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Abstract

In recent years, the research on data mining methods has received increasing
attention. In this paper, we design an uncertain system with the extracted uncertain
inference rules to solve the classification problems in data mining. And then, two
extraction methods integrated with ant colony optimization are proposed for the
generation of the uncertain inference rules. Finally, two applications are given to verify
the effectiveness and superiority of the proposed methods.
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Introduction
Nowadays, databases and computer networks, coupled with the use of advanced auto-
mated data generation and collection tools, are widely used in many different fields such
as finance, E-commerce, logistics, etc. As a result, the amount of data that people have
to deal with is dramatically increasing. People hope to carry out scientific research, busi-
ness decision, or business management on the basis of the analysis of the existing data.
However, the current data analysis tools have difficulty in processing the data in depth.
To compensate for this deficiency, there come the data mining techniques. Data mining is
the computational process of discovering some interesting, potentially useful patterns in
large data sets. Those patterns can be concepts, rules, laws, and modes. The overall goal
of data mining is to extract information from a data set and transform it into an under-
standable structure for further use. Data mining helps us to discover valuable information
and knowledge. Data mining is applied tomany fields in reality. There are many successful
examples [1] of data mining in business and science research. For instance, data mining is
widely used in financial data analysis, telecommunication, retail, and biomedical research.
Therefore, the study of data mining technology has an important practical significance.
The main jobs of data mining are data description, data classification, data dependency,

data compartment analysis, data regression, data aggregate, and data prediction. What
data classification does is to find a couple of models or functions that can accurately
describe the characteristics of the data sets. Then, we can identify the categories of the
previously unknown data. After obtaining themodels or functions from the set of training
data with data mining algorithms, we use many methods to describe the output such as
classification rules (if-then), decision trees, mathematical formula, and neutral network.
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There are a variety of approaches in data mining. For mining objects in different fields,
many different specifiedmethods are invented. The approaches we usually used are statis-
tical methods, machine learning methods, and modern intelligent optimization methods.
The statistical methods are very effective methods from the start. In addition, many other
data mining methods are invented based on the statistical methods. When dealing with
classification problems, Bayesian classification and Bayesian belief network are important
classification methods that based on the statistical principle. Machine learning methods
are mainly used to solve the conceptual learning, pattern classification, and pattern clus-
tering problems. The core content of machine learning is inductive learning. And there
already exist a number of mature technology methods, such as decision tree method for
classification problems. Decision trees method is one of the most popular classification
methods. The early decision trees algorithm is ID3 method. Later, based on ID3, many
algorithms such as C4.5 method [2] are proposed. Besides, there are some variants of the
decision trees algorithm including incremental tree structure ID4, ID5, and expandable
tree structure SLIQ for massive data set.
In recent years, intelligent optimization algorithms are widely applied into data min-

ing. Neutral network is a simulation model for complex system with nonlinear relations.
It is very suitable to deal with complex nonlinear relations in spatial data. Researchers
have already proposed different network models to realize the clustering, classification,
regression, and pattern recognition of the data. Furthermore, many evolution algorithms
such as simulated annealing algorithm are introduced into neutral network algorithm
as the optimization strategies. Genetic algorithm is a global search algorithm that sim-
ulates the biological evolution and genetic mechanism. It plays an important role in
optimization and classification machine learning. Mixed algorithms of genetic algorithm
and other algorithms, such as decision trees, neutral network, have been applied to the
data mining technology. Ant colony optimization algorithm is a bionic optimization algo-
rithm that simulates the behavior of the ants. Based on that, a data mining technique
ant-miner [3] was invented. And Herrera [4] applied it to fuzzy rules learning. How-
ever, ant colony optimization algorithm has some weakness such as slow convergence,
random initial solutions. For this reason, some improved ant colony optimization algo-
rithms are proposed. Zhu proposed an improved ant colony optimization algorithm
(ACOA) [5] and a mutation ant colony optimization algorithm (MACO) [6] to speed up
the algorithms and avoid the solutions getting stuck in local optimums. Hybrid genetic
ant colony optimization [7] and hybrid particle swarm ant colony optimization algo-
rithm [8] significantly improve the performance of the original ant colony optimization
algorithm.
The real world is so complex that human being may face different types of indetermi-

nacy everyday. To get a better understanding of the real world, many mathematical tools
are created. One of them is probability theory which is used to model indeterminacy from
samples. However, in many cases, no samples are available to estimate a probability distri-
bution. In this situation, we have no choice but to invite some domain experts to evaluate
the belief degree that each event may occur. We cannot use probability theory to deal
with belief degree since human beings usually overweight unlikely events which makes
the belief degrees deviate far from the frequency. In view of this, Liu [9] founded uncer-
tainty theory based on normality axiom, duality axiom, subadditivity axiom, and product
measure axiom. It has become a powerful mathematical tool dealing with indeterminacy.
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Many researchers have done a lot of theoretical work related to uncertainty theory. In
2008, Liu [10] presented the uncertain differential equation. Later, the existence and
uniqueness theorem was given [11]. And the stability of uncertain differential equation
was discussed [12,13]. Also, some analysis and numerical methods for solving uncertain
differential equation were proposed. With uncertain differential equation describing the
evolution of the system, we may solve some practical problems. Peng and Yao [14] stud-
ied an option pricing models for stocks. Zhu [15] proposed an uncertain optimal control
model in 2010.
In [16,17], Liu proposed and studied the uncertain systems based on the concepts of

uncertain sets, membership functions, and uncertain inference rules. An uncertain sys-
tem is a function from its inputs to outputs based on the uncertain inference rule. Usually,
an uncertain system consists of five parts: inputs, rule-base, uncertain inference rules,
expected value operator, and outputs. Following that, Gao et al. [18] generalized uncertain
inference rules and described uncertain systems with them. Peng and Chen [19] proved
that uncertain systems are universal approximator and then demonstrated that the uncer-
tain controller is a reasonable tool. Gao [20] designed an uncertain inference controller
that successfully balanced an inverted pendulum with 5 × 5 if-then rules. What is more
important is that this uncertain inference controller has a good ability of robustness.
On the basis of uncertainty theory, we consider two extraction methods for uncertain

inference rules by ant colony optimization algorithm. In the next section, we review the
ant colony optimization algorithm and give some basic concepts about uncertain sets.
Then, we formulate a model to extract inference rules based on data set. And then, we
propose an extraction method for uncertain inference rules by ant colony optimization
algorithm with a mutation operation. Finally, we combine the ant colony optimiza-
tion algorithm with simulated annealing algorithm to speed up the extraction method.
In the last section, we discuss two typical classification problems in data mining with
our results.

Preliminary
In this section, we review the ant colony optimization algorithm. And then, we give some
basic concepts on uncertainty sets.

Ant colony optimization algorithm

Ant colony optimization algorithm, initiated by Dorigo, is a heuristic optimization
approach. It simulates the behavior of real ants when they forage for food which relies on
the pheromone communication. In ant colony optimization algorithm, each path of artifi-
cial ants walking from the food sources to the nest is a candidate solution to the problem.
When walking on the path, the ants will release pheromone which evaporates over time.
And the artificial ants will lay down more pheromone on the path corresponding to the
better solution. While one ant has many paths to go, it will make a choice according to
the amount of the pheromone on the paths. The more pheromone there is on the path,
the better the solution is. As a result, bad paths will disappear since the pheromone evap-
orates over time. And good paths will be reserved since ants walking on it increases the
pheromone levels. Finally, one path which is used by most of the ants is left. Then, the
optimal solution to the problem is obtained.
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Consider the following optimization problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min f (x)
s.t.

g(x) ≥ 0
x ∈ D

(1)

where x is the decision variable in the domain D. And f (x) is the objective function while
g(x) is the constraint function.
We can use ant colony optimization algorithm to obtain the optimal solution to the

problem (1). The parameters in the algorithm are initial pheromone τ0, ant transfer prob-
ability p, number of ants M, pheromone evaporation rate ρ, and number of iterations T .
The procedures are as follows.

Step 1 Randomly generate a feasible solution x0 and set optimal solution s = x0. Initialize
all pheromone trails with the same pheromone level τ0. Set k ← 0.
Step 2 The artificial ant generates a walking path x in some probability p according to

the pheromone trails. If x ∈ D, then go to Step 3; otherwise, repeat Step 2 until x ∈ D.
Step 3 Repeat Step 2 until for each ant and generate M feasible solutions. Let sk be the

best solution in this iteration.
Step 4 If f (sk) < f (s), then s ← sk and update the pheromone trails according to the

optimal solution in the current iteration.
Step 5 If k < T , then k ← k + 1 and go to Step 2; otherwise, terminate.
Step 6 Report the optimal solution.

Uncertain set

Let � be a nonempty set and L be σ -algebra over �. Each � ∈ L is called an event. For
any �, M{�} ∈ [0, 1]. The set function M defined on L is called an uncertain measure
if it satisfies the following three axiom: M{�} = 1; M{�} + M{�c} = 1 for any � ∈ L;
M

{⋃∞
i=1 �i

} ≤ ∑∞
i=1M{�i} for all �1,�2, · · · ∈ L. Then, the triplet (�,L,M) is called

an uncertainty space [9]. The product uncertain measureM is an uncertain measure sat-
isfying M

{∏∞
i=1 �k

} = ∞∧
i=1

Mk{�k}, where �k are arbitrarily chosen events from Lk for
k = 1, 2, · · · , respectively.

Definition 1. [16] An uncertain set is a function ξ from an uncertainty space (�,L,M)

to a collection of sets of real numbers such that both {B ⊂ ξ} and {ξ ⊂ B} are events for
any Borel set B.

Example 1. Take (�,L,M) to be {γ1, γ2, γ3} with power set L. Then, the set-valued
function

ξ(γ ) =

⎧⎪⎪⎨
⎪⎪⎩
[ 1, 3] , if γ = γ1

[ 2, 4] , if γ = γ2

[ 3, 5] , if γ = γ3

is an uncertain set on (�,L,M).
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Definition 2. [16] The uncertain sets ξ1, ξ2, ξ3, · · · , ξn are said to be independent if for
any Borel sets B1,B2,B3, · · · ,Bn, we have

M

{ n⋂
i=1

(
ξ∗
i ⊂ Bi

)} =
n∧

i=1
M

{
ξ∗
i ⊂ Bi

}
and

M

{ n⋃
i=1

(
ξ∗
i ⊂ Bi

)} =
n∨

i=1
M

{
ξ∗
i ⊂ Bi

}

where ξ∗
i are arbitrarily chosen from

{
ξi, ξ ci

}
, i = 1, 2, · · · , n, respectively.

Definition 3. [21] An uncertain set ξ is said to have a membership function μ if for any
Borel set B of real numbers, we have

M{B ⊂ ξ} = inf
x∈Bμ(x),M{ξ ⊂ B} = 1 − sup

x∈Bc
μ(x).

The above equations will be called measures inversion formulas.

Remark 1. When an uncertain set ξ does have a membership function μ, it follows
from the first measure inversion formula that

μ(x) = M{x ∈ ξ}.

Example 2. An uncertain set ξ is called triangular if it has a membership function

μ(x) =
⎧⎨
⎩

x−a
b−a , a ≤ x ≤ b

x−c
b−c , b ≤ x ≤ c

(2)

denoted by (a, b, c) where a, b, c are real numbers with a < b < c.

Definition 4. [21]Amembership functionμ is said to be regular if there exists a point x0
such that μ(x0) = 1, and μ(x) is unimodal about the mode x0. That is, μ(x) is increasing
on (−∞, x0] and decreasing on [ x0,+∞).

Definition 5. [16] Let ξ be an uncertain set. Then, the expected value of ξ is defined by

E[ ξ ]=
∫ +∞

0
M{ξ 
 r}dr −

∫ 0

−∞
M{ξ � r}dr

provided that at least one of the two integrals is finite and

M{ξ 
 r} = 1
2
(M{ξ ≥ r} + 1 − M{ξ < r}),

M{ξ � r} = 1
2
(M{ξ ≤ r} + 1 − M{ξ > r}).

Theorem 1. [13] Let ξ be an uncertain set with regular membership function μ. Then

E[ ξ ]= x0 + 1
2

∫ +∞

x0
μ(x)dx − 1

2

∫ x0

−∞
μ(x)dx, (3)

where x0 is a point such that μ(x0) = 1.
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Example 3. Let ξ be a triangular uncertain set denoted by (a, b, c). Then, according to
Theorem 1, we have

E[ ξ ]= a + 2b + c
4

.

In fact, it follows from Equations 2 and 3 that

E[ ξ ] = b + 1
2

∫ c

b

x − c
b − c

dx − 1
2

∫ b

a

x − a
b − a

dx

= b − 1
4
(b − c) − 1

4
(b − a)

= a + 2b + c
4

.

Uncertain inference rule

Here, we introduce concepts of the uncertain inference and uncertain system. Inference
rules are the key points of the inference systems. In fuzzy systems, CRI approach [22],
Mamdani inference rules [23] and Takagi-Sugeno inference rules [24] are the most com-
mon used inference rules. Fuzzy if-then inference rules use fuzzy sets to describe the
antecedents and the consequents. Unlike fuzzy inference, both antecedents and conse-
quents in uncertain inference are characterized by uncertain sets. Uncertain inference
[16] is a process of deriving consequences from human knowledge via uncertain set
theory. First, we introduce the following inference rule.

Inference Rule 1. [16] Let X and Y be two concepts. Assume a rule ‘if X is an uncertain
set ξ , then Y is an uncertain set η’. From X is a constant a, we infer that Y is an uncertain
set

η∗ = η|a∈ξ

which is the conditional uncertain set of η given a ∈ ξ . The inference rule is represented by

Rule: If X is ξ , then Y is η

From: X is a constant a

Infer: Y is η∗ = η|a∈ξ

Theorem 2. [16] Let ξ and η be independent uncertain sets with membership functions
μ and ν, respectively. If ξ∗ is a constant a, then the Inference Rule 1 yields that η∗ has a
membership function

ν∗(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν(y)
μ(a) , if ν(y) <

μ(a)
2

ν(y)+μ(a)−1
μ(a) , if ν(y) > 1 − μ(a)

2

0.5, otherwise.

Based on Inference Rule 1, Gao et al. [18] proposed the multi-input, multi-if-then-rule
inference rules.
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Inference Rule 2. [13] Let X1,X2, · · · ,Xm,Y be concepts. Assume rules ‘if X1 is ξi1
and · · · and Xm is ξim, then Y is ηi’ for i = 1, 2, · · · , k. From X1 is a constant a1 and · · ·
and Xm is a constant am, we infer that

η∗ =
k∑

i=1

ci · ηi|(a1∈ξi1)∩(a2∈ξi2)∩···∩(am∈ξim)

c1 + c2 + · · · + ck
, (4)

where the coefficients are determined by

ci = M{(a1 ∈ ξi1) ∩ (a2 ∈ ξi2) ∩ · · · ∩ (am ∈ ξim)}
for i = 1, 2, · · · , k. The inference rule is represented by

Rule 1: If X1 is ξ11 and · · · and Xm is ξ1m, then Y is η1
Rule 2: If X1 is ξ21 and · · · and Xm is ξ2m, then Y is η2

· · ·
Rule k: If X1 is ξk1 and · · · and Xm is ξkm, then Y is ηk
From: X1 is a1 and · · · and Xm is am
Infer: Y is determined by Eq. (4)

Theorem 3. [13] Assume ξi1, ξi2, · · · , ξim, ηi are independent uncertain sets with mem-
bership functions μi1,μi2, · · · ,μim, νi, i = 1, 2, · · · , k, respectively. If ξ∗

1 , ξ∗
2 , · · · , ξ∗

m are
constants a1, a2, · · · , am, respectively, then the Inference Rule 2 yields

η∗ =
k∑

i=1

ci · η∗
i

c1 + c2 + · · · + ck

where η∗
i are uncertain sets whose membership functions are given by

ν∗
i (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νi(y)
ci , if νi(y) < ci

2

νi(y)+ci−1
μ(a) , if νi(y) > 1 − ci

2

0.5, otherwise

and ci = min
1≤l≤m

μil(al) are constants.

Uncertain system

Uncertain system, proposed by Liu [16], is a function from its inputs to outputs based
on the uncertain inference rule. Usually, an uncertain system consists of five parts: inputs
that are crisp data to be fed into the uncertain system; a rule-base that contains a set of
if-then rules provided by the experts; an uncertain inference rule that infers uncertain
consequents from the uncertain antecedents; an expected value operator that converts
the uncertain consequents to crisp values; and outputs that are crisp data yielded from
the expected value operator.
Now, we consider an uncertain system with m crisp inputs α1,α2, · · · ,αm, and n crisp

outputs β1,β2, · · · ,βn. We have the following if-then rules:

If X1 is ξ11 and · · · and Xm is ξ1m, then Y1 is η11 and Y2 is η12 and · · · and Yn is η1n
If X1 is ξ21 and · · · and Xm is ξ2m, then Y1 is η21 and Y2 is η22 and · · · and Yn is η2n

· · ·
If X1 is ξk1 and · · · and Xm is ξkm, then Y1 is ηk1 and Y2 is ηk2 and · · · and Yn is ηkn
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Thus, according to Inference Rule 1 and 2, we can infer that Yj(j = 1, 2, · · · , n) are

η∗
j =

k∑
i=1

ci · ηij|(a1∈ξi1)∩(a2∈ξi2)∩···∩(am∈ξim)

c1 + c2 + · · · + ck
,

where ci = M{(a1 ∈ ξi1)∩ (a2 ∈ ξi2)∩· · ·∩ (am ∈ ξim)} for i = 1, 2, · · · , k. Then, by using
the expected value operator, we obtain

βj = E
[
η∗
j

]
for j = 1, 2, · · · , n. Now, we construct a function from crisp inputs α1,α2, · · · ,αm to crisp
outputs β1,β2, · · · ,βn, i.e.,

(β1,β2, · · · ,βn) = f (α1,α2, · · · ,αm).

Then, we get an uncertain system f. For the uncertain system we proposed, we have the
following theorem.

Theorem 4. [13] Assume that ξi1, ξi2, · · · , ξim and ηi1, ηi2, · · · , ηin are indepen-
dent uncertain sets with membership functions μi1,μi2, · · · ,μim, νi1, νi2, · · · , νin, i =
1, 2, · · · , k, respectively. Then, the uncertain system from α1,α2, · · · ,αm to β1,β2, · · · ,βn is

bj =
k∑

i=1

ci · E[ η∗
ij]

c1 + c2 + · · · + ck
,

where j = 1, 2, · · · , n and η∗
ij are uncertain sets whose membership functions are given by

ν∗
ij(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νij(y)
ci , if νij(y) < ci

2

νij(y)+ci−1
μ(a) , if νij(y) > 1 − ci

2

0.5, otherwise

and ci = min
1≤l≤m

μil(al) are constants.

Next, we discuss the expected value of a special triangular uncertain set.Without loss of
generality, we assume n = 1. Then the uncertain system proposed in the above becomes:

b =
k∑

i=1

ci · E[ η∗
i ]

c1 + c2 + · · · + ck
, (5)

ν∗
i (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νi(y)
ci , if νi(y) < ci

2

νi(y)+ci−1
μ(a) , if νi(y) > 1 − ci

2

0.5, otherwise,

(6)

ci = min
1≤l≤m

μil(al). (7)

Theorem 5. Assume we have an uncertain system with m inputs and 1 output consist-
ing of k inference rules. The antecedents of the rules are represented by the uncertain sets ξi
with membership functions μi1,μi2, · · · ,μim, i = 1, 2, · · · , k. And the consequent is repre-
sented by an triangular uncertain set ηi = (αi,βi, γi) with a membership function νi, where
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the coefficients satisfy

αi + γi = 2βi, i = 1, 2, · · · , k. (8)

We have

E
[
η∗
i
] = βi, i = 1, 2, · · · , k.

Proof. Given the m input data a1, a2, · · · , am, we can calculate ci from Equation 7.
Then, we can get the membership functions ν∗

i of the consequence uncertain sets η∗
i

according to Equation 6. Next, the computation of the expected value of uncertain
consequence breaks into three cases.
Case 1: Assume ci/2 = 0.5. We can immediately have ν∗

i (y) = νi(y), thus

E[ η∗
i ]=

αi + 2βi + γi
4

= βi.

Case 2: Assume ci/2 < 0.5. Let yi11 and yi12
(
yi11 < yi12

)
be the two points that satisfy

the equation νi(y) = ci/2. Similarly, yi21 and yi22
(
yi21 < yi22

)
satisfy the equation νi(y) =

1 − ci/2. Since the membership function of a triangular uncertain set has a symmetry
property, we have

yi11 + yi12 = 2βi, yi21 + yi22 = 2βi. (9)

Then, we can rewrite the membership function of ηi as follows:

ν∗
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

νi(y)
ci , if αi ≤ y < yi11

νi(y)+ci−1
ci , if yi21 ≤ y < yi22

νi(y)
ci , if yi12 ≤ y < γi

0.5, otherwise.

(10)

And ν∗
i (βi) = 1. Together with Equations 3, 8, and 9, we have

E[ η∗
i ] = βi + 1

2

(∫ yi22

βi

νi(y) + ci − 1
ci

dy +
∫ yi12

yi22
0.5dy +

∫ γi

yi12

νi(y)
ci

dy
)

−1
2

(∫ βi

yi21

νi(y) + ci − 1
ci

dy +
∫ yi21

yi11
0.5dy +

∫ yi11

αi

νi(y)
ci

dy
)

= βi + 1
2

(∫ yi22

βi

νi(y) + ci − 1
ci

dy −
∫ βi

yi21

νi(y) + ci − 1
ci

dy
)

+1
2

(∫ γi

yi12

νi(y)
ci

dy −
∫ yi11

αi

νi(y)
ci

dy
)

+1
2

(∫ yi12

yi22
0.5dy −

∫ yi21

yi11
0.5dy

)

= βi.

Case 3: Assume ci > 0.5. Similarly, we have E[ η∗
i ]= βi. Thus, we have proved the

theorem.

Problem formulation
In this section, we propose an extraction model to obtain uncertain inference rules.
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Let X = (x1, x2, · · · , xn) be the decision vector, which represents a rule base consisting
of n rules. Each rule has m antecedents which are described by Q uncertain sets and one
consequent which is described by R uncertain sets. Each variable xi represents a sequence
xi1xi2 · · · ximxim+1, where xij ∈ {0, 1, 2, · · · ,Q}(i = 1, 2, · · · , n; j = 1, 2, · · · ,m) represent
the antecedents of the inference rule. And xim+1 ∈ {0, 1, 2, · · · ,R}(i = 1, 2, · · · , n) repre-
sent the consequent. Thus, each variable of decision vector represents one inference rule.
Some xij = 0 means this antecedent is not included. And some xim+1 = 0 means this
inference rule will not be included in the rule base. For example, assume that we have one
inference rule consists of 4 antecedents and 1 consequent. They are described by 5 uncer-
tain sets which refer to five descriptions: very low, low, medium, high, and very high. We
use 1, 2, 3, 4, 5 to denote them. Thus, sequence “23045”, for example, represents the rule:
“if input 1 is low, input 2 is medium, and input 4 is high, then the output is very high”.
Uncertain systems can be used for classification. But which uncertain system is better

depends on the rule base. Here, we try to find best rule base by comparing the mean
absolute errors of the origin output and the system output. That is,

MAE = 1
P

P∑
i=1

|oi − ti|, (11)

where P is the number of training data, oi, ti(i = 1, 2, · · · ,P) are the system outputs and
origin outputs, respectively. If we find the rule base with the least mean absolute error, we
extract the uncertain inference rules successfully. We can obtain the system outputs by
Equation 5. However, they may not be integers. To avoid this nonsense, for a classification
problem with C classes, we can divide interval that covers all the system outputs into C
subintervals. Then, if the output from Equation 5 is in the ith subinterval, we have oi = i.
Thus, we transfer the classification problem to the following optimization model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
X

F(X) = MAE

s.t.
X = (x1, x2, · · · , xn)
xi = xi1 · · · ximxim+1
xij ∈ {0, 1, · · · ,Q}
xim+1 ∈ {0, 1, · · · ,R}
i = 1, 2, · · · , n
j = 1, 2, · · · ,m

Extractionmethod for uncertain inference rules withmutations
In this section, we propose the extraction method for uncertain inference rules with
mutations by ant colony optimization algorithm.
As stated before, each xi is a sequence of m values in {0, 1, 2, · · · ,Q} and 1 value in

{0, 1, 2, · · · ,R}. Without loss of generality, we set Q = R. Each number in {0, 1, 2, · · · ,Q}
is a node. Let ants walking across these nodes. Ants choose the next node in probability
based on the pheromone levels in the Q + 1 choices at every step. Once ants movem + 1
steps, a candidate decision variable is generated. After repeat this process n times, we get
a candidate solution. After all ants finish their walk, update the pheromone trails. Denote
the pheromone trail by τi;k,j(t) associated to the node j at step k of xi in iteration t. The
procedures are described as follows.
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(1) Initialization: Randomly generate a feasible solutionX0, and set the optimal solution
X̂ = X0. Set τi;k,j(0) = τ0, i = 1, 2, · · · , n, k = 1, 2, · · · ,m + 1, j = 0, 1, 2, · · · ,Q, where τ0
is a fixed parameter.
(2) Ant movement: At each step k after building the sequence xi1xi2 · · · xik , select the

next node in probability following

pk;k+1 = τi;k+1,j(t)
Q∑

q=0
τi;k+1,q(t)

. (12)

In this way, we could get a sequence xi1xi2 · · · xim+1. To speed up the algorithm, wemutate
this sequence to get a new candidate sequence. The mutation is made as follows: ran-
domly add 1 or subtract 1 to each element xij in the sequence; if the element is 0, the
mutated element is 1; if the element is Q, the mutated element is Q − 1. Assume X ′ is
the mutated solution, if 
F = F(X ′

) − F(X) ≤ 0, then X ← X ′ ; otherwise, keep the
current solution. If Q is very large, we could repeat this mutation until some termination
condition is satisfied.
(3) Pheromone Update: At each iteration t, let X̂ be the optimal solution found so far

and Xt be the best feasible solution in the current iteration. Assume F(X̂) and F(Xt) are
the corresponding objective function values.

If F(Xt) < F(X̂), then X̂ ← Xt .
Reinforce the pheromone trails on nodes of X̂ and evaporate the pheromone trails on

the left nodes:

τi;j,k(t) =
{

(1 − ρ)τi;j,k(t − 1) + ρg(X̂), if (k, j) ∈ X̂
(1 − ρ)τi;j,k(t − 1), otherwise

(13)

where ρ (0 < ρ < 1) is the evaporation rate, g(x)(0 < g(x) < +∞) is a function with that
g(x) ≥ g(y) if F(x) < F(y), for example, g(x) = L/(|F(x)| + 1) is a function satisfying the
condition where L > 0.

Let τ0 be the initial value of pheromone trails, n be the number of decision variables,
M be the number of ants, ρ be evaporation rate and T be the number of iterations. Now,
we summarize the algorithm as follows.

Step 1 Initialize all pheromone trails with the same pheromone level τ0. Randomly
generate a feasible solution X0, and set optimal solution X̂ = X0. Set l ← 0.
Step 2 Ant movement in probability following Equation 12. Generate a decision variable

xi afterm + 1 steps.
Step 3 Repeat Step 2 until X = (x1, x2, · · · , xn) is generated; mutate every xi: thus, gen-

erate a new decision vector X ′ = (x′
1, x

′
2, · · · , x

′
n); if 
F = F(X ′

) − F(X) ≤ 0, then
X ← X ′ .
Step 4 Repeat Step 2 and Step 3 for allM ants.
Step 5 Calculate the system outputs by Equation 5. Then, calculate the objective function

values for the M candidate solutions by Equation 11. Denote the best solution in this
iteration by Xl.
Step 6 If F(Xl) < F(X̂), then X̂ ← Xl; update the pheromone trails according to

Equation 13.
Step 7 l ← l + 1; if l = T , terminate; otherwise, go to Step 2.
Step 8 Report the optimal solution X̂.
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With this algorithm above, we obtain an uncertain rule base. Then, we successfully
design an uncertain system and can use it for classification.

Extractionmethod for uncertain inference rules with SA
In the previous section, to speed up the algorithm, we introduce a mutation operation.
Here, we introduce the simulated annealing algorithm as the local search operation.
Simulated annealing algorithm was initiated by Metropolis in 1953, applied to portfolio

optimization by Kirkpatrick [25] in 1983. The name and inspiration come from anneal-
ing in metallurgy, a technique involving heating and controlled cooling of a material to
increase the size of its crystals and reduce their defects. Simulated annealing algorithm is
excellent at avoiding getting stuck in local optimums. It has a good robust property and is
universal and easy to implement.
For optimization problem (1), we can use simulated annealing algorithm to search for

the optimal solution. The algorithm is as follows.

Step 1 Randomly generate a initial solution x0; x ← x0; k ← 0; t0 ← tmax(initial
temperature);
Step 2 If the temperature satisfies the inner cycle termination criterion, go to Step 3;

otherwise, randomly choose a point x′ in the neighborhood N(x), calculate 
f = f (x′
) −

f (x). If 
f ≤ 0, then x ← x′ ; otherwise, according to Metropolis acceptance criterion, if
exp(−
f /tk) > random(0, 1), then x ← x′ . Repeat Step 2.
Step 3 tk+1 = d(tk) (temperature decrease); k ← k + 1; if the termination criterion is

satisfied, stop and report the optimal solution; otherwise, go to Step 2.

In this section, we combine ant colony optimization algorithm and simulated annealing
algorithm. In each iteration of ant colony optimization algorithm, we get a feasible solu-
tion. Then, we use it as the initial solution of the simulated annealing algorithm to get a
neighbor solution. This neighbor solution will be accepted in probability. And for each
decision vector X = (x1, x2, · · · , xn), xi = xi1xi2 · · · xim+1, we build the neighbor solution
as follows: for each xi, for some randomly generated p and q (1 ≤ p < q ≤ m), reverse the
order of the sequence xip · · · xiq, i.e., x′

i = xi1 · · · xip−1xiqxiq−1 · · · xip+1xipxiq+1 · · · xim+1.
For example, assume xi is 0123456, p = 2, q = 6, and the neighbor solution x′

i is 0543216.
In this way, we obtain a neighbor solution X ′ . If 
F = F(X ′

) − F(X) ≤ 0, X ← X ′ ;
otherwise, if exp(−
F/tk) > random(0, 1), then X ← X ′ ; otherwise, abandon this neigh-
bor solution. Still denote the pheromone trail by τi;k,j(t). The procedure are described as
follows.

(1) Initialization: Generate a feasible solution X0 randomly and set the optimal solution
X̂ = X0. Set τi;k,j(0) = τ0, i = 1, 2, · · · , n, k = 1, 2, · · · ,m + 1, j = 0, 1, 2, · · · ,Q, where τ0
is a fixed parameter.
(2) Ant movement: At each step k after building the sequence xi1xi2 · · · xik , select the

next node in probability following Equation 12. In this way, we could get a sequence
xi1xi2 · · · xim+1. In order to expand the search range, we use simulated annealing algo-
rithm to search locally around the solution at this step. Assume the neighbor solution is
X ′ . If 
F = F(X ′

) − F(X) ≤ 0, X ← X ′ ; otherwise, if exp(−
F/tk) > random(0, 1)
where tk is the current temperature and tk → 0 when k → ∞, then X ← X ′ ; otherwise,
abandon this neighbor solution and still choose the original feasible solution.
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(3) Pheromone Update: Let X̂ be the optimal solution found so far and Xt be the best
feasible solution in the current iteration t. Assume F(X̂) and F(Xt) are the correspond-
ing objective function values. To avoid the optimal solution X̂ getting stuck in local
optimums, we also use acceptance function here.

If F(Xt) < F(X̂), then X̂ ← Xt .
Build a neighbor solution X̂ ′ .
If F(X̂ ′

) ≤ F(X̂), then X̂ ← X̂ ′ ;
If F(X̂ ′

) > F(X̂), check the Metropolis acceptance criterion, i.e., if
exp(−
F̂/Tt) > random(0, 1), Tt → 0, t → ∞, then X∗ ← X̂ ′ .

Reinforce the pheromone trails on the nodes of X̂ andX∗ and evaporate the pheromone
trails on the left nodes:

τi;j,k(t) =

⎧⎪⎨
⎪⎩

(1 − ρ)τi;j,k(t − 1) + ρg(X̂), if (k, j) ∈ X̂
(1 − ρ)τi;j,k(t − 1) + ρ

2 g(X̂), if (k, j) ∈ X∗

(1 − ρ)τi;j,k(t − 1), otherwise
(14)

where, ρ (0 < ρ < 1) is the evaporate rate, and g(x) (0 < g(x) < +∞) is a function with
that g(x) ≥ g(y) if F(x) < F(y). For example, g(x) = L/(|F(x)|+1) is an available function
if L > 0.

Now, we summarize the algorithm as follows.

Step 1 Initialize all pheromone trails with the same pheromone level τ0. Randomly
generate a feasible solution X0, and set optimal solution X̂ = X0. Set t ← 0.
Step 2 Ant movement in probability following Equation 12. Generate a decision variable

xi afterm + 1 steps.
Step 3 Repeat Step 2 until decision vector X = (x1, x2, · · · , xn) is generated. Build the

neighbor solution X ′ . If 
F = F(X ′
) − F(X) ≤ 0, X ← X ′ ; otherwise, if exp(−
F/tk) >

random(0, 1)where tk is the current temperature and tk → 0 when k → ∞, thenX ← X ′ .
Step 4 Repeat Step 2 and Step 3 until all ants finish their walk, and generate M candidate

solutions.
Step 5 Calculate the system outputs by Equation 5. Then, calculate the objective function

values for the M candidate solutions by Equation 11. Denote the best solution in this
iteration by Xt .
Step 6 If F(Xt) < F(X̂), then X̂ ← Xt . Build the neighbor solution of X̂, which is denoted

by X̂ ′ . If 
F̂ = F(X̂ ′
) − F(X̂) ≤ 0, then X̂ ← X̂ ′ ; otherwise, if Metropolis acceptance

criterion is satisfied, i.e., if exp(−
F̂/Tt) > random(0, 1),Tt → 0, t → ∞, thenX∗ ← X̂ ′ .
Step 7 Update the pheromone trails according to Equation 14.
Step 8 t ← t + 1; if t = T, terminate; otherwise, go to Step 2.
Step 9 Report the optimal solution X̂.

Table 1 Parameters

ap bp cp

p = 1 0.5 1.01 1.52

p = 2 1.7 2.74 4.48

p = 3 5 6.07 7.14
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Figure 1 Results of method A.

Experiments
In this section, we use our two extraction methods to extract uncertain inference rules.
And then use the uncertain systems to solve some classification problems.We applied our
methods to the IRIS [26] classification problem and the Wisconsin Breast Cancer (WBC)
[27] classification problem.

IRIS classification

IRIS data set is the typical date set in data classification. It contains 150 instances of 3
classes, which are Setosa, Versicolor, and Virginica. Each class has 50 instances. Each
instance has 4 attributes which are sepal length (SL), sepal width (SW), petal length (PL),

Figure 2 Results of method B.
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Table 2 Accuracy comparison

Method Paper Accuracy rate (%)

Method A This paper 97.33

Method B This paper 97.5

C4.5 [2] 94.0

ACOA [5] 96.6

MACO [6] 95.53

HNFQ [28] 98.67

Table 3 IRIS classification rules extracted bymethod A

IF THEN

SL SW PL PW Class

1 3 1 3 1

1 0 1 1 1

1 2 3 2 1

1 1 2 1 2

2 1 0 3 2

3 2 0 2 3

1 1 3 3 3

Table 4 IRIS classification rules extracted bymethod B

IF THEN

SL SW PL PW Class

3 2 3 1 2

1 1 0 0 2

0 2 1 1 3

0 1 1 3 1

1 1 3 3 2

1 1 3 1 1

2 1 1 2 1

Table 5 Parameters

ap bp cp

p = 1 0.3 1.01 1.72

p = 2 2 6.07 10.14
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Figure 3 Results of method A.

and petal width (PW). They are described by 3 uncertain sets: low (1), medium (2), and
high (3). The membership functions are

μq(x) = exp
(

− (x − Vq)2

2β2

)
,

where x is the input, β = 0.618 and Vq = q−1
2 , q = 1, 2, 3. Based on these 4 attributes,

we try to infer which class does the instance belong to. We use 3 triangular uncertain
sets ηp = (ap, bp, cp) (p = 1, 2, 3) to describe the possible classes (class 1: Setosa; class 2:
Versicolor; class 3: Virginica). And the parameters ap, bp, cp ∈ R are listed in Table 1.
First, we normalize the data to [0, 1] to simplify the computation. IRIS data set is our

training set while it is also used for testing. Then, we set maximum number of rules n =
10, number of ants M = 10, evaporate rate ρ = 0.3, and number of iterations T = 300.
Each algorithm runs ten times. The results are in Figures 1 and 2. Denote the extraction

Figure 4 Results of method B.
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Table 6 Accuracy rate comparison

Method Paper Accuracy rate (%)

Method A This paper 98.3

Method B This paper 98.33

C4.5 [2] 94.25

ACOA [5] 97.91

MACO [6] 97.07

FMM [29] 97.86

method with mutation by A and the method with SA by B. It can be seen that the method
A converges fast at about 120th iteration. And method B converges a little slower at about
150th iteration.
Then, we can classify the IRIS data with the uncertain systems we introduced. We

find the average accuracy rates of the two methods are 97.33% and 97.5%, respectively.
Comparison with other methods are listed in Table 2.
List the rule bases we get with the highest accuracy rates (98.0% and 98.67%, respec-

tively) in Tables 3 and 4. Note that although the maximum number of rules is 10, the final
rule bases we obtain has only 7 rules.

Wisconsin Breast Cancer classification

Wisconsin Breast Cancer data set is a common medical date set. It contains 699 instances
of 2 classes, which are sick and healthy. Two hundred forty-one instances are sick and 458
instances are healthy. Each instances has 9 attributes, which are clump thickness (CT),
uniformity of cell size (UCS), uniformity of cell shape (UCCS), marginal adhesion (MA),
single epithelial cell size (SPCS), bare nuclei (BN), bland chromatin (BC), normal nucleoli
(NN), and mitoses (MT). They are described by 5 uncertain sets: very low (1), low (2),
medium (3), high (4), and very high (5). The membership functions are

μq(x) = exp
(

− (x − Vq)2

2β2

)
,

where x is the input, β = 0.4247, and Vq = q−1
2 , q = 1, 2, 3, 4, 5. Based on these attributes,

we diagnose whether one instance is sick or not. We use 2 triangular uncertain sets
ηp = (ap, bp, cp) (p = 1, 2) to describe the possible classes (sick and healthy). And the
parameters ap, bp, cp ∈ R are listed in Table 5.

Table 7WBC classification rules extracted bymethod A

IF THEN

CT UCS UCCS MA SPCS BN BC NN MT Class

1 5 0 3 2 0 4 2 1 2

1 2 1 1 4 4 2 1 0 1

1 3 5 2 3 2 1 1 4 2

1 3 4 2 3 1 2 2 1 1

2 4 4 1 1 2 4 5 1 2

3 3 4 5 4 3 2 4 4 2

5 2 4 0 3 0 0 2 1 1

2 4 4 1 1 2 4 5 1 1

2 4 2 3 5 3 2 5 5 2
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Table 8WBC classification rules extracted bymethod B

IF THEN

CT UCS UCCS MA SPCS BN BC NN MT Class

5 3 3 3 3 2 3 2 4 2

0 0 0 0 0 0 0 4 0 1

4 4 4 4 0 1 1 1 4 2

1 4 4 1 1 2 1 5 1 2

1 1 1 2 0 3 5 5 5 2

0 3 0 0 0 0 0 1 2 1

First, we normalize the data to [0, 1] to simplify the computation. The first 460 instances
are used for training while the left 239 instances are used for testing. Then, we set max-
imum number of rules n = 10, number of ants M = 20, evaporate rate ρ = 0.3, and
number of iterations T = 200. Each algorithm runs ten times. The results are in Figures 3
and 4. We still find that method A converges faster than method B. Method A stabilizes
at about 50th iteration while method B stabilizes until about 80th iteration.
Then, we test the uncertain systems we get with the later 239 instances. We find the

average accuracy rates of the two methods on the training set are 96.0% and 96.26%,
respectively. Using the uncertain system with the highest accuracy rate of each method
on the test set, we find the accuracy rates are 98.37% and 98.33%. Comparison with other
methods are listed in Table 6.
The rule base with the highest accuracy rates (98.37% and 98.33%, respectively) on the

test set are listed in Tables 7 and 8. Method A gives us a rule base of 9 rules, and method
B provides a rule base of 6 rules.
We apply our two extraction methods to the classification problems of IRIS data set

and WBC data set. Compare our results with other researchers’ work, we can find that
both methods have higher accuracy rate than ACOA and MACO in two classification
problems. And for IRIS data set, accuracy rates of method A and B are lower than HNFQ
but higher than C4.5. For WBC data set, their accuracy rates are higher than C4.5 and
FMM.

Conclusions
In this paper, we designed an uncertain system for data classification. And we proposed
two extraction methods for uncertain inference rules by using ant colony optimization
algorithm. Then, we applied our methods to IRIS classification problem and WBC clas-
sification problem. Our methods are shown to be superior in accuracy to some existing
methods.
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