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The foundation boundaries of numerical simulation models of hydraulic structures dominated by a vertical load are investigated.
The method used is based on the stress formula for fundamental solutions to semi-infinite space body elastic mechanics under
a vertical concentrated force. The limit method is introduced into the original formula, which is then partitioned and analyzed
according to the direction of the depth extension of the foundation. The point load will be changed to a linear load with a length
of 2a. Inverse proportion function assumptions are proposed at parameter a and depth l of the calculation points to solve the
singularity questions of elastic stress in a semi-infinite space near the ground. Compared with the original formula, changing the
point load to a linear load with a length of 2a is more reasonable. Finally, the boundary depth criterion of a hydraulic numerical
simulation model is derived and applied to determine the depth boundary formula for gravity dam numerical simulations.

1. Introduction

In hydraulic engineering, numerical simulation models are
widely used in structural analysis [1], such as in infinite and
discrete element methods. The finite element method (FEM)
is the most widely used technique in hydraulic numerical
simulation [2]. Selecting the foundation boundaries affects
the number of finite element mesh size, calculation accuracy,
and computation time [3]. Many scholars have proposed
selection methods for foundation boundaries based on the
finite element simulation model. Foundation boundaries are
generally selected based on engineering experience [4] or
by comparing the accuracy of stress results using FEM for
different boundary conditions [5]. However, these selection
methods are still not applied in engineering design because of
different issues in analyzed objects and calculation accuracy
[6]. At present, comprehensive qualitative studies remain

inadequate in both China and abroad; for example, select-
ing calculation boundaries has not been studied based on
elasticity theory [7]. According to Saint-Venant’s principle
[8], hydraulic structure load has more influence on the
stress of a point near the load and minimal influence on
the stress of a point far from the load; hence, conducting
a partition discussion is necessary. Research on foundation
boundaries under dam structure load can analyze foundation
stress under loads and search for the minimum impact areas
to function as boundaries [9]. Many hydraulic structure
loads are produced under vertical force such as in gravity
dams, water locks, and docks. The current study focuses
on hydraulic structures dominated by a vertical force. The
Boussinesq stress solution to a semi-infinite elasticmechanics
space body under a vertical concentrated load is widely
used in soil mechanics calculation [10]. This study combines
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Figure 1: Decomposing the structure of a load.

L’Hospital’s rule and the Boussinesq equation to derive the
formula for the selection principle of foundation boundaries.

2. Methodology

This study investigates the problem of selecting a finite
element numerical model and a foundation boundary scope
for hydraulic structures under a vertical load such as gravity
dams and sluices. The load of hydraulic structures on the
foundation consists of nonlinear vertical distributed loads
resulting from a nonlinear structure shape, nonlinear materi-
als, and construction factors [11]. It can be decomposed into
numerous distributed loads with different sizes (Figure 1).
The uneven distribution of loads has different effects on foun-
dation depth. The Boussinesq stress solution to semi-infinite
elastic mechanics space body under a vertical concentrated
load is widely used in soil mechanics calculation, particularly
when the calculation point stress of the foundation is approx-
imately zero. The coordinate of the point can determine the
foundation boundaries of a hydraulic numerical simulation
model. The formula, however, suffers from a singular point
problem [12] near the ground. In this chapter, formula
derivation is presented in three parts. Section 2.1 introduces
the Boussinesq foundation stress formula for vertical concen-
trated loads. Section 2.2 describes the singular point problem
near the ground and proposes solutions to this problem.
Section 2.3 derives the stress formula under distributed loads
with a parameter width of 𝑎 and determines the coordinates
of a point in which stress is approximately zero to obtain the
foundation boundaries for an elastic numerical simulation
model of a hydraulic structure.

2.1. Introduction to Common Formulas. A hydraulic struc-
ture load on a semi-infinite elastic foundation consists of
different continuous vertical distributed forces, which are
decomposed into concentrated forces. Stress equations based
on the half-space problem and the plane elastic mechanics
problem provided by Boussinesq satisfy the objective of the
aforementioned analysis problem.

Suppose that a half-space has no body force and the
normal concentrated force 𝑃 on the plane boundary has a
value of𝐹. Figure 2 shows the distributionmap of a load.This
problem is axisymmetric, and the coordinate origin point is
the center of𝑃.The stress boundary condition is (𝜎

𝑧
)
𝑧=0,𝑦 ̸=0

=

0, (𝜏
𝑧𝑟
)
𝑧=0,𝑟 ̸=0

= 0. The solution is described as follows:
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Figure 2: Distribution map of a load.
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In (1), (2), and (3), 𝜎
𝑥
is the stress in the direction of 𝑥, 𝜎

𝑦
is

the stress in the direction of 𝑦, 𝜎
𝑧
is the stress in the direction

of 𝑧, 𝜇 is Poisson’s ratio of the foundation, and𝐹 is the amount
of the force.

The Boussinesq solution focuses on axisymmetric prob-
lems.The stress of hydraulic structure load on a foundation is
an axisymmetric problem, wherein axes 𝑥 and 𝑦 are replace-
able when studying finite element boundaries. Equations (1),
(2), and (3) show that 3D stresses are proportional to the
square root of length factors. The vertical stress (𝜎

𝑧
) on the

foundation is critical because it is the main factor that results
in the settlement of buildings [13]. Therefore, additional
research on vertical stress (𝜎

𝑧
) to derive the foundation

boundary of the finite element model is reasonable.

2.2. Singular Point of CommonFormulas. Saint-Venant’s prin-
ciple in elasticmechanics states that if a force system acting on
a small elastic surface is replaced by another equivalent static
force, then the effects on the stress and strain of this region
are significant, whereas the effect on distance is negligible.
The accuracy of the Boussinesq formula is high when the
calculation point is far from the ground. By contrast, the
vertical force increases rapidly when the calculation point is
near load areas, which contradicts actual situations.Thus, the
point load formula is no longer applicable near the dam and
requires correction.Thevertical stress concentration problem
near the dam area under a point load [14, 15] can be proven
as follows:
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Given the randomness of 𝑥, 𝑦, and 𝑧when they satisfy the
function of
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In the elastomeric hypothesis, the existence of stress con-
centration indicates the presence of a plastic expansion
area. If such area exists, then the elastomeric hypothesis
is contradicted. Newton solved the gravity concentration
problem of two close particles by considering each particle
as a sphere with a radius. To avoid stress concentration, the
point load is changed to a line load with a certain length.

InMathematical Principles and Natural Philosophy, New-
ton explained the law of gravitation of objects as follows.
When the distance between two particles tends to be
“infinitely small,” the particles are regarded as a sphere with
a radius [16], and consequently, the range of the integral of
the force between two objects in space can be calculated.
When the particles are close to each other, the Boussinesq
point stress formula presents the same problem; that is,
𝐺(𝑀𝑚/𝑟

2

) → ∞. Thus, particle assumption is no longer
true. Based on the definition of a particle provided in
Newton’s law of universal gravitation, the concept of a point
load is relative and can be calculated based on the particle
formula when two objects are far from each other. Based on
this principle, the span of a load is regarded as zero when
the load is far from the dam. Newton used calculus to solve
problems of increasing gravity in two particles with a small
distance between them. The Boussinesq vertical stress 𝜎

𝑧
→

∞when the calculation point is near the load. Consequently,
the point load near the dam should be changed to a line load
with a certain length.

2.3. Deriving the New Equation. To avoid the problem of
stress concentration near the ground, the aforementioned
method of changing the point load to a distributed load
is used to derive the correction formula for the plane and
space problems.Themodified formula is then used to analyze
the influence of the foundation scope. When the calculation
point is far from the load areas, its correction width can be
ignored based on Saint-Venant’s principle. By contrast, when
the calculation point is close to the load areas, its correction
width cannot be ignored. The following sections discuss the
plane and space problems. The vertical stress formula for
different depths under the effect of a point load is corrected
and the function of load width parameter 𝑎 and depth 𝑙 is
proposed. The relative error between the original and the
corrected formula, as well as the influence of the foundation
scope, is then analyzed.

2.3.1. The Plane Problem. Figure 3 shows the diagram of the
plane problem. The point of the load is stipulated as the
original point. Based on (3), for each point on line 𝑧 = 𝑧

0
,

the vertical stress of point𝑀 that is strictly under the original
point is maximal. When the vertical stress of point𝑀 𝜎
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Figure 3: Load distribution map of the plane problem.

0, the vertical stress of all points on line 𝑧 = 𝑧
0
tends to

be zero. In this research, the vertical stress (𝜎
𝑧
) of point 𝑀

whose distance from the original point is 𝑙 is studied. The
loads of hydraulic structures that are acting on the foundation
are superposed by successive point loads of different sizes.
The influence scope of an arbitrary point load can then be
analyzed. Based on the preceding analysis, the point load
is changed to a distributed load with a width of 2𝑎. The
following section provides the hypothetical function of width
parameter 𝑎 and the depth of calculated point 𝑙.

(1) Determining the Physical Parameters. According to Saint-
Venant’s principle, the farther the calculated point from the
load areas, the less the error caused by the correction width
parameter 2𝑎 of the distributed load and the original point
load. Meanwhile, the closer the calculated point is from the
load areas, the larger the width parameter 2𝑎 should be.

Assuming that the existence of critical depth 𝑙
0
satisfies

𝑙 ≥ 𝑙
0
, parameter 𝑎 approximates zero and the load can be

considered as a point load. By contrast, when 𝑙 < 𝑙
0
, the load

should be considered as a distributed load. Observed through
continuity, a tapering function between 𝑙 and 𝑎 exists.

Assuming that parameter 𝑎 is inversely proportional to 𝑙,
then

𝑎 =

𝑘

𝑙

. (6)

The three situations of the calculated point depth 𝑙 are as
follows.

A The calculation point is far from the surface with
𝑙
1
/𝑎 → ∞.

B Thecalculation point is close to the surfacewith 𝑎 ̸= 0,
𝑎/𝑙
2
→ ∞.

C The moderate area is 𝑙
2
< 𝑙 < 𝑙

1
. A constant 𝜀 > 0

exists, which ensures that 0 < |𝑙/𝑎 − 𝑁| < 𝜀, where𝑁
is a positive integer.

(2) Correction Formula and Comparison.The following form-
ulas correct the vertical stress formula for the three situations
of the calculation point depth 𝑙, respectively, and compare
precision before and after correction.
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(1) 𝑙 is extremely large; thus, 𝑙/𝑎 → ∞:
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with 𝑥 = 𝑙 tan𝛼,
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where 𝜎 = 𝐹/2𝑎,
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The result of the original formula is 𝜎
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The error is merely 𝑎2/3𝑙2. Given that 𝑙/𝑎 → ∞, the error
is approximately zero, which illustrates that the Boussinesq
solution has good applicability. Hence, the error caused by
the width of the distributed load can be ignored.

(2) 𝑙 is very small; thus, 𝑎 ̸= 0, 𝑎/𝑙 → ∞. The following
statements prove that the stress concentration problem can
be solved using (6).

The integration results of the distributed load are as fol-
lows:
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Thus, 𝜎
𝑧
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no singular point will exist.
Apply the Taylor series at 𝑥 = 0; then
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The result of the original formula is 𝜎
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Given that 𝑎/𝑙 is extremely large when the calculation
point is near the ground, the error caused by the width of the
distributed load cannot be ignored. The stress concentration
problem can be solved in this area, which demonstrates that
the width of the distributed load cannot be ignored.

(3) 𝑙 is moderate, which corresponds to depth situationC:
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When searching for the intersection of 𝑦
1
= sinarctan 𝑢 −

(1/3)sin3 arctan 𝑢 and 𝑦
2
= 𝑢 using the software MATLAB,

the result is

𝑢 = 0.106. (16)

When 𝑢 < 0.106, the relative error and the width of the
distributed load can be ignored. By contrast, when 𝑢 >

0.106, the relative error cannot be ignored and the point load
must be changed to a distributed load. Therefore, for a plane
problem, the error caused by the width of the distributed load
can be ignored only if 𝑎/𝑙 < 0.106, and the Boussinesq point
stress solution can still be used.
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2.3.2. Space Problem. In a space problem, the point load is
changed to a distributed load with a radius of 𝑎.

(1) 𝑎 is the radius of the distributed load.When 𝑙 is extremely
large, 𝑙/𝑎 → ∞:

𝑑𝜎
𝑧
=

3𝜎𝑧
3

𝑑𝑥

2𝜋 (𝑥
2
+ 𝑧
2
)
5/2

=

3𝜎𝑧
3

𝑟 𝑑𝑟 𝑑𝜃

2𝜋 (𝑟
2
+ 𝑧
2
)
5/2
,

𝜎
𝑧
= ∫𝑑𝜎

𝑧
=

3𝜎𝑙
3

2𝜋

∫

2𝜋

0

𝑑𝜃∫

𝑎

0

𝑟𝑑𝑟

(𝑟
2
+ 𝑧
2
)
5/2
.

(17)

The result of the original formula is

𝜎
𝑧1
=

3𝐹

2𝜋𝑙
2
,

𝜎
𝑧

𝜎
𝑧1

= −

2

3

⋅

(𝑎
2

/𝑙
2

+ 1)

−3/2

− 1

(𝑎/𝑙)
2

,

lim
𝑎/𝑙→0

𝜎
𝑧

𝜎
𝑧1

= lim
𝑎/𝑙→0

−

2

3

⋅

(𝑎
2

/𝑙
2

+ 1)

−3/2

− 1

(𝑎/𝑙)
2

= lim
𝑎/𝑙→0

−

2

3

⋅

− (3/2) ⋅ (𝑎/𝑙)
2

(𝑎/𝑙)
2

= 1.

(18)

The preceding equations show that when 𝑙 is extremely
large, the error caused by the radius of the distributed load
can be ignored.

(2) 𝑙 is extremely small, and thus 𝑎 ̸= 0, 𝑎/𝑙 → ∞. Following
the same analysis method,

𝑦 =

𝜎
𝑧

𝜎
𝑧1

= −

2

3

(𝑎
2

/𝑙
2

+ 1)

−3/2

− 1

𝑎
2
/𝑙
2

.
(19)

Let

𝑎
2

𝑙
2
= 𝑥, 𝑦 = −

2

3

(𝑥 + 1)
−3/2

− 1

𝑥

. (20)

Following (20), when 𝑙 is extremely small, the error
caused by the radius of the distributed load is large.

When 𝑎/𝑙 = 0.106, 𝑦 = 0.986, and the relative error is
small.

3. Applications

The Three Gorges Dam located in Hubei Province, China,
is the largest hydropower project in the world. The dam
has two parts: the main building and the diversion. Three
Gorges is a concrete gravity dam that is 3035m long, 185m
high, 15m wide at its crest, and 124m wide at its bottom.
Its installed capacity of 22.5 million kW ranks first in the
world. In this section, the method proposed in Section 2 is
first used to analyze the boundary range of the Three Gorges
Dam through a numerical model. Then, the finite element
numerical model of the Three Gorges Dam is established to
illustrate the validity and efficiency of the proposed formulas.

3.1. Deriving Foundation Size. Hydraulic structure loads such
as in gravity dams, water locks, and docks are dominated by a
continuous vertical concentration. Based on the conclusions
for the plane and space problems, one issue arises, that is, the
calculated value of the vertical stress (𝜎

𝑧
) at point𝑀 is small

when width parameter 𝑎 and calculation point depth value 𝑙
satisfy the condition of 𝑎/𝑙 < 0.106.

The objective of the present study is to explore the
boundaries of the finite element model selection problem for
vertical concentration loads, which is equivalent to finding
the coordinates of the points when the base stress is small. In
the following section, the base boundary depth of the finite
element model is analyzed using the preceding conclusions.

Because of the limit of influenced scope based on
the hydraulic structure loads, so the foundation boundary
belongs to the result of (11). Equation (11) shows the stress
results of the definite integral as follows:

𝜎
𝑧
=

3𝐹

2𝜋𝑘

(sinarctan𝑎
𝑙

−

1

3

sin3 arctan 𝑎
𝑙

) . (21)

For this formula, various hydraulic structures have different
values of 3𝐹/2𝜋𝑘 because of structure size and material
properties. When depth 𝑙 of the calculation point satisfies the
condition

𝑎/𝑙 = 0.106, (22)

𝜎
𝑧
tends to be equal to zero. Parameter 𝑎 is restricted by

the size of the structures. Assume that width 𝐿 and height
𝐻 of hydraulic structures satisfy the equation 𝐿 = 𝑚𝐻.
Then, the deeper 𝑙 is, the smaller parameter 𝑎 is, which results
in a smaller calculation error of the Boussinesq equation.
The maximum value of load length 2𝑎 is the width 𝐿 of
the structure, which corresponds to the maximum depth as
follows:

𝑙max =
𝑎max
0.106

=

𝐿

2 ∗ 0.106

= 4.717𝐿 = 4.717𝑚𝐻. (23)

When depth 𝑙 of the calculation point satisfies (23), vertical
stress (𝜎

𝑧
) tends to be zero, and 𝑙 is equivalent to the depth

boundary of the finite element calculation model. Various
hydraulic structures have different values for parameter 𝑚.
The value of 𝑚 should be calculated for each project, and
then the base depth boundary of the finite element numerical
simulation model can be calculated.

The preceding conclusions can be applied to a specific
project. The Three Gorges Water Conservancy Project is the
largest gravity dam project in China. In this study, the depth
boundary of the finite element numerical simulation model
of the aforementioned project is analyzed. TheThree Gorges
Dam Project is 185m high and 124m wide. The parameter𝑚
of Three Gorges is

𝑚 =

𝐿

𝐻

=

124

185

= 0.670. (24)

Its depth boundary is 𝑙max = 4.717𝑚𝐻 = 3.16𝐻.
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Figure 4: Finite element model.

Table 1: FEMmaterial parameters.

Area
Parameter

Deformation
modulus (GPa)

Poisson’s
ratio (𝜇)

Density
(kg/m3)

Dam concrete 21 0.167 2400
Foundation 26 0.2 2450

Table 2: FEM dimensions of the dam body.

Area

Dimensions

Width of
dam crest

Width of
dam bottom

Height
of dam

Slope of
downstream

surface
Dam body 15m 124m 185m 0.75

Table 3: FEM dimensions of the foundation.

Area
Dimensions

Width of
upstream

Width of
upstream

Depth of
foundation

Foundation 185m 185m 740m

3.2. Finite Element Numerical Simulation. The establishment
of the finite element model of the Three Gorges Dam
illustrates the effectiveness and accuracy of themodel analysis
used in this study. Figure 4 shows the finite element model of
the Three Gorges Dam with the following specifications: the
𝑥-axis along the downstream direction, the 𝑦-axis along the
damaxis, and the 𝑧-axis along the vertical direction.Thefinite
elementmodel is divided into 5393 units and 11102 nodes.The
FEMmaterial parameters are presented in Table 1.The actual
dimensions of the finite element model of the Three Gorges
Dam are provided in Tables 2 and 3.

Based on the aforementioned calculation principle and
parameter, the specific calculation results and analyses are as
follows.

S, S33 (avg: 75%)

M

+1.613e + 04

−5.350e + 05

−1.086e + 06

−1.637e + 06

−2.188e + 06
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−3.290e + 06
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−4.944e + 06
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−6.597e + 06
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Figure 5: FEM vertical stress 𝜎
𝑧
.

Given that the foundation and dam body have the same
size and material along the 𝑦-axis direction, the stress results
of the plane and space problems along the 𝑦-axis section are
also the same. The following finite element model is focused
on plane problems. Figure 5 illustrates the vertical stress (𝜎

𝑧
)

calculation results of the finite element model of the Three
GorgesDam.All size parameters of the finite elementmethod
are chosen for the international system of units: meters. The
legend of Figure 5 is the size range of 𝜎

𝑧
(in Pascal). This

figure can indicate that the foundation vertical stress (𝜎
𝑧
)

is approximately zero when depth is deeper than the depth
of point 𝑀. The depth of point 𝑀 is the furthest depth of
the load effect. Figure 5 shows the depth of point𝑀; that is,
𝑍
𝑚
= 556m. Dam height is 185m; that is,𝑍

𝑀
= 556/185𝐻 =

3.01𝐻.
The boundary range acquisition method is based on the

Boussinesq formula. This formula is suitable for a semi-
infinite body problem under a concentrated load stress. The
finite element model of the Three Gorges Dam selected 1𝐻
to be the foundation range upstream and downstream and
4𝐻 to be the foundation depth range. According to the finite
element calculation results, the foundation influence scope is
limited on the loads of hydraulic structures and expanding
the scope of the foundation boundary has minimal effect
on calculation precision. The Boussinesq formula accurately
derives the elastic mechanics formula based on a differential
equation, but FEM is the solution to a partial differen-
tial equation. Moreover, numerical solution techniques are
approximated through the variation method, and the error
function is set to minimum values to generate a stable
solution. FEM is an approximate method for solving the
Boussinesq half-space problem. The two methods, which
have different principles, produce slightly different results;
however, they exhibit the same trend. The depth boundary
defined in Section 3.1 is 𝑍 = 3.16𝐻. Its relative error is
less than 5%; therefore, the model exhibits high precision.
Furthermore, the model proves that (23) can be used as
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a guideline for depth boundary in the numerical simulation
of gravity dams.

4. Conclusions

The following conclusions can be drawn from this study.

(1) Drawing lessons from the small distance correction
method of Newton’s law of gravity, the point load
is changed to a line load to solve the singular point
problem near the face area. Through correct results,
(23) can function as a guideline for depth boundary
in establishing finite element numerical simulation
models of hydraulic structures.

(2) The formula of parameter 𝑎 and 𝑙 should be
researched thoroughly. In this study, dam bottom
width 𝐿 is set to a maximum value of 2𝑎. By using this
method, maximum depth boundary 𝑙max is achieved.
If a certain magnitude for vertical stress (𝜎

𝑧
) is set,

then depth boundary can be reduced.
(3) This study only investigated the boundary of direction

𝑧. The boundaries of directions 𝑥 and 𝑦 should be
studied further.
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[1] L. Eisenlohr, L. Király, M. Bouzelboudjen, and Y. Rossier,
“Numerical simulation as a tool for checking the interpretation
of karst spring hydrographs,” Journal of Hydrology, vol. 193, no.
1–4, pp. 306–315, 1997.
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