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This paper presents a Bayesian approach for localizing acoustic emission (AE) source in plate-like structures with consideration
of uncertainties from modeling error and measurement noise. A PZT sensor network is deployed to monitor and acquire AE
wave signals released by possible damage. By using continuous wavelet transform (CWT), the time-of-flight (TOF) information of
the AE wave signals is extracted and measured. With a theoretical TOF model, a Bayesian parameter identification procedure is
developed to obtain the AE source location and the wave velocity at a specific frequency simultaneously and meanwhile quantify
their uncertainties. It is based on Bayes’ theorem that the posterior distributions of the parameters about the AE source location
and the wave velocity are obtained by relating their priors and the likelihood of the measured time difference data. A Markov
chain Monte Carlo (MCMC) algorithm is employed to draw samples to approximate the posteriors. Also, a data fusion scheme is
performed to fuse results identified at multiple frequencies to increase accuracy and reduce uncertainty of the final localization
results. Experimental studies on a stiffened aluminum panel with simulated AE events by pensile lead breaks (PLBs) are conducted
to validate the proposed Bayesian AE source localization approach.

1. Introduction

The increasing emphasis on integrity of critical structures
such as aircrafts urges the needs to monitor structures in situ
and real-time to detect damages at an early stage to prevent
catastrophic failure. In general, an effective online struc-
tural health monitoring system should consist of two major
components: active monitoring and passive monitoring [1,
2]. Active monitoring needs both actuators and sensors to
evaluate the damage of a structure, while passive monitoring
uses only sensors to “listen” to the acoustic emission (AE)
wave signals emitted by internal or external sources such as
propagating cracks or impacts. In the present study, we deal
with passive monitoring to determine the AE source location
in plate-like structures where possible damage may exist.

Up to date, a lot of AE source localization approaches
have been developed, including several relatively new intro-
duced ones, such as genetic algorithms [3], neural networks
[4], support vector machines [5], time reversal [6], beam-
forming [7], and Voronoi construction [8]. Among these
approaches, the triangulation-based approaches utilizing the

time-of-flight (TOF) information of the AE wave signals are
most widely used [9–14]. With the known positions of the
sensors and the velocities of the AE wave signals, the location
of theAE source can be determined by solving a set of nonlin-
ear equations directly or by iterative optimization algorithms.
These triangulation approaches are originally developed for
isotropic structures and then extended to anisotropic com-
posite structures, for which damage caused by low velocity
impact is a major concern [13, 14]. In these approaches,
the time arrivals are usually obtained by threshold crossing
[15], cross-correlation [16], and statistical Akaike information
criterion (AIC) [17].With the development of modal acoustic
emission (MAE) technique in which the concept of guided
waves is introduced to improve the interpretation of the AE
wave signals, the continuous wavelet transform (CWT) has
become a useful tool for the time-frequency representation of
transient AE waves in dispersive medium with its advantage
of good resolution in both time and frequency domains. It
makes the determination of the time arrivals of the dispersive
AE waves at each local frequency more accurate [10, 11, 18–
20]. Other advanced signal processing techniques, such as
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Hilbert transform (HT) [21], short time Fourier transform
(STFT) [22], and warped Fourier transform (WFT) [23] have
been also employed for processing the AE wave signals in
recent years.

Generally, most of the triangulation approaches devel-
oped can be categorized as deterministic methods, in which
uncertainties are not considered and only single solution
is given as the final result. However, in reality errors and
uncertainties are always unavoidable in the measurement
and identification process. For example, the time arrival
determined by threshold crossing is usually vulnerable to
the measurement noise. Even by employing CWT, systematic
uncertainty could exist due to the Heisenberg uncertainty
principle [20]. In addition, uncertainties may arise from the
theoretical wave velocities, since they depend on the material
property values of a specific structure, which may have
variations from those nominal values and be influenced by
several factors, such as environmental temperature changes
[24]. Under such a circumstance, probabilistic approaches
may be more appropriate than deterministic approaches for
AE source localization in that probability distributions can
be used to quantify the various uncertainties. This leads
to the research of probability-based approaches, to give a
more reasonable source characterization. Niri and Salamone
proposed a probabilistic approach for AE source localization
in plate-like structures based on extended Kalman filter
(EKF).Themain advantage of EKF algorithmover traditional
methods is that it can take into account uncertainties in TOF
measurement and wave velocity [20]. They also proposed
an adaptive multisensor fusion framework to combine with
EKF to locate the AE sources in noisy operation conditions
[21]. Schumacher et al. proposed a Bayesian analysis approach
for passive AE source location in concrete bridge column
to account for uncertainties and errors that exist within the
measurement and calculation process [25].

The aim of this work is to develop a Bayesian approach
for localizingAE source in plate-like structures, while consid-
ering uncertainties from modeling error and measurement
noise. It is an extension of an early work dealing with active
monitoring of damage for plate-like structures using Lamb
waves [26]. The rest of this paper is structured as follows.
Section 2 describes the proposed Bayesian approach for AE
source localization and outlines the main idea of Markov
chain Monte Carlo (MCMC) method for sampling the pos-
terior distributions of the unknown parameters, while a data
fusion scheme to increase accuracy and reduce uncertainty
of the localization results is also presented. Experimental
studies on a stiffened aluminum panel with simulated AE
events are conducted in Section 3 to validate the proposed
probabilistic localization approach. Final conclusions are
given in Section 4.

2. Bayesian Approach for AE
Source Localization

2.1. TOF-Based AE Source Localization. For plate-like struc-
tures, a sensor network consisting of 𝑁

𝑠
sensors is deployed

to passivelymonitor theAEwave signals released by potential
damage. Among these𝑁

𝑠
sensors, one is selected as a trigger

AE source
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Figure 1: Illustration of AE source localization and sensor network.

sensor (or master sensor). Assume that the sensor network
works in such a mode: once the voltage level of the data
acquisition (DAQ) channel connected to the trigger sensor
exceeds a predefined threshold value (usually higher than the
noise level), an AE event is regarded to have occurred; all of
the channels of the sensor network start to acquire the AE
wave signals simultaneously and save them to the computer
for further analysis. As illustrated in Figure 1, using the TOF
of the AEwaves is a straightforwardway to triangulate the AE
source; however, the absolute time of the initiation of an AE
event is usually unknown, only the time differences between
the AE wave signals received by the rest of the sensors and
that received by the trigger sensor can be measured after the
time arrivals in each channel are extracted. Theoretically, the
time difference between the 𝑖th sensor and the trigger sensor
(assume it is the 𝑗th sensor) Δ𝑡𝑐

𝑖𝑗
can be calculated as
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where (𝑥
𝑑
, 𝑦
𝑑
), (𝑥
𝑖
, 𝑦
𝑖
), and (𝑥

𝑗
, 𝑦
𝑗
) are the coordinates of the

AE source location and the 𝑖th and 𝑗th sensors, respectively.
𝑉
𝑔
is the wave velocity of the AEwaves at a specific frequency.

Usually, in plate-like structures, the AE waves contain sym-
metric and antisymmetric modes of guided waves governed
by Rayleigh-Lamb equation [27], and 𝑉

𝑔
is dependent of

the selected frequency due to the dispersive nature of guide
waves, resulting in Δ𝑡

𝑐

𝑖𝑗
becoming dependent of frequency as

well. In the present study, only isotropic plate is considered;
𝑉
𝑔
is independent of propagation direction. Since uncertain-

ties from material properties could influence the accuracy
of the theoretical wave velocity value, in the present study,
the wave velocity 𝑉

𝑔
in (1) is set as an additional unknown

parameter to be identified besides the coordinates of the AE
source location, rather than calculated using the nominal
material property values beforehand by solving Rayleigh-
Lamb equation or by using approximate plate theory solution
[28].Thus, the unknown parameters that should be identified
in ourAE source localization approach are the center location
of the AE source (𝑥

𝑑
, 𝑦
𝑑
) and the wave velocity 𝑉

𝑔
at
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a specific frequency. They can be written in a vector style as
𝜃 = [𝑥

𝑑
, 𝑦
𝑑
, 𝑉
𝑔
]
𝑇.

For localizing the AE source using TOF-based method,
the time arrivals of the AE wave signals in each channel
at specific frequencies should be obtained first. As afore-
mentioned in the introduction, CWT has good resolution in
both time and frequency domains; it is popular in analyzing
dispersive guided waves. In the present study, a complex
Morlet wavelet is employed to determine the time arrivals of
the AE wave signals in the interested frequencies. The details
of CWT of complex Morlet wavelet can be found in [11, 20]
and are not repeated here for conciseness. Theoretical and
experimental results have demonstrated that the first peak
of the magnitude of CWT coefficients represents the arrival
time of the dispersive wave with the group velocity at local
frequencies [10, 11, 18–20].This important property is used in
the present study to extract the time arrivals of the AE waves
in each channel. After that, the measured time difference
between the 𝑖th sensor and the trigger sensor Δ𝑡

𝑚

𝑖𝑗
can be

measured simply as

Δ𝑡
𝑚

𝑖𝑗
= 𝑡
𝑚

𝑖
− 𝑡
𝑚

𝑗
(2)

in which 𝑡
𝑚

𝑖
and 𝑡
𝑚

𝑗
are the measured time arrivals of the 𝑖th

sensor and the trigger sensor (the 𝑗th sensor), respectively.

2.2. Bayesian Approach for Parameter Identification. After the
unknown parameters are defined, the AE source localization
is formulated as a parameter identification problem with
the measured time difference data. In the present study, it
is solved from a probabilistic point of view by employing
Bayesian identification. Rather than pinpointing a single
solution by deterministic approaches, the Bayesian approach
can provide probabilistic distributions of the unknown
parameters, giving both point and interval estimates [29–
34]. The basic idea of Bayesian identification is that it treats
the parameters, currently denoted by a vector 𝜃, as random
variables with joint distribution 𝑝(𝜃). It aims to update the
posterior distributions of the uncertain parameters for a given
set of measured data. The final parameter estimates can be
taken as the mean values of the posteriors or use the values
that maximize the posteriors.

Assume that the uncertainties from modeling error and
measurement noise can be described by a Gaussian type ran-
dom variable 𝜀; the probabilistic description of the measured
time difference between the 𝑖th sensor and the triggersensor
can be expressed as

Δ𝑡
𝑚

𝑖𝑗
= Δ𝑡
𝑐

𝑖𝑗
(𝜃) + 𝜀, (3)

where Δ𝑡𝑐
𝑖𝑗
is the theoretically calculated time difference for

the 𝑖th sensor using (1), with the coordinates of AE source
location and the wave velocity contained in the parameter
vector 𝜃, 𝜀 is usually assumed as a variable with mean of
zero and variance of 𝜎2

𝜀
, and assumption is made that the

uncertainties from different sensors have the same variance

and they are uncorrelated. In this case, the likelihood function
can be written as
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The likelihood function 𝑝(D | 𝜃) is a probabilistic statement
about the distribution of the measured time difference data
D = [Δ𝑡
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difference values, determined by (1) and parameter vector 𝜃.
Usually, the variance 𝜎2

𝜀
is unknown, and a conjugate Gamma

prior with parameters 𝑎 and 𝑏 is adopted for the precision
𝜏 = 1/𝜎

2

𝜀
in the present study [24]. With this choice, the

variance can be analytically integrated out from (4), leading
to a new likelihood expression as
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where Γ(𝑧) = ∫
+∞

0

𝑡
𝑧−1

𝑒
−𝑡

𝑑𝑡 is the Gamma function. This
new likelihood function instead of (4) is used in the following
calculation.

By using Bayes’ theorem, the posterior distribution of
parameter vector 𝜃 for a given set ofmeasured time difference
dataD is constructed by relating the prior and the likelihood
function as

𝑝 (𝜃 | D) =
𝑝 (D | 𝜃) 𝑝

𝜋
(𝜃)

𝑝 (D)
, (6)

where 𝑝(𝜃 | D) is the posterior distribution of 𝜃, 𝑝
𝜋
(𝜃)

is the prior distribution of 𝜃, and 𝑝(D) is a normalizing
constant that ensure the integration of the distribution over
the predefined domain is equal to unity. For each parameter
𝜃
𝑘
(𝑘 = 1, 2, 3), the marginal posterior distribution can be

obtained by integrating (6)with respect to the rest parameters
over the domain of interest as

𝑝 (𝜃
𝑘
| D) = ∫𝑝 (𝜃 | D) 𝑑𝜃

−𝑘
∝ ∫𝑝 (D | 𝜃) 𝑝 (𝜃) 𝑑𝜃

−𝑘
,

(7)

where the notation ∫𝑑𝜃
−𝑘

denotes the multidimensional
integral over all of the rest parameters other than 𝜃

𝑘
in 𝜃.

2.3. Markov ChainMonte Carlo Method. Equation (7) gives a
general expression of the updated marginal distribution for
each parameter in 𝜃 using measured time difference data.
After that, the parameters can be estimated from the posterior
distributions, and the AE source location and the wave
velocity can be identified. However, analytical evaluation
of (7) is usually difficult since it involves integration over
multidimensional parameters. In the present study, MCMC
method is resorted to obtain samples to approximate the
posterior distributions and make inference.
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Figure 2: Test configuration and sensor arrangement for the
stiffened aluminum panel.

The pioneer work of MCMC was done by Metropolis
and his colleagues in the 1950s.They recognized that Markov
chains could be applied to some difficult sampling problems.
After about two decades, Hastings expanded and formalized
MCMC into the procedure now known as Metropolis-
Hastings (M-H) algorithm for performing such sampling
[35]. Let 𝜋(𝜃) be the target distribution from which random
samples are desired.TheM-Halgorithm generates a sequence
of 𝜃𝑙 for the target distribution 𝜋(𝜃) by a two-step rejection
sampling procedure. At stage 𝑙, a candidate value 𝜃∗ is
sampled based on the current value 𝜃𝑙−1; it is sampled
from a chosen proposal or transition distribution function
ℎ(𝜃
∗

| 𝜃
𝑙−1

). A Bernoulli trial is performed with success
probability

𝛼accept = min{
𝜋 (𝜃
∗

) ℎ (𝜃
𝑙−1

| 𝜃
∗

)

𝜋 (𝜃
𝑙−1

) ℎ (𝜃
∗

| 𝜃
𝑙−1

)

, 1} . (8)

If the result of the trial is success, 𝜃𝑙 is set to 𝜃∗; otherwise
𝜃
𝑙 is kept to 𝜃∗. This process is repeated for a sufficient

number of iterations, until the resulting Markov chain is
stationary and can be used to represent the target distribu-
tion. Usually, when starting from an arbitrary state, there
is a nonstationary period of iterations before the chain
gets converged and stationary. It is called “burn-in” period
and should be discarded in the final approximation of the
posterior distribution. The proposal distribution could be an
arbitrary distribution specified by the user, but proper ones
can lead to better convergence in the resultingMarkov chain.
Often symmetrical proposal distribution, whichmeans ℎ(𝜃∗ |
𝜃
𝑙−1

) is equal to ℎ(𝜃𝑙−1|𝜃∗), is used to simplify the acceptance
probability.

In the present study, a modified M-H algorithm is
employed to sample the posterior distributions of the
unknown parameters in 𝜃 defined in Section 2.1. It is similar
to the algorithm developed in [26, 33]. This algorithm
combines Gibbs sampling concept that the full conditional
distribution of each parameter can be thought of as its
posterior distribution if other parameters’ values are known.
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It updates each parameter sequentially by using the most
recent sampled values. Uniform transition distribution is
employed to propose candidate value via a random walk
scheme. For each parameter, the interval of random walk
has been continuously tuned during the “burn-in” period
to achieve an appropriate acceptance rate and improve the
performance ofMCMCwith scaling factors suggested in [33].
Unlike the algorithm in [33], since the variance is already
integrated out from the likelihood function, sampling of the
parameters is independent of the variance; it is not necessary
to sample the variance within the algorithm.
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Figure 5: MCMC samples for simulated AE event PLB
1
(a) 𝑥-coordinate, (b) 𝑦-coordinate, and (c) wave velocity at 20 kHz.

2.4. Data Fusion at Multiple Frequencies. One of the advan-
tages of extracting TOF information by CWT in time-
frequency domain over other traditional methods is that we
can obtain TOF data at multiple frequencies. All of these data
at different frequencies can be used to localize the AE source
individually with the proposed Bayesian approach. A proper
data fusion scheme can be employed to increase accuracy and
reduce uncertainty of the AE source locations. As suggested
by Su et al. [36], usually three fusion architectures, that is,
independent, centralized, and decentralized, can be chosen
to perform data fusion. In the present study, an indepen-
dent architecture is applied to fuse the results; namely,
individually obtained AE source locations by time differ-
ence data at multiple frequencies are fused to get the final
results.

After the MCMC algorithm obtains samples from the
posterior distributions, it is reasonable to use Gaussian
distribution to approximate these posteriors. For plate-like
structures, an AE source location can be represented by a

two-dimensional Gaussian distribution in a canonical form
as

𝑝 (𝑋) =
1

2𝜋 |Σ|
1/2

exp [−1
2
(𝑋 − 𝑋)

𝑇

Σ
−1

(𝑋 − 𝑋)] , (9)

where𝑋 = [𝑥
𝑑

𝑦
𝑑
]
𝑇 and Σ = [

𝜎
2

𝑥
𝜌𝜎
𝑥
𝜎
𝑦

𝜌𝜎
𝑥
𝜎
𝑦
𝜎
2

𝑦

] are themean and
covariance matrix of the distribution, respectively; 𝑥

𝑑
and

𝑦
𝑑
are means of the 𝑥- and 𝑦-coordinates of the identified

AE source location; 𝜎
𝑥
and 𝜎

𝑦
are standard deviations of

the 𝑥- and 𝑦-coordinates; 𝜌 is the correlation coefficient,
respectively.

Since individual localization results with Gaussian distri-
butions can be obtained by time difference data at multiple
frequencies, a fusion method is required to determine the
combined parameters from those of individual distributions.
In the present study, formulations for merging Gaussian
distributions in [37, 38] are adopted. For Gaussian dis-
tributions, the mean, standard deviations, and orientation
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Table 1: Coordinates of the sensors on the stiffened aluminum panel.

𝑆
2

𝑆
3

𝑆
4

𝑆
6

𝑆
7

𝑆
8

Coordinates (mm) (0, −200) (150, −200) (150, 0) (0, 200) (−150, 200) (−150, 0)

Table 2: Coordinates of the pensile lead breaks on the stiffened aluminum panel.

PLB1 PLB2 PLB3 PLB4 PLB5

Coordinates (mm) (0, 0) (100, −50) (50, 100) (−100, 100) (−100, −150)

of the major axis are independent of scaling; they can be
extracted from the resulting merged covariance matrices
without considering absolute probability values [38]. Take
two Gaussian distributions as an example; the covariance
matrix of the resulting merged distribution can be combined
by individual covariance matrices as

Σ
∗

= Σ
1
− Σ
1
(Σ
1
+ Σ
2
)
−1

Σ
1
, (10)

where Σ∗ is the covariance matrix of the merged distribution
and Σ

1
and Σ

2
are the covariance matrices of the two

individual distributions. The mean of the resulting merged
distribution is computed from the means and covariance
matrices of the individual distributions as

𝑋
∗

= 𝑋
1
− Σ
1
(Σ
1
+ Σ
2
)
−1

(𝑋
1
+ 𝑋
2
) , (11)

where𝑋∗ is the mean of the merged distribution and𝑋
1
and

𝑋
2
are the means of the two individual distributions. More

Gaussian distributions can be merged one by one with the
above formulations.

3. Experimental Study

3.1. Experimental Set-Up. To demonstrate the effectiveness of
the proposed BayesianAE source localizationmethod, exper-
imental studies for a stiffened aluminumpanel are conducted.
The test set-up consists of a stiffened aluminum panel and
a National Instrument PXI monitoring system incorporated
with a PXI-5105 8-channel digitizer. The dimensions of the
stiffened aluminum panel are 800mm × 600mm × 2mm. A
sensor network containing eight PZT transducers, denoted by
𝑆
1
to 𝑆
8
, with diameter of 10mm and thickness of 1mm are

surface mounted on an area of 300mm × 400mm between
two riveted stiffeners. These sensors are connected to the
DAQ channels of the digitizer for monitoring the AE event
and collecting AE wave signals. Unfortunately, 𝑆

1
and 𝑆

5

malfunction in the following test; only the remaining six sen-
sors are employed for AE source localization. In the present
study, six sensors are sufficient to collect time difference data
to identify the three unknown parameters; however, a later
study on the fail-safe distribution of sensors could help to
increase the reliability of the monitoring system [39]. An
illustration of the stiffened panel and sensor placement is
shown in Figure 2. The origin of the coordinate system is
set at the center of the panel, and the coordinates of the
functioning sensors are listed in Table 1. In the experiments,
pensile lead breaks (PLBs) are used to simulate sources of
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Figure 6: Identified source location for simulated AE event PLB
1
by

time difference data at 20 kHz.

AE events. Five PLBs at different locations are performed.
These simulated AE sources are labeled in Figure 2 and their
coordinates are listed inTable 2.During the experiments, 𝑆

4
is

selected as the trigger sensor for the sensor network, and the
threshold voltage value for triggering 𝑆

4
is set as 0.1 V. After

𝑆
4
is triggered, the response wave signals are received by the

sensors and acquired by the digitizer, whose sampling rate is
set at 10MHz.

3.2. Experimental Results

3.2.1. Results for Single-Frequency Data. Figure 3 shows the
AE wave signals emitted by the simulated AE event PLB

1
and

received by the six sensors. To obtain the time arrivals of these
AE wave signals, CWT of complex Morlet wavelet is applied.
Figure 4 shows themagnitudes of CWT coefficients of the AE
wave signals at frequency of 20 kHz. From the figure, the time
arrivals of the AE wave signals represented by the first peaks
can be clearly identified. The corresponding time arrivals for
the AE wave signals at 20 kHz are determined and labeled by
triangles in Figure 4. Then the time difference data between
the rest five sensors and the trigger sensor 𝑆

4
can be easily

calculated by subtraction as listed in Table 3.
After the time difference data is obtained, MCMC proce-

dure is then performed to obtain samples for the unknown
parameters to approximate their posterior distributions.
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Figure 7: AE wave signals for simulated AE events (a) PLB
2
, (b) PLB

3
, (c) PLB

4
, and (d) PLB

5
.

Table 3: CWT measured time difference data at 20 kHz.

Δ𝑡
24
(𝜇s) Δ𝑡

34
(𝜇s) Δ𝑡

64
(𝜇s) Δ𝑡

74
(𝜇s) Δ𝑡

84
(𝜇s)

PLB1 43.7 82.0 47.8 84.1 −1.0
PLB2 100.9 84.4 179.5 245.8 159.3
PLB3 147.4 152.2 −21.1 74.4 71.9
PLB4 40.0 106.3 −115.9 −144.9 −138.4
PLB5 −154.0 −36.0 65.8 67.5 −106.9
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Figure 8: CWT of AE wave signals at 20 kHz for simulated AE events (a) PLB
2
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3
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.

For the initial values, the 𝑥-coordinate of the AE source
location is uniformly sampled from [−150, 150]mm, the 𝑦-
coordinate of the AE source location is uniformly sampled
from [−200, 200]mm, and the wave velocity at 20 kHz are
uniformly sampled from [0, 3000]m/s. Figures 5(a) and 5(b)
show the samples of x-y coordinates of the AE source location
by MCMC, and Figure 5(c) shows the simultaneously sam-
pled wave velocity of the AE wave at 20 kHz for the simulated
AE event PLB

1
. For each parameter, 100000 samples in

total are obtained and the first 40000 samples are set as
the “burn-in” period. Gaussian distributions are used to fit
these samples. Figure 6 illustrates the fitted joint distribution

of 𝑥-𝑦 coordinates of the AE source location in 2D contour
view for the simulatedAE event PLB

1
.The actual PLB

1
source

location is also labeled in Figure 6 for comparison.Themeans
of the fitted distributions of the unknown parameters are
output as their estimates. For PLB

1
, the identified AE source

location is (0.4,−2.0)mm; the distance between the identified
AE source location and the actual one is less than 3.0mm
with a relative error of 1.4% with respect to the minimum
sensor spacing (150mm), demonstrating the effectiveness of
the proposed Bayesian AE source localization approach. For
the wave velocity, the identified value at 20 kHz is 1187.8m/s,
which is close to the theoretical value 1200m/s calculated
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Figure 9: Identified source location for simulated AE events by time difference data at 20 kHz (a) PLB
2
, (b) PLB

3
, (c) PLB

4
, and (d) PLB

5
.

by freeware “Vallen Dispersion” contained in “AGU-Vallen
Wavelet” package provided by theAE companyVallen System
[40], with nominal material properties for the stiffened
aluminum panel as Young’s modulus 73GPa, Poisson’s ratio
0.32, and density 2790 kg/m3. It should be noted that, due
to the various uncertainties involved, these nominal material
properties are not exactly the same as those for this specific
stiffened aluminum panel; thus the theoretical wave velocity
value is only used for reference. The results also give the
standard deviations and correlation coefficient for the AE
source location and the wave velocity as listed in Table 1,
which can be used for uncertainty analysis.

Similar identification results are obtained for the other
four PLB events. Figures 7(a)–7(d) show the AE wave signals
emitted by the simulated AE events PLB

2
–PLB
5
. Figures

8(a)–8(d) show the magnitudes of CWT coefficients of the
AE wave signals at frequency of 20 kHz. The corresponding
time arrivals of the AE wave signals at 20 kHz are determined

and labeled by triangles in Figure 8.TheCWTmeasured time
difference data at 20 kHz for these four cases are listed in
Table 3. The same MCMC procedure as presented for PLB

1

case is then performed for these four PLB cases. The iden-
tification results are listed in Table 4 together with those for
PLB
1
. Figures 9(a)–9(d) illustrate the fitted joint distributions

of x-y coordinates of the identified AE source locations
for these four cases, respectively. The actual PLB locations
are also labeled in Figure 9 for comparison. Figure 10(a)
shows the identified wave velocities compared with the
theoretical one at 20 kHz for the five PLB events; error
bars with three times of standard deviations are plotted
with the mean values. From Table 4 and Figures 6 and
9, it can be seen that the identified mean values of the
simulated AE source locations are quite close to the actual
ones. In addition to the point estimates, the Bayesian
approach also provides interval estimates for uncertainty
analysis.
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Figure 10: Identified wave velocities for the simulated AE events PLB
1
–PLB

5
(a) 20 kHz, (b) 30 kHz, and (c) 40 kHz.

Table 4: Identified results by CWT measured time difference data at 20 kHz.

Source location Wave velocity
(𝑥
𝑑
, 𝑦
𝑑
) (mm) (𝜎

𝑥
, 𝜎
𝑦
) (mm) 𝜌 Error (%) 𝑉

𝑔
(m/s) 𝜎

𝑉
(m/s)

PLB1 (0.4, −2.0) (1.5, 1.9) 0.2 1.4 1187.8 33.4
PLB2 (95.6, −45.4) (5.0, 2.1) −0.4 4.3 1109.4 36.5
PLB3 (50.2, 97.6) (2.8, 2.9) 0.9 1.6 1130.6 23.4
PLB4 (−103.3, 104.1) (0.5, 0.5) −0.4 3.5 1152.1 5.3
PLB5 (−88.2, −149.5) (3.3, 5.1) 0.7 7.9 1148.9 29.3

As aforementioned, one appealing property of CWT
for time-frequency analysis of AE wave signals is that it
can obtain TOF information of the AE waves at different
frequencies without any difficulties. To further demonstrate
the effectiveness of the proposed AE source localization

approach, we take time difference data at other two frequen-
cies, that is, 30 kHz and 40 kHz, to localize the AE sources.
The CWT measured time differences of AE waves at 30 kHz
and 40 kHz in these five PLB cases are listed in Tables 5
and 6, respectively. Tables 7 and 8 present the identified AE



Mathematical Problems in Engineering 11

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pr

ob
ab

ili
ty

Fused

−4 −2

20kHz
30kHz

40kHz

x-coordinate (mm)

(a)

−8 −6 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ili

ty

−4 −2

Fused
20kHz
30kHz

40kHz

y-coordinate (mm)

(b)

Figure 11: Merged distribution for 𝑥- and 𝑦-coordinates of source location for simulated AE event PLB
1
.

Table 5: CWT measured time difference data at 30 kHz.

Δ𝑡
24
(𝜇s) Δ𝑡

34
(𝜇s) Δ𝑡

64
(𝜇s) Δ𝑡

74
(𝜇s) Δ𝑡

84
(𝜇s)

PLB1 36.7 70.4 39.7 73.3 5.8
PLB2 76.5 63.0 144.5 201.4 135.3
PLB3 115.9 130.0 −21.9 58.2 56.4
PLB4 35.7 87.9 −89.6 −110.0 −111.1
PLB5 −124.3 −25.9 56.4 52.7 −91.6

Table 6: CWT measured time difference data at 40 kHz.

Δ𝑡
24
(𝜇s) Δ𝑡

34
(𝜇s) Δ𝑡

64
(𝜇s) Δ𝑡

74
(𝜇s) Δ𝑡

84
(𝜇s)

PLB1 31.1 64.4 34.4 66.9 5.1
PLB2 71.7 54.5 125.9 178.0 120.5
PLB3 99.7 105.2 −18.5 52.7 52.4
PLB4 32.0 80.9 −83.5 −104.4 −108.5
PLB5 −112.4 −23.7 46.5 36.7 −82.4

source locations and corresponding wave velocities at 30 kHz
and 40 kHz, respectively. Figures 10(b) and 10(c) show the
identified wave velocities at 30 kHz and 40 kHz compared
with the theoretical ones, respectively.

3.2.2. Fused Results for Multiple-Frequency Data. After AE
source localization results from time difference data at dif-
ferent frequencies, that is, 20 kHz, 30 kHz, and 40 kHz in the
present study, are obtained and fitted by two-dimensional
Gaussian distributions; the proposed data fusion scheme
described in Section 2.4 can be applied to get the final
fused results. Figure 11 shows the merging of three individ-
ual distributions obtained by time difference data at three
frequencies into one distribution for x- and y-coordinates of
the source location for simulated AE event PLB

1
. Figure 12(a)

illustrates the fused joint distribution of x-y coordinates of
the AE source location in 2D contour view correspond-
ing to Figure 11. The actual PLB

1
source location is also

labeled in Figure 12(a) for comparison. Figures 12(b)–12(e)
illustrate the fused joint distributions of x-y coordinates of
the identified AE source locations for the rest of the four
cases, respectively. Also these fuse AE source localization
results are listed in Table 9. From Figure 12 and Table 9, it
can be seen that, compared with the individually obtained
localization results, for most of the cases, the fused results
have mean values closer to the actual ones and narrower
standard deviations, demonstrating that the data fusion
scheme indeed can increase the accuracy of the AE source
localization results and reduce their associated uncertain-
ties.
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Table 7: Identified results by CWT measured time difference data at 30 kHz.

Source location Wave velocity
(𝑥
𝑑
, 𝑦
𝑑
) (mm) (𝜎

𝑥
, 𝜎
𝑦
) (mm) 𝜌 Error (%) 𝑉

𝑔
(m/s) 𝜎

𝑉
(m/s)

PLB1 (4.1, −1.1) (0.7, 0.8) 0.2 2.8 1442.2 16.9
PLB2 (102.5, −51.1) (3.5, 1.5) −0.4 1.8 1408.5 30.6
PLB3 (44.3, 95.7) (1.3, 1.5) 0.9 4.8 1331.5 14.4
PLB4 (−96.9, 98.7) (0.8, 0.8) −0.3 2.2 1385.2 9.7
PLB5 (−88.0, −141.4) (2.0, 3.0) 0.7 9.8 1355.2 22.3

Table 8: Identified results by CWTmeasured time difference data at 40 kHz.

Source location Wave velocity
(𝑥
𝑑
, 𝑦
𝑑
) (mm) (𝜎

𝑥
, 𝜎
𝑦
) (mm) 𝜌 Error (%) 𝑉

𝑔
(m/s) 𝜎

𝑉
(m/s)

PLB1 (3.3, −1.6) (0.8, 1.0) 0.2 2.4 1586.0 23.7
PLB2 (108.9, −50.7) (1.0, 0.4) −0.5 6.0 1654.8 9.3
PLB3 (54.7, 103.2) (1.8, 1.8) 0.9 3.8 1678.6 20.3
PLB4 (−100.1, 96.6) (0.9, 0.9) −0.4 2.3 1472.7 12.1
PLB5 (−102.3, −153.9) (1.7, 2.4) 0.8 3.0 1628.7 17.6

Table 9: AE source location results after data fusion.

Source location
(𝑥
𝑑
, 𝑦
𝑑
) (mm) (𝜎

𝑥
, 𝜎
𝑦
) (mm) 𝜌 Error (%)

PLB1 (3.4, −1.3) (0.5, 0.6) 0.2 2.4
PLB2 (107.9, −50.5) (0.9, 0.4) −0.4 5.3
PLB3 (48.4, 98.2) (1.0, 1.1) 0.8 1.6
PLB4 (−101.0, 101.3) (0.4, 0.4) −0.4 1.1
PLB5 (−95.3, −148.3) (1.2, 1.7) 0.8 3.3

4. Conclusions

In this paper, a Bayesian approach for localizing AE source
in plate-like structures is proposed, while considering uncer-
tainties from modeling error and measurement noise. After
the TOF information of the AE wave signals in each sensor
channel is measured by CWT, a Bayesian procedure for
identification of the unknown AE source location, wave
velocity, and their associated uncertainties is developed and
MCMC algorithm is employed to realize the identification
process to draw samples from their posterior distributions.
A data fusion scheme is also introduced to fuse results
by merging individually identified distributions obtained by
time difference data at multiple frequencies.

Experimental studies on a stiffened aluminum panel
with AE events simulated by PLBs have demonstrated that,
rather than pinpointing the AE source location in a single
point by traditional deterministic triangulation approach,
the proposed Bayesian approach can provide a probabilistic
description of the AE source location and quantify the
uncertainties of the identification results. With data fusion,
themeans of the posterior distributions of theAE source loca-
tions are quite close to the actual ones, and the uncertainties
of the results are reduced, demonstrating the effectiveness of
the proposed Bayesian AE source localization approach.
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