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Abstract
In this paper, we consider the initial value problem for a two-dimensional generalized
Zakharov system with quantum effects. We prove the existence and uniqueness of
global smooth solutions to the initial value problem in the Sobolev space through
making a priori integral estimates and the Galerkin method.
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1 Introduction
In the recent years, special interest has been devoted to quantum corrections to the Za-
kharov equations for Langmuir waves in a plasma []. By use of a quantum fluid approach,
the following modified Zakharov equations are obtained:

iEt + Exx – HExxxx = nE, ()

ntt – nxx + Hnxxxx = |E|xx, ()

where H is the dimensionless quantum parameter given by the ratio of the ion plasmon
and electron thermal energies. For H = , this system was derived by Zakharov in [] to
model a Langmuir wave in plasma. The Zakharov system attracted many scientists’ wide
interest and attention [–].

In this paper, we deal with the following generalized Zakharov system:

iEt + �E – H�E – nE = , ()

ntt – �n + H�n – �|E| = , ()

where (E, n) : (x, t) ∈ R × R and the initial data are taken to be

E|t= = E(x), n|t= = n(x), nt|t= = n(x). ()

To study a smooth solution of the generalized Zakharov system, we transform it into the
following form:

iEt + �E – H�E – nE = , ()
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nt – �ϕ = , ()

ϕt – n + H�n – |E| = , ()

with initial data

E|t= = E(x), n|t= = n(x), ϕ|t= = ϕ(x). ()

Now we state the main results of the paper.

Theorem . Suppose that E(x) ∈ Hl+(R), n(x) ∈ Hl+(R), n(x) ∈ Hl(R), l ≥ . Then
there exists a unique global smooth solution of the initial value problem ()-().

E(x, t) ∈ L∞(
, T ; Hl+(R)), Et(x, t) ∈ L∞(

, T ; Hl(R))

n(x, t) ∈ L∞(
, T ; Hl+(R)), nt(x, t) ∈ L∞(

, T ; Hl(R))

ntt(x, t) ∈ L∞(
, T ; Hl–(R)).

The obtained results may be useful for better understanding the nonlinear coupling be-
tween the ion-acoustic waves and the Langmuir waves in a two-dimensional space.

2 A priori estimates
Lemma . Suppose that E(x) ∈ L(R). Then, for the solution of problem ()∼(), we
have

‖E‖
L(R) =

∥∥E(x)
∥∥

L(R).

Proof Taking the inner product of () and E, then taking the imaginary part, we have

Im(iEt , E) = Re(Et , E) =



d
dt

‖E‖
L ,

Im
(
�E – H�E – nE, E

)
= .

Hence, we get

d
dt

‖E‖
L = .

We thus get Lemma .. �

Lemma . (Sobolev’s estimations) Assume that u ∈ Lq(Rn), Dmu ∈ Lr(Rn),  ≤ q, r ≤
∞,  ≤ j ≤ m, we have the estimations

∥∥Dju
∥∥

Lp(Rn) ≤ C
∥∥Dmu

∥∥α

Lr(Rn)‖u‖–α
Lq(Rn),

where C is a positive constant,  ≤ j
m ≤ α ≤ ,


p

=
j
n

+ α

(

r

–
m
n

)
+ ( – α)


q

.
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Lemma . Suppose that E(x) ∈ H(R), n(x) ∈ H(R), ϕ(x) ∈ H(R). Then we have

F (t) = F (),

where

F (t) = ‖∇E‖
L + H‖�E‖

L +
∫

R
n|E| dx +



‖∇ϕ‖

L +


‖n‖

L +
H


‖∇n‖

L .

Proof Take the inner products of () and –Et . Since

Re(iEt , –Et) = , Re(�E, –Et) =



d
dt

‖∇E‖
L ,

Re
(
–H�E, –Et

)
=

H


d
dt

‖�E‖
L ,

Re(–nE, –Et) =



∫

R
n|E|t dx

=



d
dt

∫

R
n|E| dx –




∫

R
nt|E| dx

=



d
dt

∫

R
n|E| dx –




∫

R
nt

(
ϕt – n + H�n

)
dx

=



d
dt

∫

R
n|E| dx –




∫

R
ntϕt dx +




d
dt

‖n‖
L +

H


d
dt

‖∇n‖
L

=



d
dt

∫

R
n|E| dx –




∫

R
�ϕϕt dx +




d
dt

‖n‖
L +

H


d
dt

‖∇n‖
L

=



d
dt

∫

R
n|E| dx +




d
dt

‖∇ϕ‖
L +




d
dt

‖n‖
L +

H


d
dt

‖∇n‖
L ,

thus it follows that

d
dt

[
‖∇E‖

L + H‖�E‖
L +

∫

R
n|E| dx +



‖∇ϕ‖

L +


‖n‖

L +
H


‖∇n‖

L

]

= . ()

Letting

F (t) = ‖∇E‖
L + H‖�E‖

L +
∫

R
n|E| dx +



‖∇ϕ‖

L +


‖n‖

L +
H


‖∇n‖

L ,

and noticing (), we obtain

F (t) = F (). �

Lemma . Suppose that E(x) ∈ H(R), n(x) ∈ H(R), ϕ(x) ∈ H(R). Then we have

sup
≤t≤T

(‖E‖H + ‖n‖H + ‖ϕ‖H
) ≤ C.
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Proof By Hölder’s inequality, Young’s inequality and Lemma ., it follows that

∣
∣∣∣

∫

R
n|E| dx

∣
∣∣∣ ≤ ‖n‖L‖E‖

L

≤ 


‖n‖
L + ‖E‖

L

≤ 


‖n‖
L + C‖�E‖L‖E‖

L

≤ 


‖n‖
L +

H


‖�E‖

L + C.

From Lemma . we get

‖∇E‖
L +

H


‖�E‖

L +


‖∇ϕ‖

L +



‖n‖
L +

H


‖∇n‖

L ≤ F () + C.

Take the inner products of Eq. () and ϕ. It follows that

(
ϕt – n + H�n – |E|,ϕ

)
=  ()

since

(ϕt ,ϕ) =



d
dt

‖ϕ‖
L ,

(
n + |E|,ϕ

) ≤ (‖n‖L + ‖E‖
L

)‖ϕ‖L ≤ 

‖ϕ‖

L + C,

where

‖E‖
L ≤ C‖∇E‖L‖E‖L ≤ C.

(
H�n,ϕ

)
= H(n,�ϕ) = H(n, nt) =

H


d
dt

‖n‖
L .

Hence, from Eq. () we get

d
dt

(‖ϕ‖
L + H‖n‖

L
) ≤ ‖ϕ‖

L + C.

Using Gronwall’s inequality, we obtain that

sup
≤t≤T

(‖ϕ‖
L + H‖n‖

L
) ≤ C.

We thus get Lemma .. �

Lemma . Suppose that E(x) ∈ H(R), n(x) ∈ H(R), ϕ(x) ∈ H(R). Then we have

sup
≤t≤T

(‖E‖H + ‖n‖H + ‖ϕ‖H + ‖Et‖L + ‖nt‖L + ‖ϕt‖L
) ≤ C.
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Proof Differentiating () with respect to t, then taking the inner products of the resulting
equation and Et , we have

(
iEtt + �Et – H�Et – (nE)t , Et

)
=  ()

since

Im(iEtt , Et) =



d
dt

‖Et‖
L , Im

(
�Et – H�Et – nEt , Et

)
= ,

∣
∣Im(–ntE, Et)

∣
∣ ≤ C‖E‖L∞‖nt‖L‖Et‖L ≤ C

(‖Et‖
L + ‖nt‖

L
)
.

By Lemma ., it follows that

‖E‖L∞ ≤ C‖�E‖ 

L‖E‖ 


L ;

thus from Eq. () we get

d
dt

‖Et‖
L ≤ C

(‖Et‖
L + ‖nt‖

L
)
. ()

Differentiating Eq. () with respect to t, then taking the inner products of the resulting
equation and nt , we have

(ntt – �ϕt , nt) =  ()

since

(ntt , nt) =



d
dt

‖nt‖
L ,

(–�ϕt , nt) =
(
–�n + H�n – �|E|, nt

)

=



d
dt

‖∇n‖
L +

H


d
dt

‖�n‖
L –

(
�|E|, nt

)
.

Noting that

∣∣(�|E|, nt
)∣∣ ≤ C‖E‖L∞‖�E‖L‖nt‖L ≤ C

(‖nt‖
L + 

)
,

from Eq. () we get

d
dt

[‖nt‖
L + ‖∇n‖

L + H‖�n‖
L

] ≤ C
(‖nt‖

L + 
)
. ()

From Eq. () and () we get

d
dt

[‖Et‖
L + ‖nt‖

L + ‖∇n‖
L + H‖�n‖

L
] ≤ C

(‖Et‖
L + ‖nt‖

L + 
)
.

By Gronwall’s inequality, it follows that

sup
≤t≤T

[‖Et‖
L + ‖nt‖

L + ‖∇n‖
L + H‖�n‖

L
] ≤ C. ()
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Take the inner products of Eq. () and ϕt . It follows that

(
ϕt – n + H�n – |E|,ϕt

)
=  ()

since

(ϕt ,ϕt) = ‖ϕt‖
L ,

(
–n + H�n – |E|,ϕt

) ≤ (‖n‖L + H‖�n‖L + ‖E‖
L

)‖ϕt‖L

≤ C +


‖ϕt‖

L .

From Eq. () we get

‖ϕt‖
L ≤ C.

Take the inner products of Eq. () and �E. It follows that

(
iEt + �E – H�E – nE,�E

)
=  ()

since

(iEt – nE,�E) ≤ (‖Et‖L + ‖E‖L∞‖n‖L
)‖�E‖L ≤ C,

(
�E – H�E,�E

)
= ‖�E‖

L + H∥∥∇E
∥∥

L .

From Eq. () we get

∥
∥∇E

∥
∥

L ≤ C.

From () we obtain

H∥∥�E
∥∥

L ≤ ‖Et‖L + ‖�E‖L + ‖nE‖L ≤ C,

where

‖nE‖L ≤ ‖n‖L‖E‖L ≤ C‖∇n‖ 

L‖n‖ 


L‖∇E‖ 


L‖E‖ 


L ≤ C.

From () we obtain

‖�ϕ‖L = ‖nt‖L ≤ C.

We thus get Lemma .. �

Lemma . Suppose that f, f ∈ Hs(�), � ⊆ Rn. Then we have

∥∥Ds(f · f)
∥∥

L ≤ Cs
(‖f‖L

∥∥Dsf
∥∥

L +
∥∥Dsf

∥∥
L‖f‖L

)
,

where the constant Cs is independent of f and f.
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Lemma . Suppose that E(x) ∈ Hm+(R), n(x) ∈ Hm+(R), ϕ(x) ∈ Hm+(R), m ≥ .
Then we have

sup
≤t≤T

(∥∥E(x, t)
∥
∥

Hm+ +
∥
∥n(x, t)

∥
∥

Hm+ +
∥
∥ϕ(x, t)

∥
∥

Hm+
) ≤ C

sup
≤t≤T

(∥∥Et(x, t)
∥∥

Hm +
∥∥nt(x, t)

∥∥
Hm + ‖ϕt‖Hm

) ≤ C.

Proof Lemma . is true when m =  (Lemma .). Suppose that Lemma . is true when
m = k, (k ≥ ). Take the inner products of () and (–)k+�k+ϕ. It follows that

(
ϕt – n + H�n – |E|, (–)k+�k+ϕ

)
=  ()

since

(
ϕt , (–)k+�k+ϕ

)
=




d
dt

∥∥∇k+ϕ
∥∥

L ,

(
–n, (–)k+�k+ϕ

)
=

(
–n, (–)k+�k+nt

)
=




d
dt

∥
∥∇k+n

∥
∥

L ,

(
H�n, (–)k+�k+ϕ

)
= H(�n, (–)k+�k+nt

)
=

H


d
dt

∥
∥∇k+n

∥
∥

L ,
∣
∣(–|E|, (–)k+�k+ϕ

)∣∣ =
∣
∣(∇k+|E|,∇k+ϕ

)∣∣ ≤ ∥
∥∇k+|E|∥∥L

∥
∥∇k+ϕ

∥
∥

L

≤ C‖E‖L
∥
∥∇k+E

∥
∥

L

∥
∥∇k+ϕ

∥
∥

L

≤ C
(∥∥∇k+ϕ

∥
∥

L + 
)
,

thus from Eq. () it follows that

d
dt

(∥∥∇k+ϕ
∥∥

L +
∥∥∇k+n

∥∥
L + H∥∥∇k+n

∥∥
L

) ≤ C
(∥∥∇k+ϕ

∥∥
L + 

)
. ()

By using Gronwall’s inequality, we have

sup
≤t≤T

(∥∥∇k+ϕ
∥∥

L +
∥∥∇k+n

∥∥
L +

∥∥∇k+n
∥∥

L
) ≤ C.

From () and () we get

∥∥∇k+nt
∥∥

L =
∥∥∇k+ϕ

∥∥
L ≤ C,

∥
∥∇k+ϕt

∥
∥

L ≤ C
(∥∥∇k+n

∥
∥

L +
∥
∥∇k+n

∥
∥

L + ‖E‖L
∥
∥∇k+E

∥
∥

L
) ≤ C.

Differentiating () with respect to t, then taking the inner products of the resulting equa-
tion and (–)k+�k+Et , we obtain

(
iEtt + �Et – H�Et – (nE)t , (–)k+�k+Et

)
= . ()

Since

Im
(
iEtt , (–)k+�k+Et

)
=




d
dt

∥
∥∇k+Et

∥
∥

L ,
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Im
(
�Et – H�Et , (–)k+�k+Et

)
= ,

∣
∣Im

(
–ntE, (–)k+�k+Et

)∣∣ ≤ ∣
∣(∇k+(ntE),∇k+Et

)∣∣

≤ C
(∥∥∇k+nt

∥
∥

L‖E‖L +
∥
∥∇k+E

∥
∥

L‖nt‖L
)∥∥∇k+Et

∥
∥

L

≤ C
(∥∥∇k+Et

∥
∥

L + 
)
,

∣
∣Im

(
–nEt , (–)k+�k+Et

)∣∣ ≤ ∣
∣(∇k+(nEt),∇k+Et

)∣∣

≤ C
(∥∥∇k+n

∥∥
L‖Et‖L +

∥∥∇k+Et
∥∥

L‖n‖L
)∥∥∇k+Et

∥∥
L

≤ C
(∥∥∇k+Et

∥∥
L + 

)
,

thus from Eq. () we get

d
dt

∥∥∇k+Et
∥∥

L ≤ C
(∥∥∇k+Et

∥∥
L + 

)
. ()

By using Gronwall’s inequality, we get

sup
≤t≤T

∥
∥∇k+Et

∥
∥

L ≤ C.

From () we obtain

∥∥∇k+E
∥∥

L ≤ C
(∥∥∇k+Et

∥∥
L +

∥∥∇k+E
∥∥

L +
∥∥∇k+n

∥∥
L‖E‖L + ‖n‖L

∥∥∇k+E
∥∥

L
) ≤ C.

Hence

sup
≤t≤T

(∥∥E(x, t)
∥
∥

Hk+ +
∥
∥n(x, t)

∥
∥

Hk+ +
∥
∥ϕ(x, t)

∥
∥

Hk+
) ≤ C,

sup
≤t≤T

(∥∥Et(x, t)
∥∥

Hk+ +
∥∥nt(x, t)

∥∥
Hk+ + ‖ϕt‖Hk+

) ≤ C.

This means Lemma . is true when m = k + . Thus Lemma . is proved completely. �

3 Existence and uniqueness of solution
Now, with these lemmas, we are able to prove Theorem .. First we obtain the existence
and uniqueness of the global generalized solution of problem ()-().

Definition . The functions E ∈ L∞(, T ; H) ∩ W ,∞(, T ; L), n ∈ L∞(, T ; H) ∩
W ,∞(, T ; L) and ϕ ∈ L∞(, T ; H) ∩ W ,∞(, T ; L) are called a generalized solution of
problem ()-() if for any ω ∈ L they satisfy the integral equality

(iEjt ,ω) + (�Ej,ω) = H(�Ej,ω
)

+ (nEj,ω), j = , , . . . , N ,

(nt ,ω) = (�ϕ,ω),

(ϕt ,ω) + H(�n,ω) = (n,ω) +
(|E|,ω

)

with initial data

E(x, ) = E(x), n(x, ) = n(x), ϕ(x, ) = ϕ(x).
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Now, one can estimate the following theorem.

Theorem . Suppose that E(x) ∈ Hl+(R), n(x) ∈ Hl+(R), ϕ(x) ∈ Hl+(R), l ≥ .
Then there exists a global smooth solution of the initial value problem ()-().

E(x, t) ∈ L∞(
, T ; Hl+(R)), Et(x, t) ∈ L∞(

, T ; Hl(R)),

n(x, t) ∈ L∞(
, T ; Hl+(R)), nt(x, t) ∈ L∞(

, T ; Hl(R)),

ϕ(x, t) ∈ L∞(
, T ; Hl+(R)), ϕt(x, t) ∈ L∞(

, T ; Hl(R)).

Proof By using the Galerkin method, choose the basic periodic functions {ωκ (x)} as fol-
lows:

–�ωκ (x) = λκωκ (x), ωκ (x) ∈ H(�),κ = , . . . , l.

The approximate solution of problem ()-() can be written as

El(x, t) =
l∑

κ=

αl
κ (t)ωκ (x), nl(x, t) =

l∑

κ=

β l
κ (t)ωκ (x),

ϕl(x, t) =
l∑

κ=

γ l
κ (t)ωκ (x),

where

El(x, t) =
(
El

, El
, . . . , El

N
)
, αl

κ (t) =
(
αl

κ,αl
κ, . . . ,αl

κN
)
.

� is a two-dimensional cube with D in each direction, that is, � = {x = (x, x)||xj| ≤
D, j = , }. According to Galerkin’s method, these undetermined coefficients αl

κ (t), β l
κ (t)

and γ l
κ (t) need to satisfy the following initial value problem of the system of ordinary dif-

ferential equations:

(
iEl

jt ,ωκ

)
+

(
�El

j ,ωκ

)
= H(�El

j ,ωκ

)
+

(
nlEl

j ,ωκ

)
, j = , , . . . , N , ()

(
nl

t ,ωκ

)
=

(
�ϕl,ωκ

)
, ()

(
ϕl

t ,ωκ

)
+ H(�nl,ωκ

)
=

(
nl,ωκ

)
+

(∣∣El∣∣,ωκ

)
()

with initial data

El(x, ) = El
(x), nl(x, ) = nl

(x), ϕl(x, ) = ϕl
(x), ()

where

El
(x) H−→ E(x), nl

(x) H−→ n(x), ϕl
(x) H−→ ϕ(x), l → ∞.

Similarly to the proof of Lemmas .-., for the solution El(x, t), nl(x, t), ϕl(x, t) of prob-
lem ()-(), we can establish the following estimates:

sup
≤t≤T

(∥∥El∥∥
H +

∥∥nl∥∥
H +

∥∥ϕl∥∥
H +

∥∥El
t
∥∥

L +
∥∥nl

t
∥∥

L +
∥∥ϕl

t
∥∥

L
) ≤ C,
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where the constants C are independent of l and D. By compact argument, some subse-
quence of (El, nl,ϕl), also labeled by l, has a weak limit (E, n,ϕ). More precisely

El(x, t) → E(x, t) in L∞(
, T ; H) weakly star,

nl(x, t) → n(x, t) in L∞(
, T ; H) weakly star,

ϕl(x, t) → ϕ(x, t) in L∞(
, T ; H) weakly star

and

El
t → Et in L∞(

, T ; L) weakly star,

nl
t → nt in L∞(

, T ; L) weakly star,

ϕl
t → ϕt in L∞(

, T ; L) weakly star.

By using Guo and Shen’s method [], one can prove the existence of a local solution for
the periodic initial problem ()-(). Similarly to Zhou and Guo’s proof [], letting D →
∞, the existence of a local solution for the initial value problem ()-() can be obtained.
By the continuation extension principle, from the conditions of the theorem and a priori
estimates in Section , we can get the existence of a global generalized solution for problem
()-(). By Lemma . and the Sobolev imbedding theorem, Theorem . is proved. �

Next, we prove the uniqueness of a solution for problem ()-().

Theorem . Suppose that E(x) ∈ Hl+(R), n(x) ∈ Hl+(R), ϕ(x) ∈ Hl+(R), l ≥ .
Then the global solution of the initial value problem ()-() is unique.

Proof Suppose that there are two solutions E, n,ϕ and E, n,ϕ. Let

E = E – E, n = n – n, ϕ = ϕ – ϕ.

From ()-() we get

iEt + �E – H�E – nE + nE = , ()

nt – �ϕ = , ()

ϕt – n + H�n – |E| + |E| = , ()

with initial data

E|t= = , n|t= = , ϕ|t= = , x ∈ R. ()

Take the inner product of () and E. Since

Im(iEt , E) =



d
dt

‖E‖
L ,

Im
(
�E – H�E, E

)
= ,
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∣∣Im(nE – nE, E)
∣∣ ≤ ∣∣(nE + nE, E)

∣∣

≤ C
(‖E‖L∞‖n‖L + ‖n‖L∞‖E‖L

)‖E‖L

≤ C
(‖n‖

L + ‖E‖
L

)
,

thus we obtain

d
dt

‖E‖
L ≤ C

(‖n‖
L + ‖E‖

L
)
. ()

Take the inner product of () and ϕ. Since

(ϕt ,ϕ) =



d
dt

‖ϕ‖
L ,

∣∣(–n,ϕ)
∣∣ ≤ C

(‖n‖
L + ‖ϕ‖

L
)
,

(
H�n,ϕ

)
=

(
Hn,�ϕ

)
=

(
Hn, nt

)
=

H


d
dt

‖n‖
L ,

∣∣(–|E| + |E|,ϕ
)∣∣ =

∣∣((E – E)E + E(E – E),ϕ
)∣∣

≤ C(‖E‖L∞‖E‖L‖ + ‖E‖L∞‖E‖L )‖ϕ‖L

≤ C
(‖E‖

L + ‖ϕ‖
L

)
,

thus we get

d
dt

(‖ϕ‖
L + H‖n‖

L
) ≤ C

(‖E‖
L + ‖n‖

L + ‖ϕ‖
L

)
. ()

Hence from () and () we get

d
dt

(‖E‖
L + ‖n‖

L + ‖ϕ‖
L

) ≤ C
(‖E‖

L + ‖n‖
L + ‖ϕ‖

L
)
. ()

By using Gronwall’s inequality and noticing (), we arrive at

E ≡ , n ≡ , ϕ ≡ .

Theorem . is proved. This completes the proof of Theorem .. �

4 Results and discussion
One can regard ()-() as the Langmuir turbulence parameterized by H and study the
asymptotic behavior of systems ()-() when H goes to zero.

5 Conclusions
By a priori integral estimates and the Galerkin method, we have the following conclusion.

Suppose that E(x) ∈ Hl+(R), n(x) ∈ Hl+(R), n(x) ∈ Hl(R), l ≥ . Then there exists
a unique global smooth solution of the initial value problem ()-().

E(x, t) ∈ L∞(
, T ; Hl+(R)), Et(x, t) ∈ L∞(

, T ; Hl(R))

n(x, t) ∈ L∞(
, T ; Hl+(R)), nt(x, t) ∈ L∞(

, T ; Hl(R))

ntt(x, t) ∈ L∞(
, T ; Hl–(R)).
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