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In the SLAMapplication, omnidirectional vision extracts wide scale information andmore features from environments. Traditional
algorithms bring enormous computational complexity to omnidirectional vision SLAM. An improved extended information filter
SLAM algorithm based on omnidirectional vision is presented in this paper. Based on the analysis of structure a characteristics
of the information matrix, this algorithm improves computational efficiency. Considering the characteristics of omnidirectional
images, an improved sparsification rule is also proposed. The sparse observation information has been utilized and the strongest
global correlation has been maintained. So the accuracy of the estimated result is ensured by using proper sparsification of the
information matrix. Then, through the error analysis, the error caused by sparsification can be eliminated by a relocation method.
The results of experiments show that this method makes full use of the characteristic of repeated observations for landmarks in
omnidirectional vision and maintains great efficiency and high reliability in mapping and localization.

1. Introduction

Thefirst problem of a mobile robot is that it has to deal with a
complicated environment when the robot fulfills its assign-
ments. Simultaneous localization and mapping (SLAM) is
one of the key enabling technologies for a mobile robot’s
autonomous ability. SLAM addresses the problem of building
up amapwithin an unknown environment, while at the same
time keeping track of their current location. Many popular
SLAM implementations use a distance sensor such as a laser
range finder or sonar to explore the environments [1–3].
We propose to extend this approach to an omnidirectional
vision-based system for economic reasons.

Many vision sensor applications have been developed in
recent years. Vision sensors can provide continuous image
data. Until now, the research work about vSLAMmainly used
stereo vision or monocular vision [4, 5]. Paper [6] presents
a vSLAM method based on an encoder integrated system
and applies a distributed particle filter approach. A vSLAM
method based on a tracking approach for “2.5D space” is
proposed in paper [7]. A semantic structure of environments

is built based on object recognition and laser scan [8]. A
calibrated monocular camera is used in a vehicle SLAM
system [9]. 3D reconstruction of the environment is built
through the matching interest points.

However, there are limitations in the view angle of
ordinary vision sensors. In contrast, omnidirectional vision
has a 360 degree field of view and it has been widely applied
in robot navigation, video conferencing, and surveillance
[10]. Omnidirectional vision based robot localization has
been researched and has been popular for years. Paper
[11] develops a topological localization method, where the
matching algorithm of omnidirectional images based on a
color histogram is proposed. It obtains relatively complete
environmental information and strengthens the capability of
tracking a target; this makes up for deficiencies in the study
of vSLAM.

Omnidirectional vision not only provides opportuni-
ties for studying vSLAM problems, but it also provides
several challenges. First, the large amount of information
will increase the computational complexity of the SLAM
algorithm; second, the distortion of the omnidirectional
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image is relatively large, which is very difficult to extract
and match features directly. As a result, vSLAM methods
based on omnidirectional vision have seldom been applied
in the case of localization and mapping for an unknown
environment. Therefore, the omnidirectional vision based
SLAM is not only able to promote vSLAM technology, and
provide a new idea, but it also can broaden the application
field of omnidirectional vision (e.g., environment exploration
and rescue).

The extended information filter SLAM (EIF-SLAM) algo-
rithm [3, 12] describes the uncertainty of SLAM by informa-
tion matrix and vector. However, the efficiency of traditional
EIF-SLAM is very low due to the enormous computation of
mean vector restoration frommatrix and vector information.
Papers [12, 13] improve the accuracy of EIF-SLAM through
sparsification of the information matrix by constructing a
reasonable topology structure of Bayes network. Paper [14]
eliminates elements by using a new sparsification approach
in EIF-SLAM and maintains SLAM consistent. Because
there are more features in the omnidirectional images, these
methods cannot reduce the computational complexity due
to the large landmarks classification. In this paper, based on
an analysis of structural characteristics of the information
matrix, an improved extended information filter SLAM algo-
rithm (IEIF-vSLAM) and sparsification rule are presented.
The analysis of sparsification error and the verification of
experiments show that this algorithm not only improves
computational efficiency, but also maintains the accuracy of
the estimated result by using proper sparsification of the
informationmatrix. It can be used in amobile robot and fulfill
map building tasks though omnidirectional vision in indoor
environments.

2. IEIF-vSLAM Algorithm

2.1. Algorithm Structure. The structural diagram of the pro-
posed IEIF-vSLAMalgorithm is shown in Figure 1. It includes
3 parts: features detection, IEIF, and robot control.

In themodule of features detection, a Harris-SIFT feature
extraction method based on SIFT [10] is used to match and
track features [15]. The KLT operator [16] is used to track
Harris-SIFT feature points.TheRANSACmethod [17] is used
for affine transform and removing the wrong match points
which are caused by blocking. If a new landmark has been
found, it will be recorded in the feature database.

In the IEIF module, the information variables based on
the observation data will be updated in blocks of observation
update. According to the movement of the robot, the state
variables will be estimated in the block of motion update.
In fact, the computational burden of IEIF-vSLAM is mainly
concentrated on both of the processes of observation and
of motion update. Due to the wide scale of information
and a huge amount of omnidirectional image feature, the
dimension of information variables rapidly increases. This
situation will heat up if the environment becomes larger
[18]. Therefore, it is reasonable for an improved IEIF-vSLAM
algorithm—based on an analysis of structural characteristics
of the information matrix—to improve computational effi-
ciency and maintain accuracy of the state estimated.
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Figure 1: IEIF-vSLAM algorithm structure diagram.

2.2. Information Matrix of SLAM. At time 𝑡, the state estima-
tion of robot pose and landmark position satisfies Gaussian
distribution:
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(1)

𝑥
𝑡
: State of robot, including the pose of the robot.

𝑀: Set of landmarks.
𝑧
𝑡: The observation of landmarks.
𝑢
𝑡: The input vector of robot control.

As shown in (1), if𝑢𝑡 and 𝑧𝑡 are given, the joint conditional
probability density of 𝑥

𝑡
and𝑀 satisfies normal distribution

in time domain, whose mean value is 𝜇
𝑡
and covariance

matrix is Σ
𝑡
. It also satisfies inverse normal distribution,

whose mean value is 𝜂
𝑡
and covariance matrix is Λ

𝑡
in the

information domain.
The IEIF-vSLAM algorithm estimates the robot pose and

landmarks positions according to the update of information
vector 𝜂

𝑡
and informationmatrixΛ

𝑡
. However, 𝜂

𝑡
andΛ

𝑡
have

no obvious physicalmeanings, so they should be converted to
𝜇
𝑡
and Σ

𝑡
. The conversion formula is

Λ
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𝑡
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= Λ
𝑡
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𝑡
. (2)

As shown in Figure 1, observation will be updated at
every motion cycle through movements. The motion update,
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observation update, and add features are expressed as follows
[13]:

Motion Update
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where
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expresses the robot poses’ own correlation.
𝐹 is the Jacobian matrix of the mobile robot’s motion

model.

Add Features
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expresses the correlation between robot pose and
landmark.

𝐺 is the Jacobian matrix of omnidirectional vision’s
observation model.

Observation Update
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In (6), 𝐻 is the sparsification matrix. Given the main
processes of EIF-SLAM, the question of how to reduce

the computation complexity of motion update, observation
update, and add features to the database is important to EIF-
SLAM’s application.The performance of enhancing efficiency
by sparsification should be reasonable. Prior to discussion
of sparsification, the observation model of omnidirectional
vision is analyzed.

2.3. Observation Model of Omnidirectional Vision. In an
omnidirectional vision system, 𝑧

𝐹
𝑖

is the observation of
features (landmarks), its position in image pixel coordinate
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is the distance between the robot and
features and 𝜃

𝐹
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is the head angle for features in robot local
coordinates.This allows us to describe the derivation process
of transformation.

Figure 2 is the omnidirectional vision schematic plot,
which is fixed on top of the robot.The height of the lens from
the floor is ℎ. Omnidirectional vision’s hyperboloid mirror
is designed as 𝑧2/𝑎2 − (𝑥2 + 𝑦2)/𝑏2 = 1. Its focal point is
𝐶(𝑢
𝑐
, V
𝑐
)
𝑇 (one of the foci of themirror) and the focal distance

is 𝑓. The imaging pixel of features 𝐹𝑖 is (𝑢
𝐹
𝑖

, V
𝐹
𝑖

)
𝑇 [19].

Then,
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As shown in Figure 2, the 2D coordinates are built based
on the other focus point of the mirror. Then, the function of
the mirror is changed to
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The reflected light goes through the center point of the
lens: 𝐶 = (0, −2𝑒)𝑇, its slope is
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Then the intersection point (𝑥
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(𝑧
𝑚
+ 𝑒)
2

𝑎
2

−
𝑥
𝑚

2

𝑏
2
= 1

𝑧
𝑚
= 𝑘𝑥
𝑚
− 2𝑒

⇒

𝑥
𝑚
=

𝑏
2

𝑘𝑒 − √𝑎
2
(1 + 𝑘

2
)

𝑧
𝑚
=

𝑘𝑏
2

𝑘𝑒 − √𝑎
2
(1 + 𝑘

2
)

− 2𝑒 .

(10)

According to the geometrical relation [19]:
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So, the new observations (𝑟
𝐹
𝑖

, 𝜃
𝐹
𝑖

)
𝑇 are obtained through

(7) and (11). The observation of landmarks in different
distance for omnidirectional vision has the same gauss
distribution 𝑅(𝑘). However, the uncertainty of landmarks
observation 𝑃

𝐹
𝑖

(𝑘) is different and is determined by cali-
bration [20]. In hyperboloid mirror, 𝑎 = 29.0949, 𝑏 =

23.4125, and ℎ = 1650mm. The uncertainty of one radius

axis of omnidirectional image (640 × 640) is obtained by
calibration with the interval of 5 pixels. According to the
characteristics of center symmetry of omnidirectional image,
the uncertainty in other direction of whole image will also be
determined and recorded in a table for query.

According to (6), we get
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Therefore, 𝐻 in (6) is described in a sparsification matrix
expression [13].

3. Sparsification of Information Matrix

3.1. Structure Characteristics Analysis. According to the pro-
cess description of motion update, observation update and
add features, the structural characteristics [14] of the infor-
mation matrix based on the EIF formula can be concluded as
follows:

(1) information matrix is Hermit matrix of symmetric
positive definite [12, 13];

(2) according to (3), the element of Λ
𝑀𝑀

will be
decreased during movement;

(3) according to (6),𝐻 is the sparsification matrix. Then,
in 𝐻𝑇𝑅−1𝐻, only the elements which are related to
robot pose and positions of unupdated landmarks are
nonzero. Furthermore, observation update strength-
ens the expression of the unupdated landmarks.

Then, the structural characteristics of informationmatrix
are obtained as follows:

(1) two elements in the diagonal line denote the link
strength of two notes;

(2) if the shortest link between two nodes is longer, then
that from themain diagonal in the informationmatrix
of the relevant elements is farther;

(3) the endpoints of vice diagonal denote the link
strength between the current state 𝑥

𝑡
and land-

mark (𝑟
𝐹
𝑖

, 𝜃
𝐹
𝑖

)
𝑇, which is relevant to 𝑥

𝑡
. So, if the

robot observes the landmark again, the link strength
becomes larger.

From the above analysis, most of the elements in the
information matrix of omnidirectional vision SLAM are
nearly zero. It is reasonable for the structure of the informa-
tion matrix to be sparsed.

Because of th0e required omnidirectional vision’s obser-
vationmodel linearization and data association, the informa-
tion matrix should be calculated in these processes (motion
update, observation update, and add features). Among them,
themain computation is concentrated on solving (2). In order
to analyze this conveniently, it has been transformed into
standard linear equations to solve the problem:

ΛΣ = 𝐼,

Λ𝜇 = 𝜂,

(13)

where, both 𝐼 and Λ are the unit matrix with the same
dimension.

With an increase of landmarks is in the map, the compu-
tation cost of solving linear equations will increase greatly. As
mentioned above, the information matrix is an almost sparse
matrix. If we can reasonably use the sparse characteristic of
the information matrix, the efficiency of the calculation of
extended information filtering will be enhanced.

Compared with the dense matrix, the efficiency of linear
equations solving through a sparse matrix will be improved
significantly.The sparsematrix operationmethod [21] is used
in this paper. Due to the special operation rule of the sparse
matrix, it can greatly reduce the computation cost. If the
sparse degree is unchanged, the inversion cost for sparse and
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Figure 2: Omnidirectional vision schematic plot.

while 𝑡 > 𝑁

Λ
𝑡
(𝑖, 𝑗) =

{

{

{

0

Λ
𝑡
(𝑖, 𝑗)


≤

1

𝜆 dim(Λ
𝑡
)
2 
Λ
−1

𝑡−1



Λ
𝑡
(𝑖, 𝑗) others

∀𝑖, 𝑗 1 ≤ 𝑖 ≤ 𝑟(Λ
𝑡
) 1 ≤ 𝑗 ≤ 𝑐(Λ

𝑡
)

end

Algorithm 1: Sparsification rule for information matrix.

dense matrix has an exponential relationship with the matrix
dimension increase.

3.2. Improved Sparsification Rule. The improved sparsifica-
tion rule is proposed in this chapter to reduce the com-
putation cost of EIF-SLAM. According to the analysis of
the omnidirectional vision observation model and the struc-
tural characteristics of the information matrix, this rule is
described as shown in Algorithm 1.

Where, 0.5 ≤ 𝜆 ≤ 1 denotes the conservative coefficient,
𝑁 > 1 is the initial step of sparsification,Λ

𝑡
is the information

matrix at time 𝑡, dim(Λ
𝑡
) denotes the dimension of Λ

𝑡
,

𝑟(Λ
𝑡
) and 𝑐(Λ

𝑡
) denotes the number of rows and columns

of the information matrix. The larger 𝑁 is, the higher the
precision of EIF-SLAM will be and the poorer the real time
performance will be. The larger 𝜆 is, the more conservative
the initial sparsification is.

Only motion update will make the information matrix
dense [22]. Therefore, the process of sparsification should be
carried out once in every time cycle.Under the above analysis,
the proposed sparsification algorithm will lead to higher
computational efficiency. However, the proposed sparsifica-
tion algorithm will bring an error to the information matrix
and decrease the accuracy of state estimation simultaneously.

In SLAM application, the error caused by sparsification
can be eliminated by a loop closure method. A closed loop
environment should be designed for a robot to navigate;
however it is unrealistic in practice. In information matrix,
the correlations are expressed as the elements of matrix.
The difference of different correlations is large due to the
distortion and wide range view of omnidirectional vision.
So, the sparsification rule has been improved in this chapter.
The sparse observation information has been utilized and the
strongest global correlation has been maintained.

Based on the improved sparsification rule, a relocation
method is used to eliminate the error. Relocation refers to
the robot finding landmarks which have been recorded in its
database (this area has been explored before).

In the process of sparsification, environmental features
map are divided into three independent parts [22]:

𝑀 = 𝑀
0
+𝑀
+
+𝑀
−
. (14)

Among that,𝑀0 are the passive features (they have some
correlation with robot pose) and are converted from active
features (they have no correlations with robot pose),𝑀+ are
the features which are still maintained active, and𝑀− are the
features which are still maintained passive.

In SLAM, the posterior probability of state vector is
𝑃(𝑋
𝑡
,𝑀
0
,𝑀
+
,𝑀
−
). According to Bayes theory, it will break

down as follows:

𝑃 (𝑋
𝑡
,𝑀
0
,𝑀
+
,𝑀
−
)

= 𝑃 (𝑋
𝑡
| 𝑀
0
,𝑀
+
,𝑀
−
) 𝑃 (𝑀

0
,𝑀
+
,𝑀
−
)

= 𝑃 (𝑋
𝑡
𝑀
0
,𝑀
+
,𝑀
−
= 𝜇
−
) 𝑃 (𝑀

0
,𝑀
+
,𝑀
−
) .

(15)

In (15), if 𝑀+ and 𝑀
0 are given, it is said that the

correlation between robot pose and the passive feature is
independent. So, the passive feature can be set as an arbitrary
value, such as its estimate value 𝜇−.

In the traditional sparsification rule, 𝑀0 is mandatorily
converted to passive. Like 𝑀−, 𝑀0 is also independent of
robot post. So, the posterior probability of state vector in (15)
is expressed as follows:

𝑃SEIF (𝑋𝑡,𝑀
0
,𝑀
+
,𝑀
−
)

= 𝑃 (𝑋
𝑡
𝑀
+
,𝑀
−
= 𝜇
−
) 𝑃 (𝑀

0
,𝑀
+
,𝑀
−
) .

(16)

𝑀
0 has been divided into two parts:

𝑀
0
= 𝑀
0

keep +𝑀
0

observed. (17)

Among that, 𝑀0keep is the feature which is mandatorily
maintained passive during prediction.𝑀0observed is the feature
which has been observed again and maintained active. In
order to limit the amount of active features under a boundary,
𝑀
+

deactive as the features with weaker correlation should be
selected from𝑀

+. It has the same amount as𝑀0observed . Then,
𝑀
+ is divided into two parts:

𝑀
+
= 𝑀
+

keep +𝑀
+

deactive . (18)
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Figure 3: Correlation description in omnidirectional vision SLAM.

Among that, 𝑀+keep is the feature which is maintained
active during prediction. 𝑀+deactive is the feature which has
been mandatorily converted to passive. In the improved
sparsification rule,𝑀0new expresses the feature which has been
converted to passive from active, and 𝑀

+
new is the feature

which is maintained actively. Then, we can say that

𝑀
0
= {𝑀

0
new ,𝑀

+
new ,𝑀

−
} ,

𝑀
0
new = 𝑀

0

keep +𝑀
+

deactive,

𝑀
+
new = 𝑀

0

observed +𝑀
+

keep.

(19)

As shown in Figure 3, in time 𝑡, there are 3 landmarks
(𝐿
1
, 𝐿
2
, 𝐿
3
) in the omnidirectional image of the robot. The

active feature𝑀+ is expressed as𝑀+ = {𝐿
1
, 𝐿
2
, 𝐿
3
}. Under

the above analysis, the feature with a weaker correlation will
be removed during the prediction of 𝑋

𝑡+1
. According to the

traditional rules, the correlation between the robot and 𝐿
2

whichever is farthest from 𝑋
𝑡
will be removed. So,𝑀0 = 𝐿

2
.

However, in fact, (𝐿
2
, 𝐿
3
) will be observed in time 𝑘 + 1. The

correlations between both robot and 𝐿
2
, robot and 𝐿

3
will

become stronger. According to the improved rule, 𝐿
1
will be

removed. Then,𝑀0new = 𝐿1. Due to the correlation of 𝐿
2
that

has beenmaintained in the sparsificationmatrix, the repeated
observation of 𝐿

2
is defined as relocation, it will decrease the

uncertainty and the error of localization.
According to the extended information filtering algo-

rithm [12, 13], the positions of landmarks which have been
observed repeatedly will be modified. Positions of landmarks
without repeated observations but relevant to the relocation
area will also be revised. The overall error of state estimated
results will be greatly reduced. In practice, omnidirectional
vision has a wide range of view, as shown in Figure 4. There
is a large amount of repeated landmark information in two
continuous images, if the robot is placed in an environment
with obvious features. Compared with the previous sparsifi-
cation approach [13], the proposed sparsification algorithm
does not need to classify landmarks. The relocation method
can effectively restrain estimation errors caused by sparse
matrix information.

Figure 4: Repeated landmarks information in two continuous
images.

4. Experimental Results and Discussions

4.1. Experiment Platform. Intelligent wheelchair-JiaoLong is
used to evaluate the proposed IEIF-vSLAM algorithm. It is
developed based on a commercial powered wheelchair and
equipped with two encoders (one encoder for one driven
wheel), a smart motion controller, an on-board PC, a laser
range finder, and an omnidirectional vision system [23]. In
sensor layer, laser range finder and omnidirectional vision
are used to gather environment information. The sensor is
processed and IEIF-vSLAMalgorithm is running in on-board
PC of controller layer which is equipped with a 1.8 GHz i5
CPU. In powered wheelchair layer, the wheelchair base is
driven by two differential wheels and is powered by a group of
12V batteries. The users can operate the wheelchair through
the joystick. Figure 5 provides an overview of Jiaolong’s
system architecture. During verification, Harris-SIFT and
IEIF-vSLAM algorithms also run in the on-board PC.

The omnidirectional vision system which has a Point
Grey Chameleon camera with an image resolution of 1296(H)
× 964(V) pixels is used in this experiment.The camera’s frame
rate is 10Hz.

4.2. PlatformModel Analysis. As a differential-driven mobile
robot, JiaoLong’s motion model is expressed as

𝑓 = [

[

𝑥V (𝑘 + 1)
𝑦V (𝑘 + 1)
𝜃V (𝑘 + 1)

]

]

= [

[

𝑥V (𝑘) + 𝑉𝑑𝑡 cos (𝜃V (𝑘))
𝑦V (𝑘) + 𝑉𝑑𝑡 sin (𝜃V (𝑘))

𝜃V (𝑘) + 𝜔𝑑𝑡

]

]

+ 𝜉, (20)

where, [𝑥V(𝑘) 𝑦V(𝑘) 𝜃V(𝑘)]
𝑇 and [𝑥V(𝑘+1) 𝑦V(𝑘+1) 𝜃V(𝑘+

1)]
𝑇 are the robot pose at time 𝑘 and 𝑘+ 1.𝑉 and 𝜔 are linear

and angular velocity. 𝑑𝑡 is the control period. 𝜉 is a white
Gaussian noise with mean value of 0 and variance of 𝜎2. So,
the Jacobian Matrix 𝐹 of the mobile robot’s motion model in
(3) will be expressed as

𝐹 =
𝜕𝑓

𝜕𝑥V
= [

[

1 0 −𝑉𝑑𝑡 sin (𝜃V (𝑘))
0 1 𝑉𝑑𝑡 cos (𝜃V (𝑘))
0 0 1

]

]

. (21)

The observation model of omnidirectional vision is
expressed as

𝑔 = [
𝑥
𝑖

𝑦
𝑖

] = [
𝑥V + 𝑟 cos (𝜃 + 𝜃V)
𝑦V + 𝑟 sin (𝜃 + 𝜃V)

] + 𝜂, (22)
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Figure 5: Prototype and hardware structure of the JiaoLong wheelchair.

where, [𝑥
𝑖
𝑦
𝑖
]
𝑇 are the global coordinates of features.

[𝑥V 𝑦V 𝜃V]
𝑇 is the current pose of robot. [𝑟 𝜃]

𝑇 is the
measurement (distance and angle) of omnidirectional vision.
𝜂 is a white Gaussian noise with mean value of 0 and variance
of 𝜎2. So, the Jacobian Matrix 𝐺 of observation model in (5)
will be expressed as

𝐺 =
𝜕𝑔

𝜕𝑥V
= [

1 0 −𝑟 sin (𝜃 + 𝜃V)
0 1 𝑟 cos (𝜃 + 𝜃V)

] . (23)

In the proposed IEIF-vSLAM algorithm, the symmetric
form of observation model is also used:

ℎ = [
𝑟

0
] =

[
[

[

√(𝑥
𝑖
− 𝑥V(𝑘))

2

+ (𝑦
𝑖
− 𝑦V(𝑘))

2

atan2 (
𝑦
𝑖
− 𝑦V (𝑘)

𝑥
𝑖
− 𝑥V (𝑘)

) − 𝜃V

]
]

]

. (24)

Then,𝐻 in (6) will be expressed as

𝐻 =
𝜕ℎ

𝜕𝜀
=
[
[

[

−
𝑥
𝑖
− 𝑥V (𝑘)

𝑟
−
𝑦
𝑖
− 𝑦V (𝑘)

𝑟
0 ⋅ ⋅ ⋅

𝑥
𝑖
− 𝑥V (𝑘)

𝑟

𝑦
𝑖
− 𝑦V (𝑘)

𝑟
⋅ ⋅ ⋅

𝑦
𝑖
− 𝑦V (𝑘)

𝑟
2

−
𝑥
𝑖
− 𝑥V (𝑘)

𝑟
2

−1 ⋅ ⋅ ⋅ −
𝑦
𝑖
− 𝑦V (𝑘)

𝑟
2

𝑥
𝑖
− 𝑥V (𝑘)

𝑟
2

⋅ ⋅ ⋅

]
]

]

. (25)

4.3. Map Building Experiments. The wheelchair is placed in
an environment with a room, a door, and a long corridor. A
map built by a laser range finder [23] is superimposed for
comparison with the map built by proposed IEIF-vSLAM.
The trajectory followed by JiaoLong in the experiment is
shown in Figure 6. JiaoLong is driven by a user through a
joystick to follow this trajectory, starting inside roomnumber
200, travelling through the door, entering two atriums and
corridors, and travelling back to room number 200. This
process has been repeated for 3 cycles. During the driving
process, the data are transmitted and recorded in the on-
board PC. The data contains time 𝑡, odometer data, data of
laser range finder, and omnidirectional images. In order to
avoid significant data redundancy, a lower threshold is set. If
the wheelchair does not move by more than 4 cm or turn by
more than 1.5∘, the image will be discarded.Themap building
and localization experiments are carried out offline to verify
the proposed omnidirectional vision SLAM algorithm. The
robot’s “real” pose (as the ground truth compared with the
pose obtained by IEIF-vSLAM algorithm, the accuracy of
which has been limited to within ±4 cm) is calculated by
scan-match method [24] based on odometer data and data
of laser range finder. Based on time 𝑡 which is recorded
in each frame of data during acquisition, the one-to-one
relationship between the “real” pose and the pose obtained by

IEIF-vSLAM is built. The data acquisition experiment cost 10
minutes and the total distance of 3 cycles is 360m.

As shown in Figure 6, the blue dotted “◼” indicates
the planned trajectory of wheelchair, which is controlled
through the joystick. This trajectory is obtained by scan-
match method in the 1st circle. The Sparsification index is set
as𝑁 = 2, 𝜆 = 0.8.

In Figure 7, some images of omnidirectional vision and
feature map are shown. Room number 200 is an example
of a complex indoor environment. There is rich furniture,
such as tables, chairs, and various objects. The atrium had
some exhibition boards, doors, and windows along the wall.
The corridor, by contrast, has white walls with very few
features available. In Figure 8, the black rectangle “◼” indicate
the localization results and the green solid line indicates
the odometer trajectory for the 1st circle from starting
point to destination. During the initial period, the feature
points are extracted, meanwhile the map was built based on
omnidirectional vision’s observation. Although the odometer
data have small accumulative errors, there is no obvious
distinction between the trajectories of odometer and plan
trajectory (Figure 6). However, when the wheelchair navi-
gates out of Room number 200, odometer errors accumulate
away from the planned trajectory. Near the destination,
odometer errors have accumulated on a large scale, which
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does not reflect the wheelchair’s navigation position exactly.
As shown in Figure 8, based on modification of the IEIF-
vSLAM algorithm, the deviation of IEIF-vSLAM localization
is still relatively small from start to end during navigation of
three circles.

4.4. LocalizationAnalysis. In order to analyze the localization
accuracy of IEIF-vSLAM, as shown in Figure 8, the robot
trajectory is divided into 3 sections:

(i) Section I: from the starting point to the door exit;
(ii) Section II: from the door exit to the entrance of the

last corridor;
(iii) Section III: from the entrance of the last corridor to

the destination.

In Figure 8, the blue star “∗” indicates the position of
landmark features. There are rich feature points on both
sides of the path in Section I and their distribution is more
dispersed; there are fewer feature points on both sides of the
path in Section II and they are relatively concentrated; the
feature points of Section III are rich and more concentrated.
Table 1 shows the localization error (compared with the
results of scan-match, Max., and Avg. are the maximum and
average value of all absolute errors) during the three sections.

In Section I, it is a complex indoor environment. There
is rich furniture, such as tables, chairs, and various objects.
There are more features with more dispersed distribution.
Therefore, some more accurate results are obtained.

Starting pointDestination

Section ISection II

Se
ct

io
n 

II
I

Odometer trajectory
Localization results of IEIF-vSLAM

Figure 8: Odometer trajectory and localization of IEIF-vSLAM.

In Section II, much of the environment is a white wall
with windows with similar features. There are fewer features.
It leads to inaccurate localization which is caused by lack of
relocation.

In Section III, there are more feature points and their
distribution is relatively concentrated, which easily leads to
miss-match. Therefore, positioning errors are some bigger
than that of Section II.

As shown in Table 1, the position of the robot become
more accurate in the 3rd circle of all 3 Sections. In the 3rd
circle, the average error is 0.246m in 𝑥-direction, 0.198m
in 𝑦-direction, and 1.6∘ in heading angle. There are more
repeated observations for landmarks which lead to more
relocations; the estimation errors of robot pose have been
effectively restrained.

4.5. Comparison Experiments. In order to verify the valid-
ity of the proposed IEIF-vSLAM algorithm, the EIF [13]
algorithm is selected to be compared with the proposed
algorithm. The EIF algorithm combined with Harris-SIFT
and SLAM algorithm also runs on the same platform which
described in Section 4.1. The comparison experiment is also
repeated for 3 cycles in same scenario. Only the Max. and
Avg. in the 3rd circle are calculated and recorded. 𝑡 as the
algorithm’s average of time consuming (including of EIF
or IEIF, excluding of image processing, feature detecting,
matching, and tracking) of each algorithm cycle has also been
recorded.

Through the results in Table 2, compared with EIF
algorithm, the proposed EIF-vSLAM algorithm is better in
accuracy and the time consumption of the proposed EIF-
vSLAM algorithm is only 1/2 of that of EIF algorithm.
The advantage of computation efficiency of IEIF-vSLAM
algorithm is obvious.

5. Conclusion

An IEIF-vSLAM method based on omnidirectional vision
has been proposed in this paper. Both of the characteristics
of information matrix structure and omnidirectional vision’s
repeated observations for landmarks are analyzed. Based on
these analyses, the sparsification rule has been improved.
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Table 1: Localization error of IEIF-vSLAM.

Section I Section II Section III
Max. Avg. Max. Avg. Max. Avg.

1st circle
𝑋 error (m) 0.432 0.296 0.633 0.437 0.546 0.349
𝑌 error (m) 0.395 0.247 0.578 0.432 0.430 0.271
Angle error (∘) 3.7 1.9 4.3 2.5 3.6 2.2

2nd circle
𝑋 error (m) 0.329 0.267 0.541 0.363 0.451 0.273
𝑌 error (m) 0.318 0.231 0.481 0.365 0.318 0.231
Angle error (∘) 2.9 1.6 3.5 2.4 2.5 1.5

3rd Circle
𝑋 error (m) 0.401 0.235 0.502 0.253 0.471 0.245
𝑌 error (m) 0.264 0.172 0.467 0.236 0.286 0.217
Angle error (∘) 2.4 1.1 3.2 1.8 2.3 1.2

Table 2: Quantitative results of different algorithms.

EIF algorithm IEIF-vSLAM
Max. Avg. Max. Avg.

𝑋 error (m) 0.714 0.351 0.502 0.246
𝑌 error (m) 0.571 0.249 0.467 0.198
Angle error (∘) 3.4 1.9 3.2 1.6
𝑡 (s) 0.487 0.279

The sparse observation information has been utilized and the
strongest global correlation has been maintained. Both the
computation efficiency and accuracy of the estimated results
have been improved by using proper information matrix
sparsification. Before real platform experiments, through the
error analysis, the error caused by sparsification can be elim-
inated by proposed method. The results of the experiments
show that this method which uses omnidirectional vision’s
characteristic of repeated observations for landmarks can be
used for mobile robot map building and localization.
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