CORE

Lyapunov inequalities for a class of nonlinear dynamic systems on time scales

Taixiang Sun ${ }^{1,2^{*}}$, Hongjian Xi ${ }^{1}$, Jing Liu ${ }^{2}$ and Qiuli He^{3}

"Correspondence:
stxhql@gxu.edu.cn
${ }^{1}$ College of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, China
${ }^{2}$ College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China
Full list of author information is available at the end of the article

Abstract

The purpose of this work is to obtain several Lyapunov inequalities for the nonlinear dynamic systems

$$
\left\{\begin{array}{l}
x^{\Delta}(t)=-A(t) x(\sigma(t))-B(t) y(t)|\sqrt{B(t)} y(t)|^{p-2}, \\
y^{\Delta}(t)=C(t) x(\sigma(t))|x(\sigma(t))|^{q-2}+A^{T}(t) y(t),
\end{array}\right.
$$

on a given time scale interval $[a, b]_{\mathbb{T}}(a, b \in \mathbb{T}$ with $\sigma(a)<b)$, where $p, q \in(1,+\infty)$ satisfy $1 / p+1 / q=1, A(t)$ is a real $n \times n$ matrix-valued function on $[a, b]_{\mathbb{T}}$ such that $1+\mu(t) A(t)$ is invertible, $B(t)$ and $C(t)$ are two real $n \times n$ symmetric matrix-valued functions on $[a, b]_{\mathbb{T}}, B(t)$ is positive definite, and $x(t), y(t)$ are two real n-dimensional vector-valued functions on $[a, b]_{\mathbb{T}}$.

MSC: 34K11; 39A10; 39A99
Keywords: Lyapunov inequality; nonlinear dynamic system; time scale

1 Introduction

The theory of dynamic equations on time scales, which follows Hilger's landmark paper [1], is a new study area of mathematics that has received a lot of attention. For example, we refer the reader to monographs $[2,3]$ and the references therein. During the last few years, some Lyapunov inequalities for dynamic equations on time scales have been obtained by many authors [4-7].

In 2002, Bohner et al. [8] investigated the second-order Sturm-Liouville dynamic equation

$$
\begin{equation*}
x^{\Delta^{2}}(t)+q(t) x^{\sigma}(t)=0 \tag{1.1}
\end{equation*}
$$

on time scale \mathbb{T} under the conditions $x(a)=x(b)=0(a, b \in \mathbb{T}$ with $a<b)$ and $q \in$ $C_{\mathrm{rd}}(\mathbb{T},(0, \infty))$ and showed that if $x(t)$ is a solution of (1.1) with $\max _{t \in[a, b]_{\mathbb{T}}}|x(t)|>0$, then

$$
\int_{a}^{b} q(t) \Delta t \geq \frac{b-a}{C}
$$

where $[a, b]_{\mathbb{T}} \equiv\{t \in \mathbb{T}: a \leq t \leq b\}$ and $C=\max \left\{(t-a)(b-t): t \in[a, b]_{\mathbb{T}}\right\}$.

When $\mathbb{T}=\mathbb{R}$, (1.1) reduces to the Hills equation

$$
\begin{equation*}
x^{\prime \prime}(t)+u(t) x(t)=0 \tag{1.2}
\end{equation*}
$$

In 1907, Lyapunov [9] showed that if $u \in C([a, b], \mathbb{R})$ and $x(t)$ is a solution of (1.2) satisfying $x(a)=x(b)=0$ and $\max _{t \in[a, b]}|x(t)|>0$, then the following classical Lyapunov inequality holds:

$$
\int_{a}^{b}|u(t)| d t>\frac{4}{b-a}
$$

This was later strengthened with $|u(t)|$ replaced by $u^{+}(t)=\max \{u(t), 0\}$ by Wintner [10] and thereafter by some other authors:

$$
\int_{a}^{b} u^{+}(t) d t>\frac{4}{b-a}
$$

Moreover, the last inequality is optimal.
When \mathbb{T} is the set \mathbb{Z} of the integers, (1.1) reduces to the linear difference equation

$$
\begin{equation*}
\Delta^{2} x(n)+u(n) x(n+1)=0 . \tag{1.3}
\end{equation*}
$$

In 1983, Cheng [11] showed that if $a, b \in \mathbb{Z}$ with $0<a<b$ and $x(n)$ is a solution of (1.3) satisfying $x(a)=x(b)=0$ and $\max _{n \in\{a, a+1, \ldots, b\}}|x(n)|>0$, then

$$
\sum_{n=a}^{b-2}|u(n)| \geq \begin{cases}\frac{4(b-a)}{(b-a)^{2}-1} & \text { if } b-a-1 \text { is even } \\ \frac{4}{b-a} & \text { if } b-a-1 \text { is odd }\end{cases}
$$

The purpose of this paper is to establish several Lyapunov inequalities for the nonlinear dynamic system

$$
\left\{\begin{array}{l}
x^{\Delta}(t)=-A(t) x(\sigma(t))-B(t) y(t)|\sqrt{B(t)} y(t)|^{p-2} \tag{1.4}\\
y^{\Delta}(t)=C(t) x(\sigma(t))|x(\sigma(t))|^{q-2}+A^{T}(t) y(t)
\end{array}\right.
$$

on a given time scale interval $[a, b]_{\mathbb{T}}(a, b \in \mathbb{T}$ with $\sigma(a)<b)$, where $p, q \in(1,+\infty)$ satisfy $1 / p+1 / q=1, A(t)$ is a real $n \times n$ matrix-valued function on $[a, b]_{\mathbb{T}}$ such that $I+\mu(t) A(t)$ is invertible, $B(t)$ and $C(t)$ are two real $n \times n$ symmetric matrix-valued functions on [a,b] $]_{\mathbb{T}}, B(t)$ being positive definite, $A^{T}(t)$ is the transpose of $A(t)$, and $x(t), y(t)$ are two real n-dimensional vector-valued functions on $[a, b]_{\mathbb{T}}$.

When $n=1$ and $p=q=2$, (1.4) reduces to

$$
\left\{\begin{array}{l}
x^{\Delta}(t)=u(t) x(\sigma(t))+v(t) y(t) \tag{1.5}\\
y^{\Delta}(t)=-w(t) x(\sigma(t))-u(t) y(t)
\end{array}\right.
$$

where $u(t), v(t)$, and $w(t)$ are real-valued rd-continuous functions on \mathbb{T} satisfying $v(t) \geq 0$ for any $t \in \mathbb{T}$.

In 2011, He et al. [12] obtained the following result.

Theorem 1.1 ([12]) Let $1-\mu(t) u(t)>0$ for any $t \in \mathbb{T}$ and $a, b \in \mathbb{T}^{k}$ with $\sigma(a) \leq b$. If (1.5) has a real solution $(x(t), y(t))$ such that

$$
\begin{array}{ll}
x(a)=0 & \text { or } \quad x(a) x(\sigma(a))<0 ; \\
x(b)=0 & \text { or } \quad x(b) x(\sigma(b))<0 ;
\end{array} \quad \max _{t \in[a, b]_{\mathbb{T}}}|x(t)|>0, ~ l
$$

then we have the following inequality:

$$
\int_{a}^{b}|u(t)| \Delta(t)+\left[\int_{a}^{\sigma(b)} v(t) \Delta(t) \int_{a}^{b} w^{+}(t) \Delta(t)\right]^{1 / 2} \geq 2
$$

where $w^{+}(t)=\max \{w(t), 0\}$.

In 2016, Liu et al. [13] obtained the following theorem.

Theorem 1.2 Let $p=q=2$ and $a, b \in \mathbb{T}$ with $\sigma(a)<b$. If (1.4) has a solution $(x(t), y(t))$ such that

$$
\begin{equation*}
x(a)=x(b)=0 \quad \text { and } \quad \max _{t \in[a, b]_{\mathbb{T}}} x^{T}(t) x(t)>0, \tag{1.6}
\end{equation*}
$$

then for any $n \times n$ symmetric matrix-valued function $C_{1}(t)$ with $C_{1}(t)-C(t) \geq 0$, we have the following inequalities:
(1)

$$
\int_{a}^{b} \frac{\left[\int_{a}^{\sigma(t)}|B(s)|\left|e_{\Theta A}(\sigma(t), s)\right|^{2} \Delta s\right]\left[\int_{\sigma(t)}^{b}|B(s)|\left|e_{\Theta A}(\sigma(t), s)\right|^{2} \Delta s\right]}{\int_{a}^{b}|B(s)|\left|e_{\Theta A}(\sigma(t), s)\right|^{2} \Delta s}\left|C_{1}(t)\right| \Delta t \geq 1
$$

(2)

$$
\int_{a}^{b}\left|C_{1}(t)\right|\left\{\int_{a}^{b}|B(s)|\left|e_{\Theta A}(\sigma(t), s)\right|^{2} \Delta s\right\} \Delta t \geq 4
$$

(3)

$$
\int_{a}^{b}|A(t)| \Delta t+\left(\int_{a}^{b}|\sqrt{B(t)}|^{2} \Delta t\right)^{1 / 2}\left(\int_{a}^{b}\left|C_{1}(t)\right| \Delta t\right)^{1 / 2} \geq 2
$$

For some other related results on Lyapunov-type inequalities, see, for example, [14-23].

2 Preliminaries and some lemmas

Throughout this paper, we adopt basic definitions and notation of monograph [2]. A time scale \mathbb{T} is a nonempty closed subset of the real numbers \mathbb{R}. On a time scale \mathbb{T}, the forward jump operator, the backward jump operator, and the graininess function are defined as

$$
\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}, \quad \rho(t)=\sup \{s \in \mathbb{T}: s<t\}, \quad \text { and } \quad \mu(t)=\sigma(t)-t
$$

respectively.

The point $t \in \mathbb{T}$ is said to be left-dense (resp. left-scattered) if $\rho(t)=t$ (resp. $\rho(t)<t)$. The point $t \in \mathbb{T}$ is said to be right-dense (resp. right-scattered) if $\sigma(t)=t$ (resp. $\sigma(t)>t$). If \mathbb{T} has a left-scattered maximum M, then we define $\mathbb{T}^{k}=\mathbb{T}-\{M\}$, otherwise $\mathbb{T}^{k}=\mathbb{T}$.

A function $f: \mathbb{T} \rightarrow \mathbb{R}$ is said to be rd-continuous if f is continuous at right-dense points and has finite left-sided limits at left-dense points in \mathbb{T}. The set of all rd-continuous functions from \mathbb{T} to \mathbb{R} is denoted by $C_{\mathrm{rd}}(\mathbb{T}, \mathbb{R})$. For a function $f: \mathbb{T} \rightarrow \mathbb{R}$, the notation f^{σ} means the composition $f \circ \sigma$.

For a function $f: \mathbb{T} \rightarrow \mathbb{R}$, the (delta) derivative $f^{\Delta}(t)$ at $t \in \mathbb{T}$ is defined as the number (if it exists) such that for given any $\varepsilon>0$, there is a neighborhood U of t with

$$
\left|f(\sigma(t))-f(s)-f^{\Delta}(t)(\sigma(t)-s)\right| \leq \varepsilon|\sigma(t)-s|
$$

for all $s \in U$. If the (delta) derivative $f^{\Delta}(t)$ exists for every $t \in \mathbb{T}^{k}$, then we say that f is Δ-differentiable on \mathbb{T}.

Let $F, f \in C_{\mathrm{rd}}(\mathbb{T}, \mathbb{R})$ satisfy $F^{\Delta}(t)=f(t)$ for all $t \in \mathbb{T}^{k}$. Then, for any $c, d \in \mathbb{T}$, the Cauchy integral of f is defined as

$$
\int_{c}^{d} f(t) \Delta t=F(d)-F(c)
$$

For any $z \in \mathbb{R}^{n}$ and any $S \in \mathbb{R}^{n \times n}$ (the space of real $n \times n$ matrices), write

$$
|z|=\sqrt{z^{T} z} \quad \text { and } \quad|S|=\max _{z \in \mathbb{R}^{n}, z \neq 0} \frac{|S z|}{|z|}
$$

which are called the Euclidean norm of z and the matrix norm of S, respectively. It is obvious that, for any $z \in \mathbb{R}^{n}$ and $U, V \in \mathbb{R}^{n \times n}$,

$$
|U z| \leq|U||z| \quad \text { and } \quad|U V| \leq|U||V|
$$

Let $\mathbb{R}_{s}^{n \times n}$ be the set of all symmetric real $n \times n$ matrices. We can show that, for any $U \in$ $\mathbb{R}_{s}^{n \times n}$,

$$
|U|=\max _{|\lambda I-U|=0}|\lambda| \quad \text { and } \quad\left|U^{2}\right|=|U|^{2}
$$

A matrix $S \in \mathbb{R}_{s}^{n \times n}$ is said to be positive definite (resp. semipositive definite), written as $S>0$ (resp. $S \geq 0$), if $y^{T} S y>0$ (resp. $y^{T} S y \geq 0$) for any $y \in \mathbb{R}^{n}$ with $y \neq 0$. If S is positive definite (resp. semipositive definite), then there exists a unique positive definite matrix (resp. semipositive definite matrix), written as \sqrt{S}, satisfying $[\sqrt{S}]^{2}=S$.

In this paper, we establish Lyapunov inequalities for (1.4) that has a solution $(x(t), y(t))$ satisfying

$$
\begin{equation*}
x(a)=x(b)=0 \quad \text { and } \quad \max _{t \in[a, b]_{\mathbb{T}}} x^{T}(t) x(t)>0 \tag{2.1}
\end{equation*}
$$

We first introduce the following lemmas.

Lemma 2.1 ([2]) Let $1 / p+1 / q=1(p, q \in(1,+\infty))$ and $a, b \in \mathbb{T}(a<b)$. Then, for any $f, g \in$ $C_{\mathrm{rd}}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$,

$$
\int_{a}^{b}|f(t) g(t)| \Delta t \leq\left(\int_{a}^{b}|f(t)|^{p} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(t)|^{q} \Delta t\right)^{\frac{1}{q}}
$$

Lemma 2.2 Let $a, b \in \mathbb{T}$ with $a<b$. Suppose that $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ and $p, q \in(1,+\infty)$ with $\alpha / p+\beta / q=\gamma / p+\delta / q=1 / p+1 / q=1$. Then, for any $f, g \in C_{\mathrm{rd}}\left([a, b]_{\mathbb{T}},(-\infty, 0) \cup(0, \infty)\right)$,

$$
\int_{a}^{b}|f(t) g(t)| \Delta t \leq\left(\int_{a}^{b}|f(t)|^{\alpha}|g(t)|^{\gamma} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|f(t)|^{\beta}|g(t)|^{\delta} \Delta t\right)^{\frac{1}{q}}
$$

Proof Let $M(t)=\left(|f(t)|^{\alpha}|g(t)|^{\gamma}\right)^{\frac{1}{p}}$ and $N(t)=\left(|f(t)|^{\beta}|g(t)|^{\delta}\right)^{\frac{1}{q}}$. Then by Lemma 2.1 we have

$$
\begin{aligned}
\int_{a}^{b}|f(t) g(t)| \Delta t & =\int_{a}^{b} M(t) N(t) \Delta t \\
& \leq\left(\int_{a}^{b} M^{p}(t) \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b} N^{q}(t) \Delta t\right)^{\frac{1}{q}} \\
& =\left(\int_{a}^{b}|f(t)|^{\alpha}|g(t)|^{\gamma} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|f(t)|^{\beta}|g(t)|^{\delta} \Delta t\right)^{\frac{1}{q}}
\end{aligned}
$$

This completes the proof of Lemma 2.2.

Remark 2.3 Let $\gamma=0$ in Lemma 2.2. Then we obtain that, for any $f, g \in C_{\mathrm{rd}}\left([a, b]_{\mathbb{T}},(-\infty\right.$, 0) $\cup(0, \infty)$),

$$
\int_{a}^{b}|f(t) g(t)| \Delta t \leq\left\{\max _{t \in[a, b]_{\mathbb{T}}}|f(t)|^{\beta}\right\}^{\frac{1}{q}}\left(\int_{a}^{b}|f(t)|^{\alpha} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(t)|^{q} \Delta t\right)^{\frac{1}{q}}
$$

Lemma 2.4 ([2]) If $A \in C_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{n \times n}\right)$ with invertible $I+\mu(t) A(t), f \in C_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{n}\right)$, $t_{0} \in \mathbb{T}$, and $a \in \mathbb{R}^{n}$, then

$$
x(t)=e_{\Theta A}\left(t, t_{0}\right) a+\int_{t_{0}}^{t} e_{\Theta A}(t, \tau) f(\tau) \Delta \tau
$$

is the unique solution of the initial value problem

$$
\left\{\begin{array}{l}
x^{\Delta}(t)=-A(t) x(\sigma(t))+f(t) \\
x\left(t_{0}\right)=a
\end{array}\right.
$$

where $(\Theta A)(t)=-[I+\mu(t) A(t)]^{-1} A(t)$ for any $t \in \mathbb{T}^{k}$, and $e_{\Theta A}\left(t, t_{0}\right)$ is the unique matrixvalued solution of the initial value problem

$$
\left\{\begin{array}{l}
Y^{\Delta}(t)=(\Theta A)(t) Y(t), \\
Y\left(t_{0}\right)=I
\end{array}\right.
$$

Lemma 2.5 ([2]) Let $A, B \in C_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{n \times n}\right)$ be Δ-differentiable. Then

$$
(A(t) B(t))^{\Delta}=A^{\sigma}(t) B^{\Delta}(t)+A^{\Delta}(t) B(t)=A^{\Delta}(t) B^{\sigma}(t)+A(t) B^{\Delta}(t) .
$$

Lemma 2.6 ([13]) If $f_{1}(t), f_{2}(t), \ldots, f_{n}(t)$ are Δ-integrable on $[a, b]_{\mathbb{T}}$ and $x(t)=\left(f_{1}(t), f_{2}(t)\right.$, $\left.\ldots, f_{n}(t)\right)$, then

$$
\left|\int_{a}^{b} x(t) \Delta t\right|=\left\{\sum_{i=1}^{n}\left(\int_{a}^{b} f_{i}(t) \Delta t\right)^{2}\right\}^{\frac{1}{2}} \leq \int_{a}^{b}\left\{\sum_{i=1}^{n} f_{i}^{2}(t)\right\}^{\frac{1}{2}} \Delta t=\int_{a}^{b}|x(t)| \Delta t
$$

Lemma 2.7 ([13]) If $A_{1}, A_{2} \in \mathbb{R}_{s}^{n \times n}$ and $A_{1}-A_{2} \geq 0$, then, for any $x \in \mathbb{R}^{n}$,

$$
\left(x^{\sigma}\right)^{T} A_{2} x^{\sigma} \leq\left|A_{1}\right|\left|x^{\sigma}\right|^{2}
$$

3 Main results and proofs

In this section, we assume that $\alpha, \beta \in \mathbb{R}$ and $p, q \in(1,+\infty)$ satisfy

$$
\alpha / p+\beta / q=1 / p+1 / q=1
$$

For any $t, \tau \in[a, b]_{\mathbb{T}}$, write

$$
\begin{aligned}
& F(t, \tau)=\left|e_{\Theta A}(\sigma(t), \tau)\right||\sqrt{B(\tau)}|, \\
& G(t)=|\sqrt{B(t)} y(t)|^{p-2} y^{T}(t) B(t) y(t)=|\sqrt{B(t)} y(t)|^{p}, \\
& \Phi(\sigma(t))=\left(\int_{a}^{\sigma(t)} F^{\alpha}(t, s) \Delta s\right)^{\frac{q}{p}}, \\
& \Psi(\sigma(t))=\left(\int_{\sigma(t)}^{b} F^{\alpha}(t, s) \Delta s\right)^{\frac{q}{p}}, \\
& P(t)=\Phi(\sigma(t)) \Psi(\sigma(t)) \max _{a \leq \tau \leq \sigma(t)} F^{\beta}(t, \tau) \max _{\sigma(t) \leq \tau \leq b} F^{\beta}(t, \tau), \\
& Q(t)=\Phi(\sigma(t)) \max _{a \leq \tau \leq \sigma(t)} F^{\beta}(t, \tau)+\Psi(\sigma(t)) \max _{\sigma(t) \leq \tau \leq b} F^{\beta}(t, \tau) .
\end{aligned}
$$

Theorem 3.1 Let $a, b \in \mathbb{T}$ with $\sigma(a)<b$ and $C_{1} \in \mathbb{R}_{s}^{n \times n}$ with $C_{1}(t)-C(t) \geq 0$. If (1.4) has a solution $(x(t), y(t))$ with $x(t), y(t) \in C_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{n}\right)$ satisfying (2.1) on the interval $[a, b]_{\mathbb{T}}$, then

$$
\begin{equation*}
\int_{a}^{b} \frac{P(t)}{Q(t)}\left|C_{1}(t)\right| \Delta t \geq 1 \tag{3.1}
\end{equation*}
$$

Proof Since $(x(t), y(t))$ is a solution of (1.4), we have

$$
\begin{equation*}
\left(y^{T}(t) x(t)\right)^{\Delta}=\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t)\left|x^{\sigma}(t)\right|^{q-2}-G(t) \tag{3.2}
\end{equation*}
$$

Integrating (3.2) from a to b and noting that $x(a)=x(b)=0$, we obtain

$$
\int_{a}^{b} G(t) \Delta t=\int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t
$$

Noting that $B(t)>0$, we know that $y^{T}(t) B(t) y(t) \geq 0, t \in[a, b]_{\mathbb{T}}$.
We claim that $y^{T}(t) B(t) y(t) \not \equiv 0\left(t \in[a, b]_{\mathbb{T}}\right)$. Indeed, if $y^{T}(t) B(t) y(t) \equiv 0\left(t \in[a, b]_{\mathbb{T}}\right)$, then

$$
|\sqrt{B(t)} y(t)|^{2}=y^{T}(t) B(t) y(t) \equiv 0
$$

which implies $B(t) y(t) \equiv 0\left(t \in[a, b]_{\mathbb{T}}\right)$. Thus, the first equation of (1.4) reduces to

$$
x^{\Delta}(t)=-A(t) x(\sigma(t)), \quad x(a)=0 .
$$

By Lemma 2.4 it follows

$$
x(t)=e_{\Theta A}(t, a) \cdot 0=0
$$

which is a contradiction to (2.1). Hence, we obtain that

$$
\begin{equation*}
\int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t=\int_{a}^{b} G(t) \Delta t>0, \tag{3.3}
\end{equation*}
$$

and it follows from Lemma 2.4 that, for $t \in[a, b]_{\mathbb{T}}$,

$$
\begin{aligned}
x(t) & =-\int_{a}^{t} e_{\Theta A}(t, \tau) B(\tau) y(\tau)|\sqrt{B(\tau)} y(\tau)|^{p-2} \Delta \tau \\
& =-\int_{b}^{t} e_{\Theta A}(t, \tau) B(\tau) y(\tau)|\sqrt{B(\tau)} y(\tau)|^{p-2} \Delta \tau
\end{aligned}
$$

which implies that, for $t \in[a, b)_{\mathbb{T}}$,

$$
\begin{aligned}
x^{\sigma}(t) & =-\int_{a}^{\sigma(t)} e_{\Theta A}(\sigma(t), \tau) B(\tau) y(\tau)|\sqrt{B(\tau)} y(\tau)|^{p-2} \Delta \tau \\
& =+\int_{\sigma(t)}^{b} e_{\Theta A}(\sigma(t), \tau) B(\tau) y(\tau)|\sqrt{B(\tau)} y(\tau)|^{p-2} \Delta \tau
\end{aligned}
$$

Note that, for $a \leq \sigma(t) \leq b$,

$$
\begin{aligned}
& \left.\left|e_{\Theta A}(\sigma(t), \tau) B(\tau) y(\tau)\right| \sqrt{B(\tau)} y(\tau)\right|^{p-2} \mid \\
& \quad \leq\left|e_{\Theta A}(\sigma(t), \tau)\right||B(\tau) y(\tau)||\sqrt{B(\tau)} y(\tau)|^{p-2} \\
& \quad \leq F(t, \tau)|\sqrt{B(\tau)} y(\tau)||\sqrt{B(\tau)} y(\tau)|^{p-2} \\
& \quad=F(t, \tau) G^{\frac{1}{q}}(\tau) .
\end{aligned}
$$

Then by Remark 2.3 and Lemma 2.6 we obtain

$$
\begin{aligned}
\left|x^{\sigma}(t)\right|^{q} & =\left.\left.\left|\int_{a}^{\sigma(t)} e_{\Theta A}(\sigma(t), \tau) B(\tau) y(\tau)\right| \sqrt{B(\tau)} y(\tau)\right|^{p-2} \Delta \tau\right|^{q} \\
& \leq\left[\left.\int_{a}^{\sigma(t)}\left|e_{\Theta A}(\sigma(t), \tau) B(\tau) y(\tau)\right| \sqrt{B(\tau)} y(\tau)\right|^{p-2} \mid \Delta \tau\right]^{q} \\
& \leq\left[\int_{a}^{\sigma(t)} F(t, \tau) G^{\frac{1}{q}}(\tau) \Delta \tau\right]^{q} \\
& \leq\left(\int_{a}^{\sigma(t)} F^{\alpha}(t, \tau) \Delta \tau\right)^{\frac{q}{p}} \int_{a}^{\sigma(t)} F^{\beta}(t, \tau) G(\tau) \Delta \tau \\
& \leq \max _{a \leq \tau \leq \sigma(t)} F^{\beta}(t, \tau)\left(\int_{a}^{\sigma(t)} F^{\alpha}(t, \tau) \Delta \tau\right)^{\frac{q}{p}} \int_{a}^{\sigma(t)} G(\tau) \Delta \tau,
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left|x^{\sigma}(t)\right|^{q} \leq \max _{a \leq \tau \leq \sigma(t)} F^{\beta}(t, \tau) \Phi(\sigma(t)) \int_{a}^{\sigma(t)} G(\tau) \Delta \tau \tag{3.4}
\end{equation*}
$$

Similarly, for $a \leq \sigma(t) \leq b$, we have

$$
\begin{equation*}
\left|x^{\sigma}(t)\right|^{q} \leq \max _{\sigma(t) \leq \tau \leq b} F^{\beta}(t, \tau) \Psi(\sigma(t)) \int_{\sigma(t)}^{b} G(\tau) \Delta \tau \tag{3.5}
\end{equation*}
$$

It follows from (3.4) and (3.5) that

$$
\left|x^{\sigma}(t)\right|^{q} \leq \frac{P(t)}{Q(t)} \int_{a}^{b} G(\tau) \Delta \tau
$$

Then by (3.3) and Lemma 2.7 we have

$$
\begin{aligned}
& \int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t \\
& \quad \leq \int_{a}^{b}\left|C_{1}(t)\right| \frac{P(t)}{Q(t)} \Delta t \int_{a}^{b} G(t) \Delta t \\
& \quad=\int_{a}^{b}\left|C_{1}(t)\right| \frac{P(t)}{Q(t)} \Delta t \int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t \\
& \quad \leq \int_{a}^{b}\left|C_{1}(t)\right| \frac{P(t)}{Q(t)} \Delta t \int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t
\end{aligned}
$$

Since

$$
\int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t \geq \int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t=\int_{a}^{b} G(t) \Delta t>0
$$

we get

$$
\int_{a}^{b} \frac{P(t)}{Q(t)}\left|C_{1}(t)\right| \Delta t \geq 1
$$

This completes the proof of Theorem 3.1.
Corollary 3.2 Let $a, b \in \mathbb{T}$ with $\sigma(a)<b$ and $C_{1} \in \mathbb{R}_{s}^{n \times n}$ with $C_{1}(t)-C(t) \geq 0$. If (1.4) has a solution $(x(t), y(t))$ with $x(t), y(t) \in C_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{n}\right)$ satisfying (2.1) on the interval $[a, b]_{\mathbb{T}}$, then

$$
\begin{equation*}
\int_{a}^{b} Q(t)\left|C_{1}(t)\right| \Delta t \geq 4 \tag{3.6}
\end{equation*}
$$

Proof Note that

$$
\frac{P(t)}{Q(t)} \leq \frac{Q(t)}{4}
$$

It follows from (3.1) that

$$
\int_{a}^{b} \frac{Q(t)}{4}\left|C_{1}(t)\right| \Delta t \geq 1
$$

that is,

$$
\int_{a}^{b} Q(t)\left|C_{1}(t)\right| \Delta t \geq 4
$$

This completes the proof of Corollary 3.2.
Corollary 3.3 Let $a, b \in \mathbb{T}$ with $\sigma(a)<b$ and $C_{1} \in \mathbb{R}_{s}^{n \times n}$ with $C_{1}(t)-C(t) \geq 0$. If (1.4) has a solution $(x(t), y(t))$ with $x(t), y(t) \in C_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{n}\right)$ satisfying (2.1) on the interval $[a, b]_{\mathbb{T}}$, then

$$
\begin{equation*}
\int_{a}^{b} \sqrt{P(t)}\left|C_{1}(t)\right| \Delta t \geq 2 \tag{3.7}
\end{equation*}
$$

Proof Note that

$$
Q(t) \geq 2 \sqrt{P(t)}
$$

It follows from (3.1) that

$$
\int_{a}^{b} \sqrt{P(t)}\left|C_{1}(t)\right| \Delta t \geq \int_{a}^{b} 2 \frac{P(t)}{Q(t)}\left|C_{1}(t)\right| \Delta t \geq 2
$$

This completes the proof of Corollary 3.3.

Theorem 3.4 Let $a, b \in \mathbb{T}$ with $\sigma(a)<b$ and $C_{1} \in \mathbb{R}_{s}^{n \times n}$ with $C_{1}(t)-C(t) \geq 0$. If (1.4) has a solution $(x(t), y(t))$ with $x(t), y(t) \in C_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{n}\right)$ satisfying (2.1) on the interval $[a, b]_{\mathbb{T}}$, then there exists $c \in(a, b)$ such that

$$
\left\{\begin{array}{l}
\int_{a}^{\sigma(c)} \Phi(\sigma(t)) \max _{a \leq \tau \leq \sigma(t)} F^{\beta}(t, \tau)\left|C_{1}(t)\right| \Delta t \geq 1 \tag{3.8}\\
\int_{c}^{b} \Psi(\sigma(t)) \max _{\sigma(t) \leq \tau \leq b} F^{\beta}(t, \tau)\left|C_{1}(t)\right| \Delta t \geq 1
\end{array}\right.
$$

Proof Set $U(t)=\Phi(\sigma(t)) \max _{a \leq \tau \leq \sigma(t)} F^{\beta}(t, \tau)$ and $V(t)=\Psi(\sigma(t)) \max _{\sigma(t) \leq \tau \leq b} F^{\beta}(t, \tau)$. Let

$$
f(t)=\int_{a}^{t} U(s)\left|C_{1}(s)\right| \Delta s-\int_{t}^{b} V(s)\left|C_{1}(s)\right| \Delta s
$$

Then we have $f(a)<0$ and $f(b)>0$. Hence, we can choose $c \in(a, b)$ such that $f(c) \leq 0$ and $f(\sigma(c)) \geq 0$, that is,

$$
\begin{equation*}
\int_{a}^{c} U(s)\left|C_{1}(s)\right| \Delta s \leq \int_{c}^{b} V(s)\left|C_{1}(s)\right| \Delta s \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{\sigma(c)} U(s)\left|C_{1}(s)\right| \Delta s \geq \int_{\sigma(c)}^{b} V(s)\left|C_{1}(s)\right| \Delta s \tag{3.10}
\end{equation*}
$$

By (3.4) we have that

$$
\begin{equation*}
\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \leq U(t)\left|C_{1}(t)\right| \int_{a}^{\sigma(t)} G(\tau) \Delta \tau \tag{3.11}
\end{equation*}
$$

Integrating (3.11) from a to $\sigma(c)$, we obtain

$$
\begin{aligned}
\int_{a}^{\sigma(c)}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t \leq & \int_{a}^{\sigma(c)} U(t)\left|C_{1}(t)\right|\left(\int_{a}^{\sigma(t)} G(\tau) \Delta \tau\right) \Delta t \\
\leq & \int_{a}^{c} U(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{\sigma(c)} G(\tau) \Delta \tau \\
& +U(c)\left|C_{1}(c)\right|(\sigma(c)-c) \int_{a}^{\sigma(c)} G(\tau) \Delta \tau \\
= & \int_{a}^{\sigma(c)} U(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{\sigma(c)} G(\tau) \Delta \tau
\end{aligned}
$$

Similarly, we obtain from (3.4) and (3.10) that

$$
\begin{aligned}
\int_{\sigma(c)}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t & \leq \int_{\sigma(c)}^{b} V(t)\left|C_{1}(t)\right| \Delta t \int_{\sigma(c)}^{b} G(\tau) \Delta \tau \\
& \leq \int_{a}^{\sigma(c)} U(t)\left|C_{1}(t)\right| \Delta t \int_{\sigma(c)}^{b} G(\tau) \Delta \tau
\end{aligned}
$$

This yields

$$
\begin{aligned}
\int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t & \leq \int_{a}^{\sigma(c)} U(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{b} G(t) \Delta t \\
& =\int_{a}^{\sigma(c)} U(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t \\
& \leq \int_{a}^{\sigma(c)} U(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t
\end{aligned}
$$

Since

$$
\begin{aligned}
\int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t & \geq \int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t \\
& =\int_{a}^{b} G(t) \Delta t>0
\end{aligned}
$$

we have $\int_{a}^{\sigma(c)} U(t)\left|C_{1}(t)\right| \Delta t \geq 1$.
Next, we obtain from (3.5) that

$$
\begin{equation*}
\left|x^{\sigma}(t)\right|^{q}\left|C_{1}(t)\right| \leq V(t)\left|C_{1}(t)\right| \int_{\sigma(t)}^{b} G(\tau) \Delta \tau \tag{3.12}
\end{equation*}
$$

Integrating (3.12) from c to b, we have

$$
\begin{aligned}
\int_{c}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t & \leq \int_{c}^{b} V(t)\left|C_{1}(t)\right|\left(\int_{\sigma(t)}^{b} G(\tau) \Delta \tau\right) \Delta t \\
& \leq \int_{c}^{b} V(t)\left|C_{1}(t)\right| \Delta t \int_{\sigma(c)}^{b} G(\tau) \Delta \tau
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
\int_{a}^{c}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t & \leq \int_{a}^{c} U(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{\sigma(c)} G(\tau) \Delta \tau \\
& \leq \int_{c}^{b} V(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{\sigma(c)} G(\tau) \Delta \tau
\end{aligned}
$$

This yields

$$
\begin{aligned}
\int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t & \leq \int_{c}^{b} V(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{b} G(t) \Delta t \\
& =\int_{c}^{b} V(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t \\
& \leq \int_{c}^{b} V(t)\left|C_{1}(t)\right| \Delta t \int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t
\end{aligned}
$$

Thus, we have $\int_{c}^{b} V(t)\left|C_{1}(t)\right| \Delta t \geq 1$. This completes the proof of Theorem 3.4.

Theorem 3.5 Let $a, b \in \mathbb{T}$ with $\sigma(a)<b$ and $C_{1} \in \mathbb{R}_{s}^{n \times n}$ with $C_{1}(t)-C(t) \geq 0$. If (1.4) has a solution $(x(t), y(t))$ with $x(t), y(t) \in C_{\mathrm{rd}}\left(\mathbb{T}, \mathbb{R}^{n}\right)$ satisfying (2.1) on the interval $[a, b]_{\mathbb{T}}$, then

$$
\int_{a}^{b}|A(t)| \Delta t+\left\{\max _{a \leq t \leq b}|\sqrt{B(t)}|^{\beta}\right\}^{\frac{1}{q}}\left(\int_{a}^{b}|\sqrt{B(t)}|^{\alpha} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|C_{1}(t)\right| \Delta t\right)^{\frac{1}{q}} \geq 2
$$

Proof Since $x(a)=x(b)=0$, we have

$$
\int_{a}^{b} G(t) \Delta t=\int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t
$$

It follows from the first equation of (1.4) that, for all $a \leq t \leq b$,

$$
\begin{aligned}
x(t) & =\int_{a}^{t}\left(-A(\tau) x^{\sigma}(\tau)-B(\tau)|\sqrt{B(\tau)} y(\tau)|^{p-2} y(\tau)\right) \Delta \tau \\
& =\int_{t}^{b}\left(A(\tau) x^{\sigma}(\tau)+B(\tau)|\sqrt{B(\tau)} y(\tau)|^{p-2} y(\tau)\right) \Delta \tau .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
|x(t)| & =\left.\left|\int_{a}^{t}\left(-A(\tau) x^{\sigma}(\tau)-B(\tau) y(\tau)\right)\right| \sqrt{B(\tau)} y(\tau)\right|^{p-2} \Delta \tau \mid \\
& \leq\left.\int_{a}^{t}\left|A(\tau) x^{\sigma}(\tau)+B(\tau) y(\tau)\right| \sqrt{B(\tau)} y(\tau)\right|^{p-2} \mid \Delta \tau \\
& \leq \int_{a}^{t}\left|A(\tau) x^{\sigma}(\tau)\right| \Delta \tau+\int_{a}^{t}|B(\tau) y(\tau)||\sqrt{B(\tau)} y(\tau)|^{p-2} \Delta \tau \\
& \leq \int_{a}^{t}|A(\tau)|\left|x^{\sigma}(\tau)\right| \Delta \tau+\int_{a}^{t}|\sqrt{B(\tau)}| G^{\frac{1}{q}}(\tau) \Delta \tau .
\end{aligned}
$$

Similarly, we have

$$
|x(t)| \leq \int_{t}^{b}|A(\tau)|\left|x^{\sigma}(\tau)\right| \Delta \tau+\int_{t}^{b}|\sqrt{B(\tau)}| G^{\frac{1}{q}}(\tau) \Delta \tau .
$$

Then we obtain

$$
\begin{aligned}
|x(t)| \leq & \frac{1}{2}\left[\int_{a}^{b}|A(t)|\left|x^{\sigma}(t)\right| \Delta t+\int_{a}^{b}|\sqrt{B(t)}| G^{\frac{1}{q}}(t) \Delta t\right] \\
\leq & \frac{1}{2}\left[\int_{a}^{b}|A(t)|\left|x^{\sigma}(t)\right| \Delta t+\left\{\max _{a \leq t \leq b}|\sqrt{B(t)}|^{\beta}\right\}^{\frac{1}{q}}\right. \\
& \left.\times\left(\int_{a}^{b}|\sqrt{B(t)}|^{\alpha} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b} G(t) \Delta t\right)^{\frac{1}{q}}\right] \\
= & \frac{1}{2}\left[\int_{a}^{b}|A(t)|\left|x^{\sigma}(t)\right| \Delta t+\left\{\max _{a \leq t \leq b}|\sqrt{B(t)}|^{\beta}\right\}^{\frac{1}{q}}\left(\int_{a}^{b}|\sqrt{B(t)}|^{\alpha} \Delta t\right)^{\frac{1}{p}}\right. \\
& \left.\times\left(\int_{a}^{b}\left|x^{\sigma}(t)\right|^{q-2}\left(x^{\sigma}(t)\right)^{T} C(t) x^{\sigma}(t) \Delta t\right)^{\frac{1}{q}}\right] \\
\leq & \frac{1}{2}\left[\int_{a}^{b}|A(t)|\left|x^{\sigma}(t)\right| \Delta t+\left\{\max _{a \leq t \leq b}|\sqrt{B(t)}|^{\beta}\right\}^{\frac{1}{q}}\right. \\
& \left.\times\left(\int_{a}^{b}|\sqrt{B(t)}|^{\alpha} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|C_{1}(t)\right|\left|x^{\sigma}(t)\right|^{q} \Delta t\right)^{\frac{1}{q}}\right] .
\end{aligned}
$$

Denote $M=\max _{a \leq t \leq b}|x(t)|>0$. Then

$$
M \leq \frac{1}{2}\left[\int_{a}^{b}|A(t)| M \Delta t+\left\{\max _{a \leq t \leq b}|\sqrt{B(t)}|^{\beta}\right\}^{\frac{1}{q}}\left(\int_{a}^{b}|\sqrt{B(t)}|^{\alpha} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|C_{1}(t)\right| M^{q} \Delta t\right)^{\frac{1}{q}}\right]
$$

Thus,

$$
\int_{a}^{b}|A(t)| \Delta t+\left\{\max _{a \leq t \leq b}|\sqrt{B(t)}|^{\beta}\right\}^{\frac{1}{q}}\left(\int_{a}^{b}|\sqrt{B(t)}|^{\alpha} \Delta t\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|C_{1}(t)\right| \Delta t\right)^{\frac{1}{q}} \geq 2
$$

This completes the proof of Theorem 3.5.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details

${ }^{1}$ College of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, China. ${ }^{2}$ College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China. ${ }^{3}$ College of Electrical Engineering, Guangxi University, Nanning, Guangxi 530004, China.

Acknowledgements

This project is supported by NNSF of China (11461003).

References

1. Hilger, S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 18, 18-56 (1990)
2. Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
3. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
4. Jiang, L, Zhou, Z: Lyapunov inequality for linear Hamiltonian systems on time scales. J. Math. Anal. Appl. 310, 579-593 (2005)
5. Wong, F, Yu, S, Yeh, C, Lian, W: Lyapunov's inequality on time scales. Appl. Math. Lett. 19, 1293-1299 (2006)
6. Zhang, Q, He, X, Jiang, J: On Lyapunov-type inequalities for nonlinear dynamic systems on time scales. Comput. Math. Appl. 62, 4028-4038 (2011)
7. Liu, X, Tang, M: Lyapunov-type inequality for higher order difference equations. Appl. Math. Comput. 232, 666-669 (2014)
8. Bohner, M, Clark, S, Ridenhour, J: Lyapunov inequalities for time scales. J. Inequal. Appl. 7, 61-77 (2002)
9. Lyapunov, AM: Problème général de stabilité du mouvement. Ann. Fac. Sci. Toulouse Math. 9, 203-474 (1907)
10. Wintner, A: On the nonexistence of conjugate points. Am. J. Math. 73, 368-380 (1951)
11. Cheng, SS: A discrete analogue of the inequality of Lyapunov. Hokkaido Math. J. 12, 105-112 (1983)
12. He, X, Zhang, Q, Tang, X: On inequalities of Lyapunov for linear Hamiltonian systems on time scales. J. Math. Anal. Appl. 381, 695-705 (2011)
13. Liu, J, Sun, T, Kong, X, He, Q: Lyapunov inequalities of linear Hamiltonian systems on time scales. J. Comput. Anal. Appl. 21, 1160-1169 (2016)
14. Agarwal, RP, Bohner, M, Rehak, P: Half-linear dynamic equations. In: Nonlinear Analysis and Applications, pp. 1-56 (2003)
15. Agarwal, RP, Özbekler, A: Lyapunov type inequalities for even order differential equations with mixed nonlinearities J. Inequal. Appl. 2015, 142 (2015)
16. Agarwal, RP, Özbekler, A: Disconjugacy via Lyapunov and Valée-Poussin type inequalities for forced differential equations. Appl. Math. Comput. 265, 456-468 (2015)
17. Agarwal, RP, Özbekler, A: Lyapunov type inequalities for second order sub- and super-half-linear differential equations. Dyn. Syst. Appl. 24, 211-220 (2015)
18. Agarwal, RP, Özbekler, A: Lyapunov type inequalities for Lidstone boundary value problems with mixed nonlinearities (submitted)
19. Cheng, S: Lyapunov inequalities for differential and difference equations. Fasc. Math. 23, 25 -41 (1991)
20. Guseinov, GS, Kaymakçalan, B: Lyapunov inequalities for discrete linear Hamiltonian systems. Comput. Math. Appl. 45, 1399-1416 (2003)
21. Tang, X, Zhang, M: Lyapunov inequalities and stability for linear Hamiltonian systems. J. Differ. Equ. 252, 358-38 (2012)
22. O'Regan, D, Samet, B: Lyapunov-type inequalities for a class of fractional differential equations. J. Inequal. Appl. 2015, 247 (2015)
23. Jeli, M, Samet, B: Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 18, 443-451 (2015)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

