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We proposed the combination of signal denoising technology and Hankel transforms algorithm which were both based on Haar
wavelet decomposition.Therefore, one can achieve above two purposes simultaneously while the wavelet decomposition is carried
out just for once. The principle and its derivation of the Haar wavelet method for Hankel transforms were put forward. Numerical
examples and engineering application showed that the precision of Haar wavelet method is about magnitude of 1.0𝐸 − 4 and
1.0𝐸 − 5; it can maintain good accuracy when using fewer wavelet coefficients. Moreover, it has better anti-noise performance and
better computational stability than the filter method, so it can be applied to the Hankel transforms with noisy data.

1. Introduction

TheHankel transforms (HT) arise naturally in the discussion
of the problems posed in cylindrical coordinates and hence
[1], as a result of separation of variables, involve Bessel
functions. The HT is frequently used as a tool for solving
numerous scientific problems. For example, the stratified
model and cylindrical coordinates are widely used in geo-
physical research, and the HT arises in forward and inverse
calculation with zero or first order. The general HT pair with
the kernel being 𝐽] is defined as

𝐹] (𝑟) = ∫

∞

0
𝜆𝑓 (𝜆) 𝐽] (𝜆𝑟) d𝜆,

𝑓 (𝜆) = ∫

∞

0
𝑟𝐹] (𝑟) 𝐽] (𝜆𝑟) d𝑟,

(1)

where 𝐽] is the ]th-order Bessel function of the first kind.
Analytical evaluations are rare and their numerical compu-
tations are difficult because of the oscillatory behavior of the
Bessel function and the infinite length of the interval.

To overcome these difficulties, various different tech-
niques are available in the literature. The first is the fast HT
as proposed by Siegman in [2]. Here, via an exponential
change of variables, the problem is transformed in the space

of the logarithmic coordinates and the fast Fourier transform
in that space. The disadvantage is requiring sampling over
an exponential grid, thereby leading to important errors for
functions with an oscillating tail. Moreover, it is sensitive to
the smoothness of the functions [3]. The second is the back-
projection and projection-slice methods [4], which carry out
the HT as a double integral by means of one of the standard
integral representations of the Bessel functions. But these
methods generally require the efficient implementation of
Chebyshev and Abel transforms. The computational com-
plexity is unfortunately \(𝑁2) [5]. In [6], the authors used
Filon quadrature philosophy to evaluate zero-order HT.They
separated the integrand into the product of slowly varying
component and a rapidly oscillating one.Thismethods works
quite well for computing 𝐹

0
(𝑟) for 𝑟 ⩾ 1, but the error is

appreciable for 𝑟 < 1. And the calculation of inverse HT
is more difficult as 𝐹

0
(𝑟) is no longer a smooth function

but a rapidly oscillating one. In 1998, Yu et al. [7] gave
another method to compute zero-order quasi-discrete HT by
approximating the input function by a Fourier-Bessel series
over a finite integration interval. It leads to a symmetric
transformation matrix. And later in 2004, Guizar-Sicairos
and Gutierrez-Vega [8] obtained a powerful scheme to cal-
culate the HT of order 𝑛 by extending the zero-order HT
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algorithm of Yu to higher orders. Their algorithm is based
on the orthogonality properties of Bessel functions. Similarly,
Gupta et al. [9] has proposed to transform the integral
kernel function using orthogonal exponential expansion.
This expansion reduces the integral to a simple algebraic
sum because the analytical solution of HT of an exponential
function is readily available. The essence of Pravin method
is adopting exponential functions for fitting or interpolating
bases [10].

More recently, Postnikov [11] and Zykov and Postnikov
[12] proposed, for the first time, a novel and powerful method
for computing zero- and first-order HT by using Haar bases
and piecewise-linear bases. After that, Singh et al. adopted the
linear Legendre multi-wavelets [3], rationalized Haar (RH)
wavelets [13], and the hybrid method of block-pulse and
Legendre polynomials [1] for small random perturbation in
data function situation [14]. The above methods can be cast
into a general class as expansion of integrand by wavelets.

However, from the engineering perspective, the wavelet
theory is exactly originated from earth science which is
initially proposed for observed signal analysis, and it is widely
used in the signal denoising. Therefore, in this paper, we
proposed to combine the signal denoising technology and the
HT calculation algorithm which are both based on wavelet
decomposition, so as to achieve the above two purposes
simultaneously by choosing the decomposed coefficient and
its threshold, while the wavelet decomposition is carried out
just for once.

The criterion for selecting appropriate wavelet is that the
chosen wavelets and their Bessel integral are easy to calculate.
As for filtering, most wavelets can easily satisfy. Hence, the
simplest and orthogonal Haar wavelet is adopted. Firstly, the
principle of Haar wavelet decomposition is presented and the
HT algorithm based on wavelet is given. Then, numerical
examples and EM sounding application with comparison are
carried out to illustrate the feasibility and performance of
proposed algorithms.

2. Principle of Haar Wavelet Decomposition

Haar wavelet is the simplest, orthogonal, and compact sup-
port wavelet, and its scaling function and generating function
are defined as

𝜙 (𝑡) =

{

{

{

1, 𝑡 ∈ [0, 1) ,

0, 𝑡 ∉ [0, 1) ,

𝜓 (𝑡) =

{{{{

{{{{

{

1, 𝑡 ∈ [0, 0.5) ,

−1, 𝑡 ∈ [0.5, 1) ,

0, 𝑡 ∉ [0, 1) .

(2)

The corresponding binary scale translations are

𝜙
𝑗,𝑘
(𝑡) = 2−𝑗/2𝜙 (2−𝑗𝑡 − 𝑘) ,

𝜓
𝑗,𝑘
(𝑡) = 2−𝑗/2𝜓 (2−𝑗𝑡 − 𝑘) ,

(3)

where 𝑗 and 𝑘 are integer referred separately as scale factor
and translation factor. The scale space 𝑉

𝑗
which is expanded

by Φ
𝑗,𝑘
(𝑡) possess orthogonality just in scale 𝑗, while the

wavelet space 𝑊
𝑗
which is expanded by Ψ

𝑗,𝑘
(𝑡) possesses

orthonormality in all scales. For arbitrary function𝑓(𝑡), it can
be decomposed in scale 𝐽 as

𝑓 (𝑡) ≈ 𝑓
𝑚
(𝑡) = ∑

𝑘∈𝑍

𝑐
𝐽,𝑘
𝜙
𝐽,𝑘
(𝑡) +

𝐽

∑

𝑗=1
∑

𝑘∈𝑍

𝑑
𝑗,𝑘
𝜓
𝑗,𝑘
(𝑡)

= 𝑃
𝐽
𝑓 (𝑡) +𝐷1𝑓 (𝑡) + ⋅ ⋅ ⋅ +𝐷𝐽𝑓 (𝑡) .

(4)

Here, the 𝑃
𝐽
𝑓(𝑡) is the projection of 𝑓(𝑡) in scale space 𝑉

𝐽
,

which is corresponding to the smooth approximation of 𝑓(𝑡)
under scale 𝐽 and reflects the overall information.The𝐷

𝑗
𝑓(𝑡)

is the projection of 𝑓(𝑡) in wavelet space𝑊
𝑗
and reflects the

detail information under scale 𝑗. All the scale coefficient 𝑐
𝐽,𝑘

and wavelet coefficient 𝑑
𝑗,𝑘

can be directly determined by the
inner product of 𝑓(𝑡) and the corresponding basis functions
as

𝑐
𝐽,𝑘

= ⟨𝑓 (𝑡) , 𝜙
𝐽,𝑘
(𝑡)⟩ ,

𝑑
𝑗,𝑘

= ⟨𝑓 (𝑡) , 𝜓
𝑗,𝑘
(𝑡)⟩ .

(5)

Babolian and Shahsavaran [15] have proved that the
approximation error in (4) is determined by

󵄩󵄩󵄩󵄩𝑓 (𝑡) −𝑓𝑚 (𝑡)
󵄩󵄩󵄩󵄩

2
=
𝑀

2

3
⋅
1
𝑚

2 ,

󵄩󵄩󵄩󵄩𝑓 (𝑡) −𝑓𝑚 (𝑡)
󵄩󵄩󵄩󵄩 = 𝑂(

1
𝑚
) ,

(6)

where 𝑀 is the maximum absolute derivative value of 𝑓(𝑡)
and𝑚 is the number of the terms in (4). So the error bounds
of the wavelet approximation have an inverse relationship to
the decomposition level, and the larger the𝑚means the better
the convergence.

3. Hankel Transform Based on
Haar Wavelet Decomposition

The wavelet method for HT is essentially a kind of integrand
expansion. The selected wavelet function should satisfy the
following conditions. Firstly, it should have good approx-
imation ability for integrand, and meanwhile, an efficient
coefficient calculation algorithm is available. In addition, its
HT should have an analytical or simple expression. In this
paper, the chosen function is Haar wavelet. It can acquire
any precision as long as enough terms are adopted. And its
decomposition coefficients can be efficiently calculated by
the Mallat algorithm [16] which is similar to fast Fourier
transform. Moreover, the HT of Haar function is corre-
sponding to integral of the Bessel function and therefore has
simple analytic expression. The Haar wavelet method will be
illustrated in detail in the following.

(1) The Integrand Is Decomposed by Haar Wavelet. The first
step is to determine the proper scale 𝐽 according to the
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precision or signal to noise ratio (SNR). And then, one can
determine the truncation length according to the attenuation.
Finally, the integrand 𝜆𝑓(𝜆) can be expressed by scale
function and wavelet function as

𝜆𝑓 (𝜆) = ∑

𝑘∈𝑍

𝑐
𝐽,𝑘
𝜙
𝐽,𝑘
(𝜆) +

𝐽

∑

𝑗=1
∑

𝑘∈𝑍

𝑑
𝑗,𝑘
𝜓
𝑗,𝑘
(𝜆) . (7)

Here, the scale and wavelet coefficients can be calculated effi-
ciently by Mallat algorithm. And based on multi-resolution
analysis, for the discrete integrand interval Δ and truncation
data number𝑁, one can derive that, in the scale 𝐽, the domain
length of scale function and wavelet function are both Δ

𝐽
=

2
𝐽

Δ and the total number of the scale function is 𝑚 = 𝑁/2
𝐽.

But for the number of wavelets, it is𝑚 for scale 𝐽, 2m for scale
𝐽-1, and so on. The total number of all the scales is 2N.

(2) HT in Wavelet Decomposition Form. Substitute the
expansion into the transform formula and apply truncation
processing. Then scale and wavelet functions are integral in
domain, respectively. We can obtain the following:

𝐹] (𝑟) = ∫

∞

0
𝜆𝑓 (𝜆) 𝐽] (𝜆𝑟) d𝜆 =

𝑚−1
∑

𝑘=0
𝑐
𝐽,𝑘
∫

∞

0
𝜙
𝐽,𝑘
(𝜆)

⋅ 𝐽] (𝜆𝑟) d𝜆+
𝐽

∑

𝑗=1

𝑁/2𝑗−1
∑

𝑘=0
𝑑
𝑗,𝑘
∫

∞

0
𝜓
𝑗,𝑘
(𝜆) 𝐽] (𝜆𝑟) d𝜆

(𝑡=𝜆𝑟)

=

𝑚−1
∑

𝑘=0
𝑐
𝐽,𝑘

1
𝑟
∫

∞

0
𝜙
𝐽,𝑘
(
𝑡

𝑟
) 𝐽] (𝑡) d𝑡 +

𝐽

∑

𝑗=1

𝑁/2𝑗−1
∑

𝑘=0
𝑑
𝑗,𝑘

1
𝑟

⋅ ∫

∞

0
𝜓
𝑗,𝑘
(
𝑡

𝑟
) 𝐽] (𝑡) d𝑡 ≈

𝑚−1
∑

𝑘=0
𝑐
𝐽,𝑘

1
𝑟
∫

𝑟(𝑘+1)Δ 𝐽

𝑟𝑘Δ 𝐽

𝐽] (𝑡) d𝑡

+

𝐽

∑

𝑗=1

𝑁/2𝑗−1
∑

𝑘=0
𝑑
𝑗,𝑘

⋅
1
𝑟
{∫

𝑟(𝑘+1/2)Δ 𝑗

𝑟𝑘Δ 𝑗

𝐽] (𝑡) d𝑡 −∫
𝑟(𝑘+1)Δ 𝑗

𝑟(𝑘+1/2)Δ 𝑗
𝐽] (𝑡) d𝑡} .

(8)

(3) HT of Haar Function. The above integral is exactly to
calculate the ]-order Bessel integral which can employ the
following integral formula:

∫

𝑧

0
𝐽] (𝑡) d𝑡 = 2

∞

∑

𝑘=0
𝐽]+2𝑘+1 (𝑧) . (9)

Specifically, the expression of zero-order integral is

∫

𝑧

0
𝐽0 (𝑡) d𝑡 = 2 (𝐽1 (𝑧) + 𝐽3 (𝑧) + 𝐽5 (𝑧) + ⋅ ⋅ ⋅)

= 2 lim
𝑀→∞

𝑀

∑

𝑚=0
𝐽2𝑚+1 (𝑧) .

(10)

The first-order integral expression is

∫

𝑧

0
𝐽1 (𝑡) d𝑡 = 1− 𝐽0 (𝑧) . (11)

(4) Calculation of HT. It can be seen clearly that as
the scale 𝐽 increases, the smooth approximation error of
integrand increases; the detail part corresponding to the
wavelet approximation in this scale gets vaguer. So the
total approximation error is comparatively large. Hence, in
order to improve the approximation accuracy, the wavelet
components under scales 𝐽-1, 𝐽-2, 𝐽-3, and so on can be
gradually added. As the scale decreases, the amplitude of
the wavelet component gradually reduces. However, for the
wavelet filtering, the noise signals just correspond to the
wavelet components with smaller amplitude. Hence, one can
control approximation accuracy and filtering by selecting the
scale of the adding wavelet. In fact, one can utilize easily
the smooth approximation and its corresponding details,
the balance between approximation accuracy and denoising
performance can be controlled by adjusting 𝐽. So after
determining the above parameters, for the given variable 𝑟,
the corresponding HT 𝐹](𝑟) can be calculated by (8).

4. Numerical Experiments

In this section, four typical HT [17] which include zero
and first order were investigated. The integrands involve the
monotonous and nonmonotonic cases. The HT experiments
for noisy data and no noise situation were implemented.
And the Haar method was compared with the classical filter
method. The HT pairs were listed as

∫

∞

0
𝜆 exp (−𝜆2) 𝐽0 (𝜆𝑟) d𝜆 =

1
2
exp(−𝑟

2

4
)

Integral 1,

∫

∞

0
exp (−4𝜆) 𝐽0 (𝜆𝑟) d𝜆 =

1
√16 + 𝑟2

Integral 2,

∫

∞

0
𝜆
2 exp (−𝜆2) 𝐽1 (𝜆𝑟) d𝜆 =

𝑟

4
exp(−𝑟

2

4
)

Integral 3,

∫

∞

0
exp (−3𝜆) 𝐽1 (𝜆𝑟) d𝜆 =

√9 + 𝑟2 − 3
𝑟√9 + 𝑟2

Integral 4.

(12)

4.1. The Integrand Approximation Error Analysis. In the fol-
lowing experiments, the discrete interval of above integrands
was set as ℎ = 0.001; the truncation length is 𝑁 = 4096.
So the ratios of maximum to minimum for the integrands
were all greater than 1.0𝐸 + 5, which indicated that the
outside integrands value is far less than the chosen. Then,
setting a single scale 𝐽 = 6, the corresponding scale and
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Table 1: Approximation errors of integrands with Haar wavelet (𝐽 = 6).

Errors Integrand 1 Integrand 2 Integrand 3 Integrand 4
Max of integrand 4.2888𝐸 − 1 9.9601𝐸 − 1 3.6788𝐸 − 1 9.9700𝐸 − 1

Max of absolute errors 1.5491𝐸 − 2 5.9239𝐸 − 2 9.0990𝐸 − 3 4.4934𝐸 − 2

RMSE 3.1257𝐸 − 3 6.4337𝐸 − 3 2.3884𝐸 − 3 5.5765𝐸 − 3

Table 2: Approximation errors of integrands with Haar wavelet (𝐽 = 5).

Errors Integrand 1 Integrand 2 Integrand 3 Integrand 4
Max of absolute errors 7.4988𝐸 − 3 2.9272𝐸 − 2 4.4037𝐸 − 3 2.2089𝐸 − 2

RMSE 1.5606𝐸 − 3 3.2141𝐸 − 3 1.1926𝐸 − 3 2.7851𝐸 − 3

Table 3: The maximum absolute errors comparison between Haar wavelet (𝐽 = 6) and filter method.

Error Max of absolute errors in [0.1, 3.0] Max of absolute errors in [0.1, 100]
Haar 61/47 point filter 120/140 point filter Haar 61/47 point filter

Integral 1 2.4233𝐸 − 4 4.1481𝐸 − 6 1.6097𝐸 − 7 3.0357𝐸 − 2 2.5726𝐸 − 6

Integral 2 4.9964𝐸 − 4 1.4520𝐸 − 8 1.7021𝐸 − 11 8.0027𝐸 − 3 1.4520𝐸 − 8

Integral 3 9.4047𝐸 − 5 6.9370𝐸 − 6 3.8131𝐸 − 7 1.1050𝐸 − 4 3.6599𝐸 − 6

Integral 4 7.1477𝐸 − 5 6.4569𝐸 − 11 2.9526𝐸 − 13 7.3041𝐸 − 5 3.3231𝐸 − 11

wavelet coefficient numbers were both 64. The integrands
were approximated by the smooth approximation and the
wavelet approximation and the approximation errors were
shown in Table 1.

If the scale 𝐽 = 5 is set, the scale and wavelet coefficient
numbers were both 128, and the approximation errors were
shown in Table 2.

The RMSE in Tables 1 and 2 is defined as

𝐸RMSE = √
1
𝑁

𝑁

∑

𝑖=1
|err (𝑖)|2. (13)

From Tables 1 and 2, we can find that the approximation
error of Haar function is comparatively large for continuous
functions because of its constant in the domain. The approx-
imation error is associated with scale, and in general, the
maximum error is reduced by half when the scale is reduced
one level.

4.2. Hankel Transforms without Noise. Firstly, setting 𝑟 ∈

[0.1, 3.0] and the interval was 0.1. In the filter method, two
kinds of node schemes were adopted, namely, the 61 and 120
node schemes for zero-order case and the 47 and 140 node
schemes for first-order case [18].The scale forwaveletmethod
is 𝐽 = 6. The number of truncation terms in Bessel function
integral (as shown in (10)) is𝑀 = 11.

And secondly, we extend the region of 𝑟 to [0.1, 100.0]

with interval 2.0. The maximum absolute errors and their
comparisons were shown in Table 3.

We can conclude that the overall accuracy of wavelet
method is about magnitude of 1.0𝐸 − 4 to 1.0𝐸 − 5; this
is mainly caused by the limited approximation accuracy for
integrand due to the constant value characteristics of the
scale and wavelet functions. Numerical results also showed
that when adding the wavelet detail information of scales

𝐽 = 5 and 𝐽 = 4, even directly choosing the original
discrete sequence, the accuracy improvement is still limited.
It is identical to integrand approximation that the maximum
error is reduced by half while the scale is reduced one level.
Hence, we can increase the scale 𝐽 for better efficiency while a
smaller error loss. Simultaneously, the truncated level𝑀 can
also affect the precision; numerical experiment showed that
when𝑀 increase from 11 to 31, the accuracy can be improved.
For example, the maximum absolute error 3.0357𝐸 − 2 in
Table 3 gets smaller as 1.1379𝐸 − 2. But the cost is the time
consuming.

However, for the filter method, we can find easily that
increasing the filter node numbermay lead to better accuracy.
The filter method is only adapted to specific intervals. For
example, in the interval 𝑟 < 0, the filter method may
be unstable (for integrals 2 and 4), while the Haar wavelet
method is stable.

From the time consuming aspect, the filter method has
undoubtedly significant advantages. The time consumed is
about 4∼6ms for integral 1. But for Haar wavelet method,
the coefficient calculation time is about 10∼12ms and the
integral calculation time is approximately 1.7∼1.8 s (or 440ms
for 𝐽 = 8). However, the wavelet method has significant
computational stability.

Then, consider a well-knownHT [1] in optical diffraction
theory where 𝑓(𝜆) and 𝐹](𝑟) are

𝑓 (𝜆) =
2
𝜋
[arccos (𝜆) − 𝜆√1 − 𝜆2] , 0 ≤ 𝜆 ≤ 1,

𝐹0 (𝑟) = 2
𝐽
2
1 (𝑟/2)
𝑟
2 , 0 ≤ 𝑟 < ∞.

(14)

The 𝑓(𝜆) is the optical transfer function of an aberration-
free optical system with a circular aperture and 𝐹

0
(𝑟) is the

corresponding spread function. In numerical simulations, the
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Figure 1: Absolute error curves comparison of Haar method and
filter method with 120 nodes.

discrete interval of the integrand 𝑔(𝜆) = 𝜆𝑓(𝜆) is set as ℎ =

1.0/8192 and the truncation region is [ℎ, 1.0] with𝑁 = 8192

data points. And setting 𝑟 ∈ [0.01, 20.0] and the interval is
0.05. In the filter method, the high precision scheme of 120
nodes was adopted. While in wavelet method, the truncated
level was set 𝑀 = 31 and scale 𝐽 = 6. The absolute error
curves and comparison were shown in Figure 1. The results
showed that the maximum absolute error and RMSE in filter
method were 3.7499𝐸 − 1 and 8.8241𝐸 − 2. However, for
wavelet method, the corresponding errors were 1.4209𝐸 − 5

and 6.8513𝐸 − 6.
As can be seen fromFigure 1, the accuracy ofHaarwavelet

method is about the magnitude of 1.0𝐸 − 5 to 1.0𝐸 − 7, while
the filtermethod is aboutmagnitude of 1.0𝐸−1 to 1.0𝐸−4. So
the wavelet method’s accuracy is much higher than the filter’s
in this experiment.

Sowe can conclude that the filtermethod ismuch suitable
for the integrand with exponential form because the filter
method utilizes an exponential replacement of variables,
and its coefficients are calculated by exponential integrand
optimally. However, the Haar wavelet method is based on
integrand decomposition and can be adopted much more
widely. Its defect lies in the truncation error, approximation
error, and relative larger time consuming.

And finally, the HT of noisy data situation was inves-
tigated. The parameters were set the same as [1], so as to
compare conveniently. The noisy data function is 𝑔𝜀(𝜆

𝑖
) =

𝑔(𝜆
𝑖
)+𝜀𝜃
𝑖
, where 𝜃

𝑖
is a uniform random variable with values

in [−1, 1].Three different noise terms 𝜀 as 𝜀
0
= 0.0, 𝜀

1
= 0.002,

and 𝜀
2
= 0.005 were employed. The error curves of Haar

method were shown in Figure 2. Hence, the errors were in
the range of [−1.0𝐸 − 5, 2.0𝐸 − 5] while the errors of hybrid
method of Block-pulse and Legendre polynomials in [1] were
in the range of [−1.5𝐸 − 4, 5.0𝐸 − 5].

4.3. Hankel Transforms of Noisy Data. Owning to the
inevitable noise in practical application, the HT with noisy
data was simulated and error variation was analyzed. The
integrands were chosen as the former. Set 𝑟 ∈ [0.05, 3.0]
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Figure 2: Error curves comparison of Haar method with different
noise terms.
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Figure 3: Comparison of exact, Haar method and filter method in
example 1 with 20 dB noise.

and the interval is 0.05 and consider the Gaussian noise with
20 dB, 40 dB, and 60 dB situations. The curves of HT for
integral 1 are shown in Figure 3 with 20 dB noise.

It can be obviously seen that the transformed function in
the filter method contains significant noise because it directly
substitutes the noisy data in integrand. However, for the Haar
wavelet method, the small amplitude noise is decomposed
in detail space to different scales. In the implementation of
transforms, just the smooth approximation and detail part in
scale 𝐽 were considered; the noisy signals smaller than scale
𝐽 were not considered. So the effect of noise has not been
reflected consequently, the transformed function by the Haar
wavelet method approximates the exact solution very well.

Hereafter, the noisy data experiments with 40 dB and
60 dBwere carried out.The absolute error curves comparison
is shown in Figure 4. As the SNR increases, the influence
of noise gets smaller, and the accuracy of the numerical
calculation improves. For the filtermethod, the randomnoise
of integrand directly affects the transformed function, and the
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Table 4: The root mean square errors comparison between Haar wavelet (𝐽 = 6) and filter method.

RMSE 20 dB 40 dB 60 dB
Haar 61/47 nods Haar 61/47 nodes Haar 61/47 nodes

Integral 1 4.6623𝐸 − 4 1.2357𝐸 − 2 1.8164𝐸 − 4 1.1841𝐸 − 3 1.6494𝐸 − 4 1.1110𝐸 − 4

Integral 2 8.7687𝐸 − 4 6.3719𝐸 − 3 4.6967𝐸 − 4 6.3924𝐸 − 4 4.8124𝐸 − 4 6.0250𝐸 − 5

Integral 3 2.1133𝐸 − 4 7.8903𝐸 − 3 5.8432𝐸 − 4 7.0230𝐸 − 4 5.5511𝐸 − 4 6.9836𝐸 − 4

Integral 4 5.4067𝐸 − 4 2.8169𝐸 − 3 6.7550𝐸 − 5 2.2125𝐸 − 4 5.4316𝐸 − 5 2.2098𝐸 − 5
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Figure 4: Absolute error comparison between Haar wavelet and filter method with noise of 40 dB and 60 dB.

error distribution is also random. But for the Haar wavelet
method, the selected smooth and detail part in scale 𝐽 for
integrand approximation reflects the essence of filtering, so
the transformed function is smooth, and its error curve is also
relatively regular.

In addition, we introduced the root mean square error
(RMSE) to illustrate the overall error distribution in the above
four integrals. The comparison with noise was shown in
Table 4.

As can be seen, the Haar wavelet method possesses good
anti-noise performance because of its filtering effect on the
integrand. It can maintain high accuracy even with larger
noise (for 20 dB).However, the filtermethod is greater impact
of noise. As the SNR increases 20 dB which means noise is
reduced to about 10 percent, the RMSE is also reduced to 10
percent. So it is consistent with the theoretical analysis.

Then, different scales as 𝐽 = 8 and 4were investigated.The
corresponding scale and wavelet coefficient numbers were
16 and 256, respectively. We took the average of 100 times
experiments for a statistical average. The root mean square
errors were shown in Table 5. We can find that as the scale
increasing, the coefficient numbers decreasing, and, however,
the RMSE errors get larger.

5. Haar Wavelet Method in Electromagnetic
Sounding Application

In DC sounding, consider the following three-hierarchical-
layer model: 𝜌

1
= 400Ω⋅m, ℎ

1
= 15m, 𝜌

2
= 50Ω⋅m, ℎ

2
=

20m, 𝜌
3
= 1000Ω⋅m. From recurrence relation, the apparent

resistivity conversion function 𝑇
1
(𝜆) is

𝑇1 (𝜆)

= 𝜌1
1 + 𝐾12𝑒

−2𝜆ℎ1 + 𝐾23𝑒
−2𝜆(ℎ1+ℎ2) + 𝐾12𝐾23𝑒

−2𝜆ℎ2

1 − 𝐾12𝑒
−2𝜆ℎ1 − 𝐾23𝑒

−2𝜆(ℎ1+ℎ2) + 𝐾12𝐾23𝑒
−2𝜆ℎ2

,

𝐾
𝑖𝑗
=

𝜌
𝑗
− 𝜌
𝑖

𝜌
𝑗
+ 𝜌
𝑖

.

(15)

HT of the apparent resistivity and resistivity conversion
function is as follows:

𝜌
𝑠
(𝑟)

𝑟
2 = ∫

∞

0
𝑇1 (𝜆) 𝐽1 (𝜆𝑟) 𝜆 d𝜆,

𝑇1 (𝜆) = ∫

∞

0

𝜌
𝑠
(𝑟)

𝑟
𝐽1 (𝜆𝑟) d𝑟.

(16)

We considered using the apparent resistivity 𝜌
𝑠
(𝑟) to calcu-

late the conversion function 𝑇
1
(𝜆) in sounding application.

Firstly, the apparent resistivity 𝜌
𝑠
(𝑟) is given in the forward

calculation and then the integrand obtained 𝜌
𝑠
(𝑟)/𝑟 in (16).

Finally, calculating the 𝑇
1
(𝜆) is corresponding to the first-

order HT. In filter method, the 47-node scheme is adopted,
while the scale 𝐽 = 3 is chosen in Haar wavelet method. The
ranges of 𝑟 and 𝜆 are correspondingly set as [1, 2048] and
[0.002, 0.256] whose intervals are 1 and 0.002.

When the integrand 𝜌
𝑠
(𝑟)/𝑟 does not contain noise, the

curves of conversion function 𝑇
1
(𝜆) are shown in Figure 5.
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Table 5: The root mean square errors comparison between Haar wavelet scales.

RMSE 20 dB 40 dB 60 dB
𝐽 = 8 𝐽 = 4 𝐽 = 8 𝐽 = 4 𝐽 = 8 𝐽 = 4

Integral 1 3.5801𝐸 − 3 9.3433𝐸 − 4 4.9504𝐸 − 4 2.4083𝐸 − 4 2.9313𝐸 − 4 1.7519𝐸 − 4

Integral 2 3.3828𝐸 − 3 7.3215𝐸 − 4 6.4996𝐸 − 4 4.0977𝐸 − 4 9.3518𝐸 − 4 4.6637𝐸 − 4

Integral 3 2.0787𝐸 − 3 8.2472𝐸 − 4 5.3414𝐸 − 4 1.0870𝐸 − 4 4.2525𝐸 − 4 6.6308𝐸 − 5

Integral 4 3.0913𝐸 − 3 9.2945𝐸 − 4 7.5151𝐸 − 4 1.5243𝐸 − 4 7.4011𝐸 − 4 1.0482𝐸 − 4
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Figure 5: Comparison of 𝑇
1
(𝜆) curves.

The numerical results show that themaximum absolute error,
maximum relative error, and RMSE in filter method are
16.7422, 4.1886%, and 9.7080. However, for wavelet method,
the corresponding errors are 81.2516, 14.8812%, and 12.6663.
The loss of accuracy is mainly caused by the truncation and
approximation error.

Then, the noisy data for HT were carried out. Numerical
simulations showed that the filter method is unstable until
the SNR is greater than 80 dB. However, for Haar wavelet
method, it can maintain its accuracy even for large noise
as SNR = 20 dB. The 𝑇

1
(𝜆) curves of 20 dB, 40 dB, and

60 dB Gaussian noise were shown in Figure 6.Themaximum
absolute error, maximum relative error, and RMSE in filter
method are 16.6394, 90.8510%, and 14.6798 in case of SNR =
20 dB. Form Figure 7, we can find that the transform is still
stable for 20 dB noise. So the wavelet method has good anti-
noise performance and significant computational stability.

6. Conclusion

Wehave obtained a stable algorithm forHT, and the following
conclusions can be drawn:

(1) The combination of signal denoising technology and
Hankel transforms algorithm was proposed in this
paper.The common technology of them is the wavelet
decomposition, and specifically, the Haar wavelet is
chosen.Therefore, we can achieve above twopurposes
simultaneously while the wavelet decomposition is
carried out just for once.
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Figure 6: 𝑇
1
(𝜆) calculated by noisy data with wavelet.
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Figure 7: 𝑇
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(𝜆) comparison with noisy data.

(2) The principle and its derivation of Haar wavelet
method for HT were given. Numerical examples
and engineering application simulation showed that
the Haar wavelet method has better computational
stability than the filter method; its precision is about
magnitude of 1.0𝐸 − 4 and 1.0𝐸 − 5; it can maintain
good accuracy even using a few wavelet coefficients.

(3) When considering the effects of noisy data, numerical
experiments reveal that theHaarwaveletmethod only
chooses the scale and wavelet coefficient in the same
level, which is actually a filtering process, so it can
get similar results to the noiseless case even with large
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noise. However, the filter method is easily affected by
noise, leading to accuracy decrease or even unstable
calculation. So the wavelet method has good anti-
noise performance and significant computational sta-
bility. It can be applied to the HT with noisy data.
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