𝑒𝑖 − 𝐾𝑖

2
− 𝑏𝑒

𝑖
󸀠
= 𝛼𝑖
2
+ 𝜖𝑒𝑖 − (𝛾 + 𝛼 + 𝑏) 𝑖

𝑒 (𝑡
+
) = 𝑝𝑒 (𝑡)

𝑖 (𝑡
+
) = 𝑖 (𝑡) .

(18)
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Since what we consider is the situation where there is no
crisis, let 𝑖 = 0. Then the system is simplified to

𝑒
󸀠
= −𝑏𝑒

𝑒 (𝑡
+
) = 𝑝𝑒 (𝑡) .

(19)

Theorem 4. The non-crisis-state periodic solution of the
impulsive system (19) is locally asymptotically stable.

Proof. Integrating on the interval where there is no impulse,
we have

𝑒 (𝑡) = 𝑒 (𝑛𝑇
+
) 𝑒
−𝑏(𝑡−𝑛𝑇)

, 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇. (20)

And then we can construct a stroboscopic map during
every impulsive interval, which would be named 𝐺:

𝑒 ((𝑛 + 1) 𝑇
+
) = 𝐺 (𝑒 (𝑛𝑇

+
)) = 𝑝𝑒 (𝑛𝑇

+
) 𝑒
−𝑏𝑇
. (21)

𝐺 has a singular fixed point, which implies that 𝑒 has a
periodic solution of 𝑇. In fact, any solution having the fixed
point as initial condition of (19) will be pulled back to the
value at the beginning of the period (𝑛𝑇, (𝑛 + 1)𝑇), which
means the behavior of the solution will repeat itself in the last
period. In other words, it is a periodic solution. And because
the following inequality holds

d𝐺 (𝑒 (𝑛𝑇+))
d𝑒 (𝑛𝑇+)

= 𝑝𝑒
−𝑏𝑇

< 1 (22)

therefore the only fixed point is stable, which corresponds the
fact that the periodic solution is stable.

Considering the local stability of the system composed of
𝑒 and 𝑖, we set 𝑒 = 𝑒∗ + 𝑢 and 𝑖 = 𝑖∗ + V, where (𝑒∗, 𝑖∗) is the
equilibrium solution. As 𝑒∗ = 0 and 𝑖∗ = 0, here 𝑒 = 𝑢 and
𝑖 = V and 𝑒, 𝑖 satisfies (18).

When 𝑡 ̸= 𝑡
𝑛
, the linearized system of the equation at the

periodic solution is

(

𝑒
󸀠

𝑖
󸀠
) = (

−𝑏 𝐾

0 − (𝛾 + 𝛼 + 𝑏)
)(

𝑒

𝑖
) . (23)

Set Ψ(𝑡) as its fundamental solution matrix, which satisfies

dΨ (𝑡)
d𝑡

= (

−𝑏 𝐾

0 − (𝛾 + 𝛼 + 𝑏)
)Ψ (𝑡) . (24)

Solve (24) and we have

Ψ (𝑡) = (
𝑒
−𝑏𝑡

𝑒
−𝑏𝑡
−
𝐾𝑒
−(𝛾+𝛼+𝑏)𝑡

𝛾 + 𝛼

0 𝑒
−(𝛾+𝛼+𝑏)𝑡

). (25)

When 𝑡 = 𝑡
𝑛
, the impulsive equation is

(

𝑒 (𝑡
+
)

𝑖 (𝑡
+
)
) = (

𝑝 0

0 1
)(

𝑒 (𝑡
−
)

𝑖 (𝑡
−
)
) . (26)

Set

𝑀 = (

𝑝 0

0 1
)Ψ (𝑡) . (27)

Then

𝑀 = (
𝑝𝑒
−𝑏𝑇

𝑝𝑒
−𝑏𝑇

−
𝑝𝐾𝑒
−(𝛾+𝛼+𝑏)𝑇

𝛾 + 𝛼

0 𝑒
−(𝛾+𝛼+𝑏)𝑇

). (28)

The eigenvalues of𝑀 are 𝜆
1
= 𝑝𝑒
−𝑏𝑇 and 𝜆

2
= 𝑒
−(𝛾+𝛼+𝑏)𝑇

whose module lengths are less than 1. According to the
Floquet theory of impulsive differential equation, the peri-
odic solution is local stable and thus locally asymptotically
stable.

Remark 5. The result presented above shows that the crisis is
under our control because the equilibrium point is uncondi-
tionally stable for the system with impulse, which acts quite
differently from the original situation, in which it requires
some extra conditions (see the definition of 𝑅

0
and 𝑅

1
). Then

we have the confidence to say that the interference actually
has an effect on the control of crisis.

4. Conclusion and Future Work

The model discussed in this paper is a 𝑆𝐸𝐼 model with
periodic impulse. In the first section, our attention has been
paid to the model without impulse and analyzed the stability
of its critical point. In the second section, considering its
meaning in the realistic world, we add the impulse at the
fixed time. And the stability of the new system has been
studied. According to those analysis of equilibriums under
different situation, we have already drawn a conclusion
that with impulsive method the crisis is under control (see
Remark 5). Considering its realistic meaning, the “impulsive
control” could be offered by the government, for example,
macroeconomic regulation and control. Then according to
our model the crisis will be under control. This indicates
the whole system will reach the equilibrium faster, which
contributes to the stability of the whole market. In the future,
the topology of banking market complex network will be
considered in the model in order to make it more practical.
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