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ABSTRACT 

G-protein-coupled receptors are cell membrane 
proteins of great interest in biology and pharmacology. 
Previous analysis of Class C of these receptors has 
revealed the existence of an upper boundary on the 
accuracy that can be achieved in the classification of 
their standard subtypes from the unaligned 
transformation of their primary sequences. To further 
investigate this apparent boundary, the focus of the 
analysis in this paper is placed on receptor sequences 
that were previously misclassified using supervised 
learning methods. In our experiments, these 
sequences are visualized using a nonlinear 
dimensionality reduction technique and phylogenetic 
trees. They are subsequently characterized against 
the rest of the data and, particularly, against the rest of 
cases of their own subtype. This exploratory 
visualization should help us to discriminate between 
different types of misclassification and to build 
hypotheses about database quality problems and the 
extent to which GPCR sequence transformations limit 
subtype discriminability. The reported experiments 
provide a proof of concept for the proposed method. 
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INTRODUCTION 

G-protein-coupled receptors (GPCRs) were the 
subject matter of the 2012 Nobel Prize in Chemistry 
[1]. They comprise a large superfamily of membrane 
proteins that play an important role in cell 
communication and currently constitute a major target 
for drug discovery. For these reasons, they are 
intensely investigated in the field of 
pharmacoproteomics [2].  

The GPCR superfamily can be classified into four 
main classes, namely A, B, C, and F (Frizzled) 
according to their similarity [3]. Class C GPCRs in 
particular, which are the focus of our research, show a 
remarkable diversity in terms of both structure and 
functional roles. Thus, the correct discrimination of 
class C GPCRs according to subtypes is a challenging 

classification problem which constitutes the starting 
point for our study [4, 5].  

In addition to the seven transmembrane (7TM) 
domain, which is common to all GPCRs, class C 
GPCRs are characterized by bearing a large 
extracellular domain, the Venus flytrap (VFT), in which 
orthosteric ligands bind. This structural complexity has 
prevented the crystallization of full-length class C 
GPCRs, and was not till 2014 that the 7TM domains of 
two members of this family were crystallized [6, 7]. 
Because of this, the investigation of class C GPCR 
structure and function on the basis of their primary 
amino acid (AA) sequences is of special relevance. 

The unaligned symbolic sequences do not yield 
themselves easily to direct quantitative analysis, but 
many different primary sequence transformation 
techniques are available to overcome this limitation. In 
this study, we use transformed alignment-free full 
sequences to limit information loss.  

Given the exploratory goal of this study, we focus 
on a very simple AA sequence transformation that 
considers only the relative frequencies of appearance 

of the 20 AAs in the sequence (thus ignoring the 
sequential order). Recent analysis using semi-
supervised and supervised classification of class C 
GPCRs [8, 9] with this type of transformation showed 
that overall accuracy (the ratio of correctly classified 
sequences) reaches an upper bound in the area of 
90% that it is not significantly increased when more 
sophisticated physico-chemical transformations of the 
sequences are applied.  

To investigate this apparent classification 
boundary, we propose in this study a method that 
combines GPCR classification with multivariate data 
(MVD) visualization, using the unaligned transformed 
sequences as a starting point. Visualization is used in 
our work as an exploratory Data Mining tool, 
facilitating the analyst to veer towards an inductive 
approach to knowledge discovery. That is, we 
generate a visualization of the MVD that aims to 
provide the analyst with non-trivial clues regarding 
data structure that might lead to hypothesis generation 
[10, 11]. 

A further and complementary visual grouping 
characterization of the class C GPCRs is carried out 
using phylogenetic trees (PTs), which are a standard 
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bioinformatics tool for protein analysis from aligned 
sequences.  

The setting of this exploratory visualization process 
is as follows. We first consider the classification of a 
class C GPCR sequence dataset into each of its 
seven characteristic subtypes and proceed to single 
out misclassified cases. Secondly, the same sequence 
dataset is visualized using a nonlinear dimensionality 
reduction (NLDR) technique, namely Generative 
Topographic Mapping (GTM [12]). This technique has 
been applied with success to many problems in 
biomedicine and bioinformatics [8, 13-15].  

The misclassified cases are then visually isolated 
and characterized against the rest of the data and, 
particularly, against the rest of cases of their own 
subtype. This should help us to differentiate cases that 
are likely to be misclassified due to their similarity to 
overlapping sequences belonging to other subtypes 
(that is, borderline cases) from those which are 
misclassified due to an apparently clear wrong 
subtype assignment. The latter can also be 
understood as part of a label noise problem [16], in 
which the possibility of wrong class labeling is 
accepted and addressed in different ways. 

This exploratory process should help the analyst to 
build hypotheses about potential database quality 
problems (in the form of potentially inadequate 
subtype labels) and about the extent to which GPCR 
sequence transformations can retain GPCR subtype 
discriminability. The reported experiments are meant 
to be a proof of concept to demonstrate the feasibility 
of the proposed method as a tool for the detailed 
analysis of those GPCRs that are consistently 
misclassified by standard sequence discrimination 
methods. 

MATERIALS AND METHODS 

Class C GPCR data 

The data set analyzed in this study was extracted 
from version 11.3.4, as of March 2011, of GPCRDBa 
[17], a database information system for GPCRs that 
includes sequential data. The system divides GPCRs 
into several major families or classes based on the 
ligand types, functions, and sequence similarities. 

The analyzed dataset consists of 1,510 GPCRs 
sequences that belong to class C. This class is of 
particular interest for being the target for new 
therapies in areas such as pain, anxiety, 
neurodegenerative disorders and as antispasmodics, 
but also potentially for the treatment of 
hyperthyroidism and osteoporosis. 

Class C sequences in our dataset are, in turn, 
distributed into 7 subtypes: 351 cases of metabotropic 
glutamate, 48 calcium sensing, 208 GABAB, 344 
vomeronasal, 392 pheromone, 102 odorant and 65 
taste (see Table 1 for details and the abbreviations 
that will be used throughout the text). 

The lengths of these sequences varied from 250 to 
1,995 AA, a wide range that provides further 
justification for the use of alignment-free sequence 
transformation strategies. The varying lengths of the 
receptors in the analyzed data do not seem to have an 
important effect on their assignment to the different 
subtypes by Support Vector Machine (SVM) classifiers 

that are the starting point of this study; this conclusion 
is supported by the results compiled in Supplementary 
File 1. 

Subtype ID Subtype Description 
Number of 
sequences 

mGlu Metabotropic glutamate 351 
CaS Calcium sensing 48 

GABA-B GABAB 208 
VN Vomeronasal 344 
Ph Pheromone 392 
Od Odorant 102 
Ta Taste 65 

Table 1. Class C GPCRs dataset. The 1,510 sequences are 
structured into 7 subtypes. For each subtype, this table 
displays the abbreviation identifier (ID), the description and 
the corresponding number of sequences.  

The use of transformations of the unaligned 
sequences allows us to obtain real-valued data 
matrices to which standard quantitative methods of 
analysis can be applied. In the experiments reported in 
this study, the very simple AA composition (AAC) 
transformation [18] is used as an example for the proof 
of concept of the proposed visualization-based 
method. In this transformation, the frequencies of the 

20 AAs are computed for each sequence. As a result, 

a 𝑁 ×  20 matrix is obtained, where 𝑁 = 1,510. 

Visualization Using Manifold Learning 
Methods 

Many methods for MVD visualization are available 
to the data analyst. NLDR techniques, in particular, 
have undergone a rapid evolution over the last 
decade, showing great potential as flexible tools for 
insightful data visualization [19].  

Self-Organizing Maps (SOM, [20]), widely used in 
bioinformatics and biomedicine, are a well-known 
example of these. In the current paper, we use an 
alternative to SOM with sound probabilistic 
foundations, called GTM [12]. As a manifold learning 
method, it models the MVD by “covering” them with a 
low-dimensional manifold. As a Vector Quantization 
one, it expresses that manifold, in a similar way as 
SOM, as a connected network of cluster centroids or 
data prototypes that, in the case of the standard GTM, 
are also the centres of Gaussian distributions. This 
way, the GTM can be expressed as a manifold-
constrained mixture of distributions. The probabilistic 
definition of GTM makes the optimization of the model 
possible within a Maximum Likelihood approach, 
which ensures the convergence of the model training 
error towards a minimum, something for which there is 
no theoretical guarantee in the case of SOM. The 
definition of GTM using Bayesian probability theory 
principles allows it to be extended in a principled 
manner. These extensions of the original model 
include, amongst others: automatic regularization (to 
avoid the data overfitting), variational reformulations, 
multivariate time series modelling as manifold-
constrained Hidden Markov Models, etc. 

Being, as previously mentioned, a constrained 
mixture of distributions model, GTM also allows the 
choice of different suitable probability distributions (as 
basis functions) for different types of data. 
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The GTM provides MVD visualization because the 
model is expressed as a (nonlinear) mapping from a 

low-dimensional latent visualization space (2 − 𝐷 in 
this study) into the observed data space, in the form 
𝑦 = 𝜙(𝑢)𝑊, where 𝑦 is a vector in a D-dimensional 

data space, 𝜙 is a set of 𝑀 basis functions, 𝑢 is a point 

in the visualization space and 𝑊is the matrix of 

weights 𝑤𝑚𝑑, adaptively optimized as part of the 
model learning process.  

The probability distribution for data point 𝑥 in 𝑋 =
 {𝑥1, … , 𝑥𝑁} with 𝑥 𝜖 ℜ𝐷, generated by a latent point 𝑢, 
is defined as an isotropic Gaussian noise distribution, 
assuming a single common inverse variance 𝛽: 

𝑝(𝑥|𝑢, 𝑊, 𝛽) = (
𝛽

2𝜋
)

𝐷
2⁄

𝑒𝑥𝑝 {−
𝛽

2
‖𝑥 − 𝑦(𝑢, 𝑊)‖2}  (1) 

Integrating the latent variables 𝑢 out, we obtain 
𝑝(𝑥) and the corresponding likelihood of the model. 
Standard maximum likelihood methods can then be 
used to estimate the optimum values of the adaptive 
parameters. Details can be found in [12]. As part of the 
parameter estimation process, the probability of each 
of the 𝐾 latent points 𝑢𝑘 for the generation of each 

data point 𝑥𝑛 can be explicitly calculated as the 

responsibility 𝑟𝑘𝑛: 

𝑟𝑘𝑛 = 𝑃(𝑘|𝑥𝑛, 𝑊, 𝛽) =
𝑒𝑥𝑝{−

𝛽

2
‖𝑥𝑛−𝑦𝑘‖2}

∑ 𝑒𝑥𝑝{−
𝛽

2
‖𝑥𝑛−𝑦𝑘′‖

2
}𝐾

𝑘′

             (2) 

For MVD visualization, 𝑟𝑘𝑛 enables a “soft 
projection”, also known as posterior mean projection, 

defined as 𝑢𝑛
𝑚𝑒𝑎𝑛 = ∑ 𝑟𝑘𝑛𝑢𝑘

𝐾
𝑘=1 . This is a further 

advantage over the "crisp" assignment of data 
instances to clusters created by SOM, for which a 
probability of membership of each instance to each 
cluster cannot be calculated. 

In our experiments, the GTM parameters were 
initialized according to a standard Principal 
Component Analysis (PCA)-based procedure [12]. 

Phylogenetic Trees 

A PT of a group of protein sequences is a 
dendrogram-like graphical representation of the 
evolutionary relationship between taxonomic groups 
which share a set of homologous sequence segments. 
This evolutionary relationship can be represented 
through a hierarchically structured similarity-based 
grouping process. Such process thus yields a form of 
sequence visualization that can complement those 
provided by the GTM-based methods. 

Treevolutionb [21] is a software tool developed in 
Java that integrates the Processing© packagec. It was 
used in our experiments to create the PTs from 
multiple sequence alignments (MSA) obtained with 
Clustal Omega [22]. This tool supports visual and 
exploratory analysis of PTs in either Newick or 
PhyloXML formats as radial dendrograms, with high-
level user-controlled data interaction. The color-based 
handling of protein sub-groups helps the user to focus 
on relevant sequence groupings.  

The PT and GTM sequence visualization 
approaches differ in several ways; the former uses 
hierarchical clustering from aligned versions of the 
sequences and only reflects their relative similarity, 
whereas the latter only reflects hierarchy implicitly, but 

reflects similarity explicitly as inter-point distances in 
the projective space. Despite their differences, these 
approaches, though, nicely complement each other 
and yield quite consistent results.  

RESULTS 

Experiments using the proposed visualization-
based methods were performed for the class C GPCR 
data set described in Table 1. 

A batch of previous supervised classification 
experiments using SVMs were the starting point for 
these [9]. Such experiments involved an iterative 5 
cross-validation (CV) process, splitting the dataset into 
5 randomly stratified folds where 4 folds were used for 
the construction of the model and the remaining one to 
evaluate the classification results. This process was 
repeated 100 times and in these experiments, different 
sequences from each of the seven GPCR subtypes 
were consistently misclassified (see summary 
information in Table 2).  

Subtype ID  Number of misclassified sequences 

mGlu 16 
CaS 5 

GABA-B 8 
VN 46 
Ph 48 
Od 35 
Ta 5 

Table 2. Number of class C misclassified sequences, 
listed by subtype. 

Sequence 
ID  

Predicted 
subtype 

Sequence name 

39 Od a8dz71_danre 
40 Od a8dz72_danre 
45 Od q5i5d4_9tele 
46 Od q5i5c3_9tele 
58 Od a7rr90_nemve 
60 GABA-B a7rrr9_nemve 
105 GABA-B d1lx28_sacko 
142 GABA-B XP_002735016 
206 GABA-B XP_968952 
59 VN a7rsa2_nemve 
66 VN b3rud7_triad 
140 VN XP_002161343 
141 VN XP_002732197 
244 VN a7s4n3_nemve 
135 Ph a7ria2_nemve 
259 Ph q62916_rat 

Total mGlu 16 sequences 

Table 3. Misclassified mGlu sequences. List of the 16 
misclassified mGlu, including their GPCRDB identifier (ID), 
their class as predicted by SVM and their sequence name. 

In previous preliminary research for the current 
paper, the 16 misclassified mGlu transformed 
sequences were analyzed in some detail [23]. We now 
extend these experiments to the rest of GPCR 
subtypes and their most consistently 163 misclassified 
sequences. 
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Sequence 
ID  

Predicted 
subtype 

Sequence name 

372 mGlu XP_002123664 
352 VN q5i5c8_9tele 
353 VN a8e7u1_danre 
370 Ph XP_001515899 
399 Ph XP_002740613 

Total CaS 5 sequences 

Table 4. Misclassified CaS sequences. List of the 5 
misclassified CaS, including their GPCRDB identifier (ID), 
their class as predicted by SVM and their sequence name. 

ID  Predicted class GPCRs name 

521 mGlu XP_002123664 
530 mGlu q5i5c8_9tele 
542 VN a8e7u1_danre 
414 mGlu a7rpp5_nemve 
494 mGlu b3rj55_triad 
486 mGlu b3rit4_triad 
475 mGlu a7s6r9_nemve 
535 mGlu XP_002738008 

Total GABA-B 8 sequences 

Table 5. Misclassified GABA-B sequences. List of the 8 
misclassified GABA-B, including their GPCRDB identifier (ID), 
their class as predicted by SVM and their sequence name. 

Sequence 
ID  

Predicted 
subtype 

GPCRs name 

1450 GABA-B q4rx46_tetng 
1451 VN q4rx45_tetng 
1462 VN a4phq8_danre 
1471 Ph XP_425740 
1505 Ph q4s833_tetng 

Total Ta 5 sequences 

Table 6. Misclassified Ta sequences. List of the 5 
misclassified Ta, including their GPCRDB identifier (ID), their 
class as predicted by SVM and their sequence name. 

Subtype Predicted 
subtype 

Number of 
misclassificatons 

VN mGlu 7 
VN CaS 2 
VN Ph 30 
VN Od 7 

Ph mGlu 19 
Ph GABA-B 4 
Ph VN 22 
Ph Od 3 

Od mGlu 4 
Od VN 14 
Od Ph 17 

 Table 7. Misclassified VN, Ph and Od sequences. 
Summary list of the largest groups of misclassifications. 

Tables 3 to 6 list in detail all the misclassified 
sequences from mGlu, CaS, GABA-B and Ta 
subtypes. For the sake of brevity, the characteristics of 
the far more abundant Vn, Ph and Od subtypes 
misclassifications are summarily reported in Table 7 
and reported in full as Supplementary File 2. 

GTM posterior mean projection visualization 

The complete class C GPCR dataset, including 
1,510 sequences, was then visualized using the 

posterior mean projection of GTM, as described in 
previous sections. This global GTM visualization map 
is displayed in Figure 1. Note that the axes in the 
representation space have no units because each of 
them represents one of the dimensions of the latent 
space of the GTM model. 

Each of the subtypes is then represented in 
isolation in the GTM maps of Figures 2 to 8. In each of 
these maps, the misclassified sequences are 
individually identified using the sequence ID. 

A 

 

B 

 

Figure 1. Dataset GTM posterior mean projection (A) and 
list of corresponding labels (B). Visualization of all 1,510 
sequences. Each color corresponds to a GPCR class C 
subtype. 

 

Figure 2. mGlu GTM posterior mean projection. 
Visualization of mGlu sequences. Cases incorrectly classified 
by SVM are represented with the colors of their predicted 
subtypes. Cases labeled with their ID from Table 3.  
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Figure 3. CaS GTM posterior mean projection. 
Visualization of CaS sequences. Representation as in Figure 
2.Cases labeled with their ID from Table 4. 

 

Figure 4. GABA-B GTM posterior mean projection. 
Visualization of GABA-B sequences. Representation as in 
Figure 2.Cases labeled with their ID from Table 5.  

 

 

Figure 5. Ta GTM posterior mean projection. Visualization 
of Ta sequences. Representation as in Figure 2. Cases 
labeled with their ID from Table 6. 

 

Figure 6. VN GTM posterior mean projection. Visualization 
of VN sequences. Representation as in Figure 2. Note that 
the 30 Ph misclassified cases are not individually labeled. 

 

Figure 7. Ph GTM posterior mean projection. Visualization 
of Ph sequences. Representation as in Figure 2. Note that 
the 22 VN and 19 mGlu misclassified cases are not 
individually labeled. 

 

Figure 8. Od GTM posterior mean projection. Visualization 
of Od sequences. Representation as in Figure 2. Note that 
the 14 VN and 17 Ph misclassified cases are not individually 
labeled. 
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Treevolution radial PT 

Finally, a phylogenetic tree of the complete set of 
1,510 sequences was created using Treevolution 
software. It is shown in Figure 9 and will be used to 
highlight the misclassifications listed in the previous 
section. 

The Radial PT supports interactive exploration 
according to the hierarchical structure it provides. At a 
given radial distance, different colors represent the 
same family of descendant nodes in the tree. 

 

 

Figure 9. Treevolution radial PT plot of the 1,510 GPCRs. 
Each branch corresponds to one GPCR sequence. Two 
separated mGlu sections can be identified, as well as three 
consecutive CaS sections; a single GABA-B section; three 
separate VN ones; two consecutive groups of Ph; two of Od 
and three consecutive groups of Ta. At a given radial 
distance, the tree colors represent families of descendant 
nodes. For example, the two different colors assigned to 
Odorant provide quantitative evidence of the existence of two 
subtypes at a deeper level in the hierarchy. 

 

Figure 10. Radial PT plot for mGlu misclassified cases.

Figure 11. Radial PT plot for CaS misclassified cases. 

Figure 12. Radial PT plot for GABA-B misclassified 
cases. 

 

Figure 13. Radial PT plot for Ta misclassified cases. 
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DISCUSSION 

It is clear from the GTM visualization of the 
complete set of transformed class C GPCR sequences 
(Figure 1), that there exists a reasonable level of 
subtype differentiation, but also that some subtypes, 
such as GABA-B, are more clearly separated from the 
rest than others such as Pheromone and 
Vomeronasal, which strongly overlap. The overlapping 
(or its lack) of subtype data projections in the GTM 
map should be a solid indication of subtype 
discriminability (or lack of it).  

Focusing first on the mGlu subtype, Figure 2 
reveals quite clear patterns of misclassification. See, 
for instance, sequences 40, 45 and 46. They are 
clustered together and in a position of the GTM 
visualization map that fully overlaps the most densely 
Odorant-populated region (as seen in Figure 8). These 
cases could be understood as neat, strong 
misclassifications and, therefore, worth investigating 
as potential cases of label noise. The same could be 
said of, at least, sequences 59, 140, 141 and 142, 
which have been misclassified as either GABA-B or 
VN due to the fact that they are clearly positioned in 
their corresponding regions. 

Instead, sequences 39 and 58, misclassified as 
Od, are located quite close to the densest cluster of 
mGlu cases, but nearby its boundaries and also close 
to a number of actual Od sequences. This comes as 
no surprise, given the well-documented sequential 
similarity between certain Odorant and mGlu receptors 
[24]. These cases might therefore be considered as 
borderline misclassifications of sequences that are 
close enough to mGlu, but not too different to at least 
some Od. 

A similar distinction between strong and borderline 
misclassifications can be found for the remaining class 
C subtypes. In the case of CaS, which shows two 
neatly differentiated subgroups that indicate (as in the 
case of mGlu) further levels of sub-structure, all five of 
the misclassified sequences (as either mGlu, VN, or 
Ph) seem to belong to the strong misclassification 
category, again meriting further inspection as potential 
cases of label noise. 

The case of Ta is almost the opposite: although, 
again, a clear two-subgroup structure can be found, it 
could be argued that all but one of the five 
misclassified sequences (as VN, or Ph) are, in fact, 
borderline cases. Instead, case 1450 is strongly 
misclassified as a GABA-B, falling squarely within the 
domain area of this subtype. 

The situation for GABA-B is not too dissimilar. 
Most misclassifications are borderline cases that get 
confused as mGlu given the partial overlap of both 
subtypes. The only exception might be case 535, deep 
within the central mGlu map domain. 

The remaining subtypes, namely VN, Ph and Od, 
experiment a very strong level of overlapping with 
other subtypes and, as result, borderline 
misclassifications abound. In the case of Ph, there is a 
sizeable number of cases strongly misclassified as 
mGlu and a few as GABA-B and Od. For VN, instead, 
only a few cases are strongly misclassified as mGlu, 
but a few more as Od. Finally, Od, again a subtype 
evidencing further sub-structure, has quite a few cases 
strongly misclassified as VN and Ph.  

With the support of these visualization-based 
results, an expert in the field could smoothly move 
from exploratory visualization to the detailed 
inspection of the strongly misclassified class C GPCRs 
as potential suspects of mislabeling in a case of label 
noise. 

For the mGlu cases strongly misclassified as Od 
(see Table 3), for instance, the pair a8dz71_danre and 
a8dz72_danre, according to the UniProtd database, 
are uncharacterized proteins, derived from an 
Ensembl automatic analysis pipeline and should be 
considered as preliminary data. In fact, Ensembl 
characterizes them as class C olfactory receptors. 
According to UniProt and the European Nucleotide 
Archivee, q5i5d4_9tele and q5i5c3_9tele are, in turn, 
unreviewed putative pheromone receptors CPpr3 and 
CPpr14. Finally, and also according to UniProt, 
a7rr90_nemve is a predicted protein, where 
“predicted” qualifies entries without evidence at 
protein, transcript, or homology levels and which are 
just one level over “uncertain”. 

For the CaS cases, q5i5c8_9tele, misclassified as 
VN is, according to UniProt, Putative pheromone 
receptor CPpr9 and its status is “unreviewed” (not 
manually annotated and reviewed by UniProt 
curators); a8e7u1_danre (again misclassified as VN) 
is both “unreviewed” and “uncharacterized”. 
XP_001515899 and XP_002740613 are misclassified 
as pheromones: the former has been predicted to be 
similar to a calcium-sensing receptorf, whereas the 
latter was “removed as a result of standard genome 
annotation processing” from NCBIg Finally, 
XP_002123664, misclassified as an mGlu, was also 
“removed as a result of standard genome annotation 
processing” from NCBIh, despite being previously 
predicted to be similar to a calcium-sensing receptor. 

The Taste q4rx46_tetng, strongly misclassified as 
GABA-B, is identified by UniProt as the unreviewed 
Chromosome 11 SCAF14979, whole genome shotgun 
sequence. 

The GABA-B XP_002738008, misclassified as 
mGlu, is, interestingly, predicted in NCBIi to be an 
extracellular calcium-sensing receptor. 

The remaining three subtypes have a strongly 
overlapping behavior that suggests that the current 
AAC transformation does not suffice to discriminate 
them properly and include too many strong 
misclassifications to individually discuss in detail. 
Nevertheless the proposed visualization-based 
method would provide the expert with guidance to 
inspect any of these cases as required.  

Given that these results are based on the AAC 
transformation of the GPCR sequences, the AA ratio 
profiles of each of the misclassified sequences could 
also be directly inspected by experts to find possible 
discrepancies with the average profiles of the labeled 
and predicted subtypes. 

Figure 9 displays the complete radial PT for the 
1,510 sequences and outlines the main domains of all 
seven class C subtypes in its external border. Even 
though the original sequence transformations have 
very little in common with those used in the GTM-
based visualization (bear in mind that the PT is built 
from aligned sequences), the misclassification results 
reported in detail in Figures 10 to 13 for, in turn, 
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subtypes mGlu, CaS, GABA-B and Ta are quite 
consistent with those shown in GTM Figures 2 to 5. 
Although the results are similar for VN, Ph and Od, 
they are again not included here due to the large 
amount of misclassified cases involved. 

Each individual misclassified sequence is identified 
with its corresponding ID. In Figure 10, for example, 
where mGlu sequences are highlighted, the five 
sequences predicted as Odorants squarely fall in the 
tree area populated by this subtype, which implies that 
these sequences are more similar to the latter than to 
the mGlu subtype to which they are assumed to 
belong according to their label in GPCRDB. Similarly, 
the four GABA-B, five VN and two Ph sequences 
displayed in Figure 10 are located in the 
corresponding areas of their predicted subtypes.  

The results visualized in Figures 11, 12 and 13 
CaS, GABA-B and Ta, respectively, fully agree with 
those discussed for mGlu, with misclassified 
sequences located in the domains of the predicted 
subtypes, instead of in the domains of their database 
label. 

Note that it is far more difficult to distinguish 
between borderline and strong misclassifications in the 
radial PTs due to the intrinsic symmetry of their 
branches. 

CONCLUSIONS 

In this paper, we have analyzed class C GPCR full 
unaligned primary sequences transformed according 
to a simple amino acid frequency method. 

Prior research had revealed a limit on the ability to 
discriminate these transformed sequences into their 
seven known subtypes, prompting suspicion that, at 
least partially, this could be caused by sequence 
mislabeling, a type of label noise [16, 23]. 

We have proposed a method to investigate 
misclassified class C GPCRs that is based on NLDR, 
manifold-based visualization, complemented by the 
use of PTs. This method has revealed that, for each of 
the analyzed subtypes, misclassified sequences are 
either borderline cases, whose label might have been 
incorrectly predicted due to lack of sensitivity of the 
classifier, or strong misclassifications that are truly 
similar to sequences belonging to other subtypes. 

The latter are of special interest for database 
quality assessment purposes and our discussion of 
the reported results has shown that many of the cases 
singled out for further inspection were in fact 
unresolved or unclear subtype assignments according 
to main protein database repositories such as 
UniProtKB/Swiss-Prot and GenBank-NCBI. 

At the heart of this investigation on the limitations 
of classifiers in the characterization of labeled class C 
GPCRs, lies the fact that proteins in curated 
databases are often assigned to families according to 
data-based models. An example of this is the 
comprehensive Pfam database [25], built using hidden 
Markov models and MSA. This is, indeed, a perfectly 
adequate approach, but even in Pfam-defined families, 
there are two levels of quality (A and B), where the A 
entries are derived from the underlying sequence 
database built from the most recent release of 
UniProtKB and the B entries are un-annotated and 

automatically generated, built from sequence clusters 
not covered by Pfam-A entries. We reckon that the 
lack of a gold-standard for class C GPCR labelling is 
what makes our investigation on potential labelling 
inconsistencies relevant. In addition, it could be 
particularly useful given the absence of 3D crystal 
structures for the full sequences of these receptors. 

In conclusion, the reported experiments provide a 
proof of concept for a support method for experts in 
GPCR (and proteins in general) database quality 
control and curation. 
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transformation and, therefore, the analyzed data 
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length. We might expect this transformation to limit 
undesired effects due to the differences in length of 
the original sequences on the classification of the 
sequences using SVMs (the starting point of our 
study). This supplementary file provides some 
evidence to support this expectation. For that, we 
show, next to each other, a histogram of the lengths of 
the complete data set (1,510 sequences) and a 
histogram of the lengths of the 163 SVM-misclassified 
sequences. 

Supplementary File 2. Annex with tables of 
sequences misclassified in the SVM-based procedure 
that were not included in the main text; File: 
GCB_Supplementary File 2.docx. In this 
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ABBREVIATIONS 

7TM: 7-TransMembrane 

AA: Amino Acid 

AAC: Amino Acid Composition 

GPCR: G Protein-Coupled Receptor 

GTM: Generative Topographic Mapping 

MSA: Multiple Sequence Alignment 

MVD: MultiVariate Data 

NLDR: Non-Linear Dimensionality Reduction 

PCA: Principal Component Analysis 

PT: Phylogenetic Tree 

SOM: Self-Organizing Maps 

SVM: Support Vector Machines 
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