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Abstract
The purpose of this paper is to generalize fixed point theorems introduced by Jleli et
al. (J. Inequal. Appl. 2014:38, 2014) by using the concept of triangular α-orbital
admissible mappings established in Popescu (Fixed Point Theory Appl. 2014:190,
2014). Some examples are given here to illustrate the usability of the obtained results.
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1 Introduction
Recently, Branciari [] refined the notion of metric to get a new distance function by
substituting the triangle inequality with the quadrilateral inequality. This refined metric
function was called general metric in some sources, rectangular metric in some others.
Throughout the manuscript, we use the Branciari metric for this new function. In a pio-
neering work, the author [] successfully defined an open ball and hence a topology for the
Branciari metric. On the other hand, the topology of the Branciari metric is quite different
from the usual metric topology. For more details, see e.g. the Branciari metric [–] and
the related references therein. Besides the interesting topological properties induced by
the Branciari metric, the author of [] reported the analogous celebrated Banach contrac-
tion mapping principle which has been generalized, extended, and improved in several
ways; see e.g. [–, –]. Although Branciari [] correctly stated the analog of Banach
contraction mapping principle in the setting of Branciari metric space, proofs has gaps
which was removed by a number of authors; see e.g. [, , , ].

In this paper we extend the results introduced by Jleli et al. [, ] by using the concept
of triangular α-orbital admissible mappings obtained in []. Throughout the article N, R
shall denote the set of natural and real numbers, respectively.

Definition  [] Let X be a non-empty set and d : X × X −→ [,∞) be a mapping such
that, for all x, y ∈ X and all distinct points u, v ∈ X, each of them different from x and y,
one has

(i) d(x, y) =  ⇐⇒ x = y,
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(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Then (X, d) is called a Branciari metric space (or for short BMS). As mentioned above,
such spaces are called also generalized metric space, rectangular metric space in the lit-
erature. We assert that the Branciari metric space is more suitable regarding the fact that
several extensions of the metric are called general metrics.

Definition  Let (X, d) be a BMS, {xn} be a sequence in X, and x ∈ X, we say that {xn} is
convergent to x if and only if d(xn, x) −→  as n −→ ∞. We denote this by xn −→ x.

Definition  Let (X, d) be a BMS and {xn} be a sequence in X. We say that {xn} is a Cauchy
sequence if and only if d(xn, xm) −→  as n, m −→ ∞.

Definition  Let (X, d) be a BMS. We say that (X, d) is complete if and only if every Cauchy
sequence in X converges to some element in X.

Definition  [] Let T : X → X be a map and α : X × X → [, +∞) be a function. We say
that T is α-admissible if x, y ∈ X, α(x, y) ≥  implies that α(Tx, Ty) ≥ .

Definition  [] A map T : X → X is said to be triangular α-admissible if:
(T) T is α-admissible,
(T) α(x, u) ≥  and α(u, y) ≥  implies that α(x, y) ≥ , x, u, y ∈ X .

Definition  [] Let T : X → X be a map and α : X × X → [, +∞) be a function. Then T
is said to be α-orbital admissible if

(T) x ∈ X , α(x, Tx) ≥  implies that α(Tx, Tx) ≥ .

Definition  [] Let T : X → X be a map and α : X × X → [, +∞) be a function. Then T
is said to be triangular α-orbital admissible if it is α-orbital admissible and

(T) x, y ∈ X , α(x, y) ≥ , and α(y, Ty) ≥  implies that α(x, Ty) ≥ .

Example  [] Let X = {, , , }, d : X × X −→ R, d(x, y) = |x – y|, T : X → X such that
T() = , T() = , T() = , T() = , and α : X × X → [, +∞),

α(x, y) =

{
, if (x, y) ∈ A,
, otherwise,

where A = {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}. Clearly, T is triangular α-
orbital admissible, T is α-orbital admissible, but T is not triangular α-admissible.

Definition  [] Let T : X → X be a map and α : X × X → [, +∞) be a function. Then
T is said to be α-orbital attractive if

x ∈ X, α(x, Tx) ≥  implies that α(x, y) or α(y, Tx) ≥ ,

for every y ∈ X.
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We denote by � the set of functions θ : (,∞) −→ (,∞) satisfying the following condi-
tions:

(�) θ is non-decreasing,
(�) for each sequence {tn} ⊂ (,∞),

lim
n→∞ θ (tn) =  if and only if lim

n→∞ tn = +,

(�) there exists r ∈ (, ) and � ∈ (,∞] such that limt−→+ θ (t)–
tr = �.

Very recently Jleli et al. [] established the following generalization of the Banach fixed
point theorem in the setting of the Branciari metric space.

Theorem  [] Let (X, d) be a complete BMS and T : X −→ X be a given mapping. Suppose
that there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ θ
(
d(Tx, Ty)

) ≤ [
θ
(
d(x, y)

)]k .

Then T has a unique fixed point.

Example  [] The functions θ : (,∞) −→ (,∞) are elements of �:
() θ (t) = e

√
t ,

() θ (t) = e
√

tet ,
() θ (t) =  – 

π
arctan( 

tγ ),  < γ < , t > .

Theorem  [] Let (X, d) be a complete BMS and T : X −→ X be a given mapping. Sup-
pose that there exist θ ∈ � that is continuous and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ θ
(
d(Tx, Ty)

) ≤ [
θ
(
M(x, y)

)]k ,

where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty)
}

.

Then T has a unique fixed point.

The following lemmas will be needed in the sequel.

Lemma  [] Let (X, d) be a BMS and {xn} be a Cauchy sequence in (X, d) such that
d(xn, x) −→  as n −→ ∞ for some x ∈ X. Then d(xn, y) −→ d(x, y) as n −→ ∞ for all y ∈ X.
In particular, {xn} does not converge to y if y 
= x.

Lemma  [] Let (X, d) be a BMS and {xn} be a Cauchy sequence in (X, d) and x, y ∈ X.
Suppose that there exists a positive integer N such that

(i) xn 
= xm for all n, m > N ;
(ii) xn and x are distinct points in X for all n > N ;

(iii) xn and y are distinct points in X for all n > N ;
(iv) limn−→∞ d(xn, x) = limn−→∞ d(xn, y).
Then we have x = y.
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Lemma  [] Let T : X −→ X be a triangular α-orbital admissible mapping. Assume that
there exists x ∈ X such that α(x, Tx) ≥ . Define a sequence {xn} by xn+ = Txn. Then we
have α(xn, xm) ≥  for all m, n ∈N.

2 Main results
In this section, we state and prove our main result.

Theorem  Let (X, d) be a complete BMS, T : X −→ X be a given map and let α : X ×
X −→ [,∞) be a mapping. Suppose that the following conditions hold:

() there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ α(x, y) · θ(
d(Tx, Ty)

) ≤ [
θ
(
R(x, y)

)]k ,

where

R(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)
 + d(x, y)

}
,

() there exists x ∈ X such that α(x, Tx) ≥  and α(x, Tx) ≥ ,
() T is a triangular α-orbital admissible mapping,
() T is continuous.
Then T has a fixed point x∗ ∈ X and {Tnx} converges to x∗.

Proof Let x ∈ X be such that α(x, Tx) ≥  and α(x,Tx) ≥ . We define the iterative
sequence {xn} in X by the rule xn = Txn– = Tnx for all n ≥ . Obviously, if there exists
n ≥  for which Tn x = Tn+x then Tn x shall be a fixed point of T . Thus, we suppose
that Tnx 
= Tn+x for every n ≥ . Now from Lemma , we get

α
(
Tnx, Tn+x

) ≥  for all n ≥ , (.)

also

α
(
Tnx, Tn+x

) ≥  for all n ≥ . (.)

From condition () and (.), for every n ≥ , we write

θ
(
d
(
Tnx, Tn+x

))
≤ α

(
Tn–x, Tnx

) · θ(
d
(
Tn–x, Tnx

))

≤
[
θ

(
max

{
d(Tn–x, Tnx), d(Tn–x, TTn–x),

d(Tnx, TTnx), d(Tn–x,TTn–x)d(Tnx,TTnx)
+d(Tn–x,Tnx)

})]k

=

[
θ

(
max

{
d(Tn–x, Tnx), d(Tnx, Tn+x),

d(Tn–x,Tnx)d(Tnx,Tn+x)
+d(Tn–x,Tnx)

})]k

=
[
θ
(
max

{
d
(
Tn–x, Tnx

)
, d

(
Tnx, Tn+x

)})]k . (.)
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If there exists n ≥  such that max{d(Tn–x, Tnx), d(Tnx, Tn+x)} = d(Tnx, Tn+x), then
inequality (.) turns into

θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d
(
Tnx, Tn+x

))]k ,

this implies

ln
[
θ
(
d
(
Tnx, Tn+x

))] ≤ k ln
[
θ
(
d
(
Tnx, Tn+x

))]
,

which is a contradiction with k ∈ (, ). Therefore max{d(Tn–x, Tnx), d(Tnx, Tn+x)} =
d(Tn–x, Tnx) for all n ≥ . Thus, from (.), we have

θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d
(
Tn–x, Tnx

))]k for all n ≥ .

This implies

θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d
(
Tn–x, Tnx

))]k

≤ [
θ
(
d
(
Tn–x, Tn–x

))]k ≤ · · · ≤ [
θ
(
d(x, Tx)

)]kn
.

Thus we have

 ≤ θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d(x, Tx)

)]kn
for all n ≥ . (.)

Letting n −→ ∞, we obtain

lim
n−→∞ θ

(
d
(
Tnx, Tn+x

))
= , (.)

which together with (�) gives as

lim
n−→∞ d

(
Tnx, Tn+x

)
= .

From condition (�), there exist r ∈ (, ) and � ∈ (,∞] such that

lim
n−→∞

θ (d(Tnx, Tn+x)) – 
[d(Tnx, Tn+x)]r = �.

Suppose that � < ∞. In this case, let B = �
 > . From the definition of the limit, there exists

n ≥  such that

∣∣∣∣θ (d(Tnx, Tn+x)) – 
[d(Tnx, Tn+x)]r – �

∣∣∣∣ ≤ B for all n ≥ n.

This implies

θ (d(Tnx, Tn+x)) – 
[d(Tnx, Tn+x)]r ≥ � – B = B for all n ≥ n.
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Then

n
[
d
(
Tnx, Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx, Tn+x

))
– 

]
for all n ≥ n,

where A = 
B . Suppose now that � = ∞. Let B >  be an arbitrary positive number. From

the definition of the limit, there exists n ≥  such that

θ (d(Tnx, Tn+x)) – 
[d(Tnx, Tn+x)]r ≥ B for all n ≥ n.

This implies

n
[
d
(
Tnx, Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx, Tn+x

))
– 

]
for all n ≥ n,

where A = 
B . Thus, in all cases, there exist A >  and n ≥  such that

n
[
d
(
Tnx, Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx, Tn+x

))
– 

]
for all n ≥ n.

By using (.), we get

n
[
d
(
Tnx, Tn+x

)]r ≤ An
([

θ
(
d(x, Tx)

)]kn
– 

)
for all n ≥ n. (.)

Letting n −→ ∞ in the inequality (.), we obtain

lim
n−→∞ n

[
d
(
Tnx, Tn+x

)]r = .

Thus, there exists n ∈N such that

d
(
Tnx, Tn+x

) ≤ 
n 

r
for all n ≥ n. (.)

Now, we will prove that T has a periodic point. Suppose that it is not the case, then Tnx 
=
Tmx for all n, m ≥  such that n 
= m. Using condition () and (.), we get

θ
(
d
(
Tnx, Tn+x

))
≤ α

(
Tn–x, Tn+x

) · θ(
d
(
Tn–x, Tn+x

))

≤
[
θ

(
max

{
d(Tn–x, Tn+x), d(Tn–x, TTn–x),

d(Tn+x, TTn+x), d(Tn–x,TTn–x)d(Tn+x,TTn+x)
+d(Tn–x,Tn+x)

})]k

=

[
θ

(
max

{
d(Tn–x, Tn+x), d(Tn–x, Tnx),

d(Tn+x, Tn+x), d(Tn–x,Tnx)d(Tn+x,Tn+x)
+d(Tn–x,Tn+x)

})]k

=

[
θ

(
max

{
d(Tn–x, Tn+x), d(Tn–x, Tnx),

d(Tn+x, Tn+x)

})]k

. (.)

Since θ is non-decreasing, we obtain from (.)

θ
(
d
(
Tnx, Tn+x

)) ≤
[

max

{
θ (d(Tn–x, Tn+x)), θ (d(Tn–x, Tnx)),

θ (d(Tn+x, Tn+x))

}]k

. (.)
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Let I be the set of n ∈ N such that

un = max
{
θ
(
d
(
Tn–x, Tn+x

))
, θ

(
d
(
Tn–x, Tnx

))
, θ

(
d
(
Tn+x, Tn+x

))}
= θ

(
d
(
Tn–x, Tn+x

))
.

If |I| < ∞ then there is N ≥  such that, for all n ≥ N ,

max
{
θ
(
d
(
Tn–x, Tn+x

))
, θ

(
d
(
Tn–x, Tnx

))
, θ

(
d
(
Tn+x, Tn+x

))}
= max

{
θ
(
d
(
Tn–x, Tnx

))
, θ

(
d
(
Tn+x, Tn+x

))}
.

In this case, we get from (.)

 ≤ θ
(
d
(
Tnx, Tn+x

)) ≤ [
max

{
θ
(
d
(
Tn–x, Tnx

))
, θ

(
d
(
Tn+x, Tn+x

))}]k

for all n ≥ N . Letting n −→ ∞ in the above inequality and using (.), we obtain

lim
n−→∞ θ

(
d
(
Tnx, Tn+x

))
= .

If |I| = ∞, we can find a subsequence of {un}, then we denote also by {un}, such that

un = θ
(
d
(
Tn–x, Tn+x

))
for n large enough.

In this case, we obtain from (.)

 ≤ θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d
(
Tn–x, Tn+x

))]k

≤ [
θ
(
d
(
Tn–x, Tnx

))]k ≤ · · · ≤ [
θ
(
d
(
x, Tx

))]kn

for n large. Letting n −→ ∞ in the above inequality, we obtain

lim
n−→∞ θ

(
d
(
Tnx, Tn+x

))
= . (.)

Then in all cases, (.) holds. Using (.) and (�), we have

lim
n−→∞ θ

(
d
(
Tnx, Tn+x

))
= .

Similarly from (�) there exists n ≥  such that

d
(
Tnx, Tn+x

) ≤ 
n 

r
for all n ≥ n. (.)

Let h = max{n, n}. we consider two cases.
Case : If m >  is odd, then writing m = L + , L ≥ , using (.), for all n ≥ h, we obtain

d
(
Tnx, Tn+mx

) ≤ d
(
Tnx, Tn+x

)
+ d

(
Tn+x, Tn+x

)
+ · · ·

+ d
(
Tn+Lx, Tn+L+x

)
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≤ 
n 

r
+


(n + ) 

r
+ · · · +


(n + L) 

r

≤
∞∑
i=n


i 

r
.

Case : If m >  is even, then writing m = L, L ≥ , using (.) and (.), for all n ≥ h,
we have

d
(
Tnx, Tn+mx

) ≤ d
(
Tnx, Tn+x

)
+ d

(
Tn+x, Tn+x

)
+ · · ·

+ d
(
Tn+L–x, Tn+Lx

)
≤ 

n 
r

+


(n + ) 
r

+ · · · +


(n + L – ) 
r

≤
∞∑
i=n


i 

r
.

Thus, combining all cases, we have

d
(
Tnx, Tn+mx

) ≤
∞∑
i=n


i 

r
for all n ≥ h, m ≥ .

Since the series
∑∞

i=n


i

r

is convergent (since 
r > ), we deduce that {Tnx} is a Cauchy

sequence. From the completeness of X, there is x∗ ∈ X such that Tnx −→ x∗ as n −→ ∞.
Now, since T is continuous we have

x∗ = lim
n−→∞ Tn+x = lim

n−→∞ T
(
Tnx

)
= T

(
lim

n−→∞ Tnx

)
= Tx∗.

We obtain x∗ = Tx∗, which is a contradiction with the assumption that T does not have
a periodic point. Thus T has a periodic point, say x∗ of period q. Suppose that the set of
fixed points of T is empty. Then we have

q >  and d(x∗, Tx∗) > .

By using condition () and (.), we get

θ
(
d(x∗, Tx∗)

)
= θ

(
d
(
Tqx∗, Tq+x∗

))
≤ α

(
Tq–x∗, Tqx∗

) · θ(
d
(
Tqx∗, Tq+x∗

))
≤ [

θ
(
d(x∗, Tx∗)

)]kq
< θ

(
d(x∗, Tx∗)

)
,

which is a contradiction. Thus the set of fixed points of T is non-empty (that is, T has at
least one fixed point). �

Since a metric space is a Branciari metric space, we can obtain the following result from
Theorem .
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Corollary  Let (X, d) be a complete metric space, T : X −→ X be a given map and let
α : X × X −→ [,∞) be a mapping. Suppose that the following conditions hold:

() there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ α(x, y) · θ(
d(Tx, Ty)

) ≤ [
θ
(
R(x, y)

)]k ,

where

R(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)
 + d(x, y)

}
,

() there exists x ∈ X such that α(x, Tx) ≥  and α(x, Tx) ≥ ,
() T is a triangular α-orbital admissible mapping,
() T is continuous.
Then T has a fixed point x∗ ∈ X and {Tnx} converges to x∗.

In the next theorem we omit the continuity hypothesis of T .

Theorem  Let (X, d) be a complete BMS, T : X −→ X be a given map and let α : X ×
X −→ [,∞) be a mapping. Suppose that the following conditions hold:

() there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ α(x, y) · θ(
d(Tx, Ty)

) ≤ [
θ
(
R(x, y)

)]k ,

where

R(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)
 + d(x, y)

}
,

() there exists x ∈ X such that α(x, Tx) ≥  and α(x, Tx) ≥ ,
() T is a triangular α-orbital admissible mapping,
() if {Tnx} is a sequence in X such that α(Tnx, Tn+x) ≥  for all n and xn −→ x ∈ X

as n −→ ∞ , then there exists a subsequence {Tn(k)x} of {Tnx} such that
α(Tn(k)x, x) ≥  for all k,

() θ is continuous.
Then T has a fixed point x∗ ∈ X and {Tnx} converges to x∗.

Proof Let x ∈ X be such that α(x, Tx) ≥  and α(x, Tx) ≥ . Following the proof of
Theorem , we see that the sequence {Tnx} defined by xn = Txn– = Tnx for all n ≥ 
converges to x∗ ∈ X. From condition (), we see that there exists a subsequence {Tn(k)x}
of {Tnx} such that α(Tn(k)x, x∗) ≥  for all k. We can suppose Tn(k)+x 
= Tx∗, then, from
condition (), we have

θ
(
d
(
Tn(k)+x, Tx∗

))
= θ

(
d
(
T

(
Tn(k)x

)
, Tx∗

))
≤ α

(
Tn(k)x, x∗

) · θ(
d
(
T

(
Tn(k)x

)
, Tx∗

))
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≤
[
θ

(
max

{
d(Tn(k)x, x∗), d(Tn(k)x, T(Tn(k)x)),
d(x∗, Tx∗), d(Tn(k)x,T(Tn(k)x))d(x∗ ,Tx∗)

+(dTn(k)x,x∗)

})]k

=

[
θ

(
max

{
d(Tn(k)x, x∗), d(Tn(k)x, Tn(k)+x),
d(x∗, Tx∗), d(Tn(k)x,Tn(k)+x))d(x∗ ,Tx∗)

+(dTn(k)x,x∗)

})]k

. (.)

Now, we suppose that d(x∗, Tx∗) > . Taking the limit as k −→ ∞ in (.), and by using
the continuity of θ , and Lemma , we obtain

θ
(
d(x∗, Tx∗)

) ≤ [
θ
(
d(x∗, Tx∗)

)]k < θ
(
d(x∗, Tx∗)

)
,

which is a contradiction. Thus we have x∗ = Tx∗, which is also a contradiction with the
assumption that T does not have a periodic point. Thus T has a periodic point, say x∗ of
period q. Suppose that the set of fixed points of T is empty. Then we have

q >  and d(x∗, Tx∗) > .

By using condition () and (.), we get

θ
(
d(x∗, Tx∗)

)
= θ

(
d
(
Tqx∗, Tq+x∗

)) ≤ α
(
Tq–x∗, Tqx∗

) · θ(
d
(
Tqx∗, Tq+x∗

))
≤ [

θ
(
d(x∗, Tx∗)

)]kq
< θ

(
d(x∗, Tx∗)

)
,

which is a contradiction. Thus the set of fixed points of T is non-empty (that is, T has at
least one fixed point). �

Example  Let X = [–, –] ∪ {} ∪ [, ]. Define d : X × X −→ [,∞) as follows:

d(x, x) = , for all x ∈ X,

d(, ) = d(, ) = ,

d(, –) = d(–, ) = d(–, ) = d(, –) = ,

d(x, y) = |x – y|, otherwise.

It is clear that (X, d) is a complete BMS, but it is not metric space because d does not satisfy
triangle inequality on X. Indeed,

 = d(, ) > d(, –) + d(–, ) =  +  = .

Let T : X −→ X be the mapping defined by

Tx =

{
–x if x ∈ [–, –) ∪ (, ],
 if x ∈ {–, , }.

Let α : X × X −→ [,∞) be given by

α(x, y) =

{
, if xy ≥ ,
, otherwise.
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Also define θ : (,∞) −→ (,∞) by

θ (t) = e
√

tet .

Obviously, T is triangular α-orbital admissible mapping. Also the hypotheses of Theo-
rem  are satisfied by T and, hence, T has a fixed point.

Corollary  Let (X, d) be a complete metric space, T : X −→ X be a given map and let
α : X × X −→ [,∞) be a mapping. Suppose that the following conditions hold:

() there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ α(x, y) · θ(
d(Tx, Ty)

) ≤ [
θ
(
R(x, y)

)]k ,

where

R(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)
 + d(x, y)

}
,

() there exists x ∈ X such that α(x, Tx) ≥  and α(x, Tx) ≥ ,
() T is a triangular α-orbital admissible mapping,
() if {Tnx} is a sequence in X such that α(Tnx, Tn+x) ≥  for all n and xn −→ x ∈ X

as n −→ ∞ , then there exists a subsequence {Tn(k)x} of {Tnx} such that
α(Tn(k)x, x) ≥  for all k,

() θ is continuous.
Then T has a fixed point x∗ ∈ X and {Tnx} converges to x∗.

To ensure the uniqueness of the fixed point, we shall consider the following hypothesis.
(H) for all x 
= y ∈ X , there exists v ∈ X such that α(x, v) ≥ , α(y, v) ≥ , and α(v, Tv) ≥ .

Theorem  Adding condition (H) to the hypothesis of Theorem  or Corollary  (re-
spectively, Theorem  or Corollary ) the uniqueness of the fixed point is obtained.

Proof Suppose that x∗ and y∗ are two fixed points of T such that x∗ 
= y∗. Then by (H),
there exists v ∈ X such that

α(x∗, v) ≥ , α(y∗, v) ≥  and α(v, Tv) ≥ .

Since T is a triangular α-orbital admissible mapping, we see that

α
(
x∗, Tnv

) ≥ , α
(
y∗, Tnv

) ≥  for all n ≥ .

By Theorem  (respectively, Theorem ) we deduce that the sequence {Tnv} converges to
a fixed point z∗ of T . We can suppose that x∗ 
= Tn+v for all n ≥ , then from condition (),
we have

θ
(
d
(
x∗, Tn+v

))
= θ

(
d
(
Tx∗, Tn+v

)) ≤ α
(
x∗, Tnv

) · θ(
d
(
Tx∗, Tn+v

))

≤
[
θ

(
max

{
d(x∗, Tnv), d(x∗, Tx∗),

d(Tnv, Tn+v), d(x∗ ,Tx∗)d(Tnv,Tn+v)
+(x∗ ,Tnv)

})]k

.



Arshad et al. Journal of Inequalities and Applications  (2016) 2016:63 Page 12 of 21

This implies

θ
(
d
(
x∗, Tn+v

))
< θ

(
max

{
d(x∗, Tnv), d(x∗, Tx∗),

d(Tnv, Tn+v), d(x∗ ,Tx∗)d(Tnv,Tn+v)
+(x∗ ,Tnv)

})
.

Letting n −→ ∞ in the above equality, if x∗ 
= z∗, then we get

d(x∗, z∗) < d(x∗, z∗),

which is a contradiction. Therefore, x∗ = z∗. Similarly, we get y∗ = z∗. Hence, x∗ = y∗, which
is a contradiction. �

Corollary  Let (X, d) be a complete BMS and T : X −→ X be a given mapping. Suppose
that there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ θ
(
d(Tx, Ty)

) ≤ [
θ
(
R(x, y)

)]k ,

where

R(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)
 + d(x, y)

}
.

Then T has a unique fixed point.

Proof Setting α(x, y) =  for all x, y ∈ X in Theorem , we get this result. �

Corollary  [] Let (X, d) be a complete BMS and T : X −→ X be a given mapping.
Suppose that there exist θ ∈ � that is continuous and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ θ
(
d(Tx, Ty)

) ≤ [
θ
(
M(x, y)

)]k ,

where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty)
}

.

Then T has a unique fixed point.

Corollary  [] Let (X, d) be a complete BMS and T : X −→ X be a given mapping. Sup-
pose that there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ θ
(
d(Tx, Ty)

) ≤ [
θ
(
d(x, y)

)]k .

Then T has a unique fixed point.

Example  Let X = {, , } endow with the metric d given by d(x, y) = |x – y| for all
x, y ∈ X. It is easy to show that (X, d) is a complete metric space. Let T : X −→ X be the
mapping defined by

T() = , T() = , T() = ,
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and α : X × X −→ [,∞) be given by

α(x, y) =

⎧⎪⎨
⎪⎩

 if (x, y) ∈
{

(, ), (, ), (, ), (, ),
(, ), (, )

}
,

 otherwise.

Also define θ : (,∞) −→ (,∞) by

θ (t) = e
√

t .

It is not difficult to show that T is triangular α-orbital admissible mapping. Also the hy-
potheses of Theorem  are satisfied by T and hence, T has a fixed point. But the result
of Jleli et al. (Corollary ) cannot be applied to T . Indeed for x = , y = , we have

θ
(
d
(
T(), T()

))
= θ

(
d(, )

)
= e

√


� [e]k =
[
θ
(
d(, )

)]k , for all k ∈ (, ).

Now we will use the concept of an α-orbital attractive mapping introduced in [].

Theorem  Let (X, d) be a complete BMS, T : X −→ X be a given map and let α : X ×
X −→ [,∞) be a mapping. Suppose that the following conditions hold:

() there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ α(x, y) · θ(
d(Tx, Ty)

) ≤ [
θ
(
R(x, y)

)]k ,

where

R(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)
 + d(x, y)

}
,

() there exists x ∈ X such that α(x, Tx) ≥  and α(x, Tx) ≥ ,
() T is an α-orbital admissible mapping,
() T is an α-orbital attractive mapping,
() θ is continuous.
Then T has a unique fixed point x∗ ∈ X and {Tnx} converges to x∗.

Proof Let x ∈ X be such that α(x, Tx) ≥  and α(x,Tx) ≥ . We define the iterative
sequence {xn} in X by the rule xn = Txn– = Tnx for all n ≥ . Obviously, if there exists
n ≥  for which Tn x = Tn+x then Tn x shall be a fixed point of T . Thus, we suppose
that Tnx 
= Tn+x for every n ≥ . Since T is α -orbital admissible, we have

α(x, Tx) ≥  implies α
(
Tx, Tx

) ≥ 

and

α
(
x, Tx

) ≥  implies α
(
Tx, Tx

) ≥ .
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By continuing this process, we get

α
(
Tnx, Tn+x

) ≥  for all n ≥  (.)

and

α
(
Tnx, Tn+x

) ≥  for all n ≥ . (.)

From condition () and (.), then for every n ≥ , we write

θ
(
d
(
Tnx, Tn+x

))
≤ α

(
Tn–x, Tnx

) · θ(
d
(
Tn–x, Tnx

))

≤
[
θ

(
max

{
d(Tn–x, Tnx), d(Tn–x, TTn–x),

d(Tnx, TTnx), d(Tn–x,TTn–x)d(Tnx,TTnx)
+d(Tn–x,Tnx)

})]k

=

[
θ

(
max

{
d(Tn–x, Tnx), d(Tnx, Tn+x),

d(Tn–x,Tnx)d(Tnx,Tn+x)
+d(Tn–x,Tnx)

})]k

=
[
θ
(
max

{
d
(
Tn–x, Tnx

)
, d

(
Tnx, Tn+x

)})]k . (.)

If there exists n ≥  such that max{d(Tn–x, Tnx), d(Tnx, Tn+x)} = d(Tnx, Tn+x), then
inequality (.) turns into

θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d
(
Tnx, Tn+x

))]k ,

this implies

ln
[
θ
(
d
(
Tnx, Tn+x

))] ≤ k ln
[
θ
(
d
(
Tnx, Tn+x

))]
,

which is a contradiction with k ∈ (, ). Therefore max{d(Tn–x, Tnx), d(Tnx, Tn+x)} =
d(Tn–x, Tnx) for all n ≥ . Thus, from (.), we have

θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d
(
Tn–x, Tnx

))]k for all n ≥ .

This implies

θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d
(
Tn–x, Tnx

))]k

≤ [
θ
(
d
(
Tn–x, Tn–x

))]k ≤ · · · ≤ [
θ
(
d(x, Tx)

)]kn
.

Thus we have

 ≤ θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d(x, Tx)

)]kn
for all n ≥ . (.)

Letting n −→ ∞, we obtain

lim
n−→∞ θ

(
d
(
Tnx, Tn+x

))
= , (.)
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which together with (�) gives

lim
n−→∞ d

(
Tnx, Tn+x

)
= .

From condition (�), there exist r ∈ (, ) and � ∈ (,∞] such that

lim
n−→∞

θ (d(Tnx, Tn+x)) – 
[d(Tnx, Tn+x)]r = �.

Suppose that � < ∞. In this case, let B = �
 > . From the definition of the limit, there exists

n ≥  such that

∣∣∣∣θ (d(Tnx, Tn+x)) – 
[d(Tnx, Tn+x)]r – �

∣∣∣∣ ≤ B for all n ≥ n.

This implies

θ (d(Tnx, Tn+x)) – 
[d(Tnx, Tn+x)]r ≥ � – B = B for all n ≥ n.

Then

n
[
d
(
Tnx, Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx, Tn+x

))
– 

]
for all n ≥ n,

where A = 
B . Suppose now that � = ∞. Let B >  be an arbitrary positive number. From

the definition of the limit, there exists n ≥  such that

θ (d(Tnx, Tn+x)) – 
[d(Tnx, Tn+x)]r ≥ B for all n ≥ n.

This implies

n
[
d
(
Tnx, Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx, Tn+x

))
– 

]
for all n ≥ n,

where A = 
B . Thus, in all cases, there exist A >  and n ≥  such that

n
[
d
(
Tnx, Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx, Tn+x

))
– 

]
for all n ≥ n.

By using (.), we get

n
[
d
(
Tnx, Tn+x

)]r ≤ An
([

θ
(
d(x, Tx)

)]kn
– 

)
for all n ≥ n. (.)

Letting n −→ ∞ in the inequality (.), we obtain

lim
n−→∞ n

[
d
(
Tnx, Tn+x

)]r = .

Thus, there exists n ∈N such that

d
(
Tnx, Tn+x

) ≤ 
n 

r
for all n ≥ n. (.)
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Now, we will prove that T has a periodic point. Suppose that it is not the case, then Tnx 
=
Tmx for all m, n ≥  such that n 
= m. Using condition () and (.), we get

θ
(
d
(
Tnx, Tn+x

))
≤ α

(
Tn–x, Tn+x

) · θ(
d
(
Tn–x, Tn+x

))

≤
[
θ

(
max

{
d(Tn–x, Tn+x), d(Tn–x, TTn–x),

d(Tn+x, TTn+x), d(Tn–x,TTn–x)d(Tn+x,TTn+x)
+d(Tn–x,Tn+x)

})]k

=

[
θ

(
max

{
d(Tn–x, Tn+x), d(Tn–x, Tnx),

d(Tn+x, Tn+x), d(Tn–x,Tnx)d(Tn+x,Tn+x)
+d(Tn–x,Tn+x)

})]k

=

[
θ

(
max

{
d(Tn–x, Tn+x), d(Tn–x, Tnx),

d(Tn+x, Tn+x)

})]k

. (.)

Since θ is non-decreasing, we obtain from (.)

θ
(
d
(
Tnx, Tn+x

)) ≤
[

max

{
θ (d(Tn–x, Tn+x)), θ (d(Tn–x, Tnx)),

θ (d(Tn+x, Tn+x))

}]k

. (.)

Let I be the set of n ∈ N such that

un = max
{
θ
(
d
(
Tn–x, Tn+x

))
, θ

(
d
(
Tn–x, Tnx

))
, θ

(
d
(
Tn+x, Tn+x

))}
= θ

(
d
(
Tn–x, Tn+x

))
.

If |I| < ∞ then there is N ≥  such that, for all n ≥ N ,

max
{
θ
(
d
(
Tn–x, Tn+x

))
, θ

(
d
(
Tn–x, Tnx

))
, θ

(
d
(
Tn+x, Tn+x

))}
= max

{
θ
(
d
(
Tn–x, Tnx

))
, θ

(
d
(
Tn+x, Tn+x

))}
.

In this case, we get from (.)

 ≤ θ
(
d
(
Tnx, Tn+x

)) ≤ [
max

{
θ
(
d
(
Tn–x, Tnx

))
, θ

(
d
(
Tn+x, Tn+x

))}]k

for all n ≥ N . Letting n −→ ∞ in the above inequality and using (.), we obtain

lim
n−→∞ θ

(
d
(
Tnx, Tn+x

))
= .

If |I| = ∞, we can find a subsequence of {un}, then we denote also by {un}, such that

un = θ
(
d
(
Tn–x, Tn+x

))
for n large enough.

In this case, we obtain from (.)

 ≤ θ
(
d
(
Tnx, Tn+x

)) ≤ [
θ
(
d
(
Tn–x, Tn+x

))]k

≤ [
θ
(
d
(
Tn–x, Tnx

))]k ≤ · · · ≤ [
θ
(
d
(
x, Tx

))]kn
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for n large. Letting n −→ ∞ in the above inequality, we obtain

lim
n−→∞ θ

(
d
(
Tnx, Tn+x

))
= . (.)

Then in all cases, (.) holds. Using (.) and (�), we have

lim
n−→∞ θ

(
d
(
Tnx, Tn+x

))
= .

Similarly from (�) there exists n ≥  such that

d
(
Tnx, Tn+x

) ≤ 
n 

r
for all n ≥ n. (.)

Let h = max{n, n}. We consider two cases.
Case : If m >  is odd, then writing m = L + , L ≥ , using (.), for all n ≥ h, we obtain

d
(
Tnx, Tn+mx

) ≤ d
(
Tnx, Tn+x

)
+ d

(
Tn+x, Tn+x

)
+ · · ·

+ d
(
Tn+Lx, Tn+L+x

)
≤ 

n 
r

+


(n + ) 
r

+ · · · +


(n + L) 
r

≤
∞∑
i=n


i 

r
.

Case : If m >  is even, then writing m = L, L ≥ , using (.) and (.), for all n ≥ h,
we have

d
(
Tnx, Tn+mx

) ≤ d
(
Tnx, Tn+x

)
+ d

(
Tn+x, Tn+x

)
+ · · ·

+ d
(
Tn+L–x, Tn+Lx

)
≤ 

n 
r

+


(n + ) 
r

+ · · · +


(n + L – ) 
r

≤
∞∑
i=n


i 

r
.

Thus, combining all cases, we have

d
(
Tnx, Tn+mx

) ≤
∞∑
i=n


i 

r
for all n ≥ h, m ≥ .

Since the series
∑∞

i=n


i

r

is convergent (since 
r > ), we deduce that {Tnx} is a Cauchy

sequence. From the completeness of X, there x∗ ∈ X such that Tnx −→ x∗ as n −→ ∞.
Now, we prove that x∗ = Tx∗. Since T is α-orbital attractive, we have for all n ≥ 

α
(
Tnx, x∗

) ≥  or α
(
x∗, Tn+x

) ≥ .
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Hence there exists a subsequence {Tn(k)x} of {Tnx} such that

α
(
Tn(k)x, x∗

) ≥  or α
(
x∗, Tn(k)x

) ≥  for all k ≥ .

In the first case, without restriction of the generality, we can suppose that Tn(k)x 
= x∗ for
all k. Using condition (), we have

θ
(
d
(
Tn(k)+x, Tx∗

))
= θ

(
d
(
TTn(k)x, Tx∗

))
≤ α

(
Tn(k)x, x∗

) · θ(
d
(
TTn(k)x, Tx∗

))

≤
[
θ

(
max

{
d(Tn(k)x, x∗), d(Tn(k)x, Tn(k)+x),
d(x∗, Tx∗), d(Tn(k)x,Tn(k)+x)d(x∗ ,Tx∗)

+d(Tn(k)x,x∗)

})]k

.

This implies

θ
(
d
(
Tn(k)+x, Tx∗

)) ≤
[
θ

(
max

{
d(Tn(k)x, x∗), d(Tn(k)x, Tn(k)+x),
d(x∗, Tx∗), d(Tn(k)x,Tn(k)+x)d(x∗ ,Tx∗)

+d(Tn(k)x,x∗)

})]k

.

Letting k −→ ∞ in the above equality, using the continuity of θ and Lemma , we get

θ
(
d(x∗, Tx∗)

) ≤ [
θ
(
d(x∗, Tx∗)

)]k < θ
(
d(x∗, Tx∗)

)
,

which is a contradiction. The second case is similar. Therefore, x∗ = Tx∗, which is also a
contradiction with the assumption that T does not have a periodic point. Thus T has a
periodic point, say x∗ of period q. Suppose that the set of fixed points of T is empty. Then
we have

q >  and d(x∗, Tx∗) > .

By using condition () and (.), we get

θ
(
d(x∗, Tx∗)

)
= θ

(
d
(
Tqx∗, Tq+x∗

)) ≤ α
(
Tq–x∗, Tqx∗

) · θ(
d
(
Tqx∗, Tq+x∗

))
≤ [

θ
(
d(x∗, Tx∗)

)]kq
< θ

(
d(x∗, Tx∗)

)
,

which is a contradiction. Thus the set of fixed points of T is non-empty (that is, T has at
least one fixed point).

If y∗ is another fixed point of T such that x∗ 
= y∗, since T is α-orbital attractive, we
deduce that

α
(
Tnx, y∗

) ≥  or α
(
y∗, Tn+x

) ≥ .

Hence there exists a subsequence {Tn(k)x} of {Tnx} such that

α
(
Tn(k)x, y∗

) ≥  or α
(
y∗, Tn(k)x

) ≥  for all k ≥ .
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In the first case, we have

θ
(
d
(
Tn(k)+x, y∗

))
= θ

(
d
(
Tn(k)+x, Ty∗

))
= θ

(
d
(
TTn(k)x, Ty∗

))
≤ α

(
Tn(k)x, y∗

) · θ(
d
(
TTn(k)x, Ty∗

))

≤
[
θ

(
max

{
d(Tn(k)x, y∗), d(Tn(k)x, Tn(k)+x),
d(y∗, Ty∗), d(Tn(k)x,Tn(k)+x)d(y∗ ,Ty∗)

+d(Tn(k)x,y∗)

})]k

=

[
θ

(
max

{
d(Tn(k)x, y∗), d(Tn(k)x, Tn(k)+x),
d(y∗, Ty∗), d(Tn(k)x,Tn(k)+x)d(y∗ ,Ty∗)

+d(Tn(k)x,y∗)

})]k

< θ

(
max

{
d(Tn(k)x, y∗), d(Tn(k)x, Tn(k)+x),
d(y∗, Ty∗), d(Tn(k)x,Tn(k)+x)d(y∗ ,Ty∗)

+d(Tn(k)x,y∗)

})
.

This implies

θ
(
d
(
Tn(k)+x, y∗

))
< θ

(
max

{
d(Tn(k)x, y∗), d(Tn(k)x, Tn(k)+x),
d(y∗, Ty∗), d(Tn(k)x,Tn(k)+x)d(y∗ ,Ty∗)

+d(Tn(k)x,y∗)

})
.

Letting k −→ ∞ in the above equality, we get

θ
(
d(x∗, y∗)

)
< θ

(
d(x∗, y∗)

)
.

This is a contradiction. The second case is similar. �

Corollary  Let (X, d) be a complete metric space, T : X −→ X be a given map, and let
α : X × X −→ [,∞) be a mapping. Suppose that the following conditions hold:

() there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx, Ty) 
=  �⇒ α(x, y) · θ(
d(Tx, Ty)

) ≤ [
θ
(
R(x, y)

)]k ,

where

R(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)
 + d(x, y)

}
,

() there exists x ∈ X such that α(x, Tx) ≥  and α(x, Tx) ≥ ,
() T is an α-orbital admissible mapping,
() T is an α-orbital attractive mapping.
Then T has a unique fixed point x∗ ∈ X and {Tnx} converges to x∗.

Example  Let X = {, , , } endow with the metric d given by d(x, y) = |x – y| for all
x, y ∈ X. It is easy to show that (X, d) is a complete metric space. Let T : X −→ X be the
mapping defined by

T() = T() =  and T() = T() = ,
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and α : X × X −→ [,∞) be given by

α(x, y) =

{
 if (x, y) ∈ {(, ), (, )},
 otherwise.

Also define θ : (,∞) −→ (,∞) by

θ (t) = et
√

t .

It is easy to show that T is an α-orbital admissible and α-orbital attractive mapping. Also
the hypotheses of Theorem  (Corollary ) are satisfied by T , and hence T has a fixed
point. But the result of Jleli et al. (Corollary ) cannot be applied to T . Indeed for x = ,
y = , we have

θ
(
d
(
T(), T()

))
= θ

(
d(, )

)
= e

� [e]k =
[
θ
(
d(, )

)]k , for all k ∈ (, ).
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20. Păcurar, M, Rus, IA: Fixed point theory for cyclic ϕ-contractions. Nonlinear Anal. 72(3-4), 1181-1187 (2010)
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